Prof. Dr. E. Görlich,

Dipl.-Math. T. Heck, I. Klöcker

11. Übung zur Analysis I

Abgabe: Montag, 14. Januar 2002, bis 12 Uhr im Kasten vor Raum 155, Hauptgebäude

Hinweis. Punkte, die mit einem * versehen sind, zählen nicht mit zur Gesamtpunktzahl.

Aufgabe 1 (4 Punkte) Sei $e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$. Zeigen Sie, dass

$$\exp(r) = e^r = \lim_{n \to \infty} \left(1 + \frac{r}{n}\right)^n$$
 für alle $r \in \mathbb{Q}$.

Aufgabe 2 (2+2+2 Punkte) Bestimmen Sie die Konvergenzradien der folgenden Potenzreihen:

a)
$$\sum_{n=0}^{\infty} a^{n!} z^n$$
 für $a \in \mathbb{R}, a \neq 0$,

b)
$$\sum_{n=0}^{\infty} i^n \frac{1}{3^{2n+1}} z^n$$
,

c)
$$\sum_{n=0}^{\infty} \left(1 + \frac{r}{n}\right)^{n^2} z^n \text{ für } r \in \mathbb{Q}.$$

Aufgabe 3 (4 Punkte) Sei $f(z) = \frac{1+z}{1-z}$ für $z \in \mathbb{C}, z \neq 1$ und $g(z) = \frac{1-z}{1+z}$ für $z \in \mathbb{C}, z \neq -1$. Schreiben Sie f(z) und g(z) als Potenzreihen mit Entwicklungspunkt 0 und bestimmen Sie ihre Konvergenzradien. Berechnen Sie dann das Cauchy-Produkt dieser beiden Potenzreihen und bestimmen Sie den Konvergenzradius der sich so ergebenden Potenzreihe.

Aufgabe 4 (2+2+2 Punkte) Sei $\sum_{n=0}^{\infty} a_n x^n$ eine Potenzreihe mit Konvergenzradius $R \in (0, \infty)$. Bestimmen Sie die Konvergenzradien der Potenzreihen

(i)
$$\sum_{n=0}^{\infty} a_n x^{kn} \quad (k \in \mathbb{N}),$$

(ii)
$$\sum_{n=0}^{\infty} a_n x^{n^2},$$

(iii)
$$\sum_{n=0}^{\infty} a_n \frac{x^n}{n!}.$$

Zusatzfrage (3* Punkte): Was gilt in den beiden Fällen R = 0 bzw. $R = \infty$?

Aufgabe 5 (3+2 Punkte)

a) Gegeben sei eine Folge positiver reeller Zahlen $(r_n)_{n\geq 0}$ mit $\lim_{n\to\infty} r_n = r \in \mathbb{R} \cup \{\infty\}$. Zeigen Sie, dass die Potenzreihe

$$\sum_{n=0}^{\infty} \frac{1}{r_0 \cdot r_1 \cdot \ldots \cdot r_n} z^n$$

den Konvergenzradius r hat.

- b) Bestimmen Sie die Konvergenzradien der folgenden Potenzreihen:
 - (i) $\sum_{n=0}^{\infty} n! z^n,$
 - (ii) $\sum_{n=0}^{\infty} \left(\frac{n!}{3 \cdot 5 \cdot \ldots \cdot (2n+1)} \right)^2 z^n.$

Aufgabe 6 (3 Punkte) Bestimmen Sie den Konvergenzradius R und für $z \in \mathbb{C}, |z| < R$ den Wert der Reihe

$$\sum_{n=0}^{\infty} (2n+1)(3z)^{2n}.$$