Prof. Dr. E. Görlich,

Dipl.-Math. T. Heck, I. Klöcker

13. Übung zur Analysis I

Abgabe: Montag, 28. Januar 2002, bis 12 Uhr im Kasten vor Raum 155, Hauptgebäude

Aufgabe 1 (2+2+3 Punkte)

a) Zeigen Sie: Für $z \in \mathbb{C}$ gilt

$$\cosh(z) = \frac{1}{2}(\exp(z) + \exp(-z))$$
 und $\sinh(z) = \frac{1}{2}(\exp(z) - \exp(-z))$.

b) Zeigen Sie: Für $z, w \in \mathbb{C}$ gilt

$$\cosh(z+w) = \cosh(z)\cosh(w) + \sinh(z)\sinh(w) \text{ und}$$

$$\sinh(z+w) = \sinh(z)\cosh(w) + \cosh(z)\sinh(w)$$

sowie

$$\cosh(z)^2 - \sinh(z)^2 = 1.$$

c) Zeigen Sie, dass cosh : $[0,\infty) \to [1,\infty)$ und sinh : $\mathbb{R} \to \mathbb{R}$ injektiv sind. Zeigen Sie weiter, dass die Umkehrfunktionen

$$\operatorname{arcosh}: [1, \infty) \to [0, \infty) \text{ und } \operatorname{arsinh}: \mathbb{R} \to \mathbb{R}$$

stetig und streng monoton steigend sind. Sie können hier voraussetzen, dass cosh : $[0, \infty) \to [1, \infty)$ und sinh : $\mathbb{R} \to \mathbb{R}$ surjektiv sind.

Aufgabe 2 (2+2+2 Punkte)

- a) Geben Sie ein Beispiel einer streng monotonen, stetigen Funktion an, deren Umkehrfunktion unstetig ist.
- b) Geben Sie ein Beispiel einer umkehrbaren, stetigen Funktion an, die nicht streng monoton ist.
- c) Geben Sie ein Intervall E und eine Funktion $f: E \to \mathbb{R}$ an, die auf E streng monoton und unstetig ist, so dass f^{-1} stetig auf f(E) ist.

Aufgabe 3 (2+1+2+2+2 Punkte) Berechnen Sie folgende Grenzwerte bzw. zeigen Sie gegebenenfalls, dass sie nicht existieren.

a)
$$\lim_{x\to 1} \frac{x^n-1}{x^m-1}$$
 für $m,n\in\mathbb{N}$;

b)
$$\lim_{x\to 0} \frac{[x+\frac{1}{2}]}{x}$$
;

c)
$$\lim_{x \to -1} \frac{x^3 - x^2 + x - 1}{x^2 - 1}$$
 und $\lim_{x \to 1} \frac{x^3 - x^2 + x - 1}{x^2 - 1}$;

d)
$$\lim_{x\to 0} \frac{\exp(x)-1}{x}$$
;

e)
$$\lim_{x \to \infty} x \left(1 - \sqrt{1 - \frac{1}{x}} \right)$$
.

Aufgabe 4 (3 Punkte) Geben Sie die Art der Unstetigkeitsstelle in $x_0 = 0$ der folgenden Funktionen an:

a)
$$f: \mathbb{R} \setminus \{0\} \to \mathbb{R}, x \mapsto \exp(-1/x),$$

b)
$$g: \mathbb{R} \setminus \{0\} \to \mathbb{R}, x \mapsto \exp(-1/|x|)$$
 und

c)
$$h: \mathbb{R} \setminus \{0\} \to \mathbb{R}, x \mapsto \frac{x - [x]}{x}$$
.

Aufgabe 5 (3 Punkte) Für welche $a \in \mathbb{R}$, $a \ge 1$, ist die Menge

$$X_a := \bigcup_{n=1}^{\infty} \left[\frac{1}{a^{n+1}}, \frac{1}{a^{n-1}} \right]$$

kompakt?

Aufgabe 6 (3 Punkte) Sei K eine nichtleere kompakte Teilmenge von \mathbb{R} und $f: K \to \mathbb{R}$ stetig. Sei f(x) > 0 für alle $x \in K$. Zeigen Sie, dass dann ein $\alpha > 0$ existiert, so dass $f(x) \ge \alpha$ für alle $x \in K$.