6

2

1

4

Prof. Dr. E. Görlich Dipl.-Math. Andreas Haß

5. Übung zur Vorlesung Topologie

(Abgabe: Dienstag, 25.05.2004, bis 11.30 Uhr im Übungskasten)

Aufgabe 1: Sei (X, \mathcal{T}) ein topologischer Raum mit $X \neq \emptyset$. Sei \mathcal{T}^* die Topologie auf \mathbb{R}^* aus Übung 2, Aufgabe 3. Zeigen Sie:

- a) Eine Abbildung $f: \mathbb{R}^* \to \mathbb{R}$ ist genau dann stetig, wenn $f|_{\mathbb{R}}: \mathbb{R} \to \mathbb{R}$ stetig ist und die beiden Limiten $\lim_{x \to +\infty} f|_{\mathbb{R}}(x)$ bzw. $\lim_{x \to -\infty} f|_{\mathbb{R}}(x)$ existieren und mit $f(+\infty)$ bzw. $f(-\infty)$ übereinstimmen.
- b) Eine Abbildung $f: X \to \mathbb{R}^*$ ist genau dann stetig, wenn für jedes $c \in \mathbb{R}$ die Mengen $\{x \in X; f(x) > c\}$ und $\{x \in X; f(x) < c\}$ offen sind.
- c) Sind $f_j: X \to \mathbb{R}^*$, j = 1, ..., n, stetig, so sind auch die durch

$$M(x) := \max_{1 \le j \le n} f_j(x), \quad m(x) := \min_{1 \le j \le n} f_j(x)$$

definierten Abbildungen $M: X \to \mathbb{R}^*$ und $m: X \to \mathbb{R}^*$ stetig.

d) Für $n \in \mathbb{Z}$, $n \ge 0$, definiere man $g_n : \mathbb{R} \to \mathbb{R}^*$ durch $g_n(x) := x^{-n}$ für $x \ne 0$ und $g_n(0) := +\infty$. Welche der Abbildungen g_n sind stetig?

Aufgabe 2: Sei (X, \mathcal{T}) ein topologischer Raum.

- a) Zeigen Sie, dass Automorphismengruppen homöomorpher topologischer Räume isomorph sind.
- b) Zeigen Sie an einem Beispiel, dass aus der Isomorphie der Automorphismengruppen noch nicht die Homöomorphie der topologischen Räume folgt.

Aufgabe 3: Sei \mathcal{T}_{nat} die natürliche Topologie auf \mathbb{R} .

a) Zeigen Sie, dass $\mathcal{B} := \mathcal{T}_{nat} \cup \mathcal{U}(\infty)$ mit

$$\mathcal{U}(\infty) := \{\{\infty\} \cup \{x \in \mathbb{R} ; |x| > n\} \mid n \in \mathbb{N}\}$$

Basis einer Topologie \mathcal{T}_{∞} auf $\mathbb{R}_{\infty}:=\mathbb{R}\overset{\cdot}{\cup}\{\infty\}$ ist.

b) Welche der Räume $(\mathbb{R}, \mathcal{T}_{nat})$, $(\mathbb{R}_{\infty}, \mathcal{T}_{\infty})$, $([0,1], \mathcal{T}_{nat})$ und (S^1, \mathcal{T}_{nat}) (mit der Einheitssphäre $S^1 := \{x \in \mathbb{R}^2; |x| = 1\}$) sind homöomorph?

Aufgabe 4*: Sei $f : \mathbb{R} \to \mathbb{R}$ stetig bezüglich der natürlichen Topologie auf \mathbb{R} .

a) Zeigen Sie: f ist genau dann offen, wenn f injektiv ist.

- 3
- b) Unter welchen Voraussetzungen ist f auch abgeschlossen, wenn f offen ist?

1

Aufgabe 5:

a) Sei $X := \mathbb{R}$. Bestimmen Sie die bezüglich der Menge aller monoton wachsenden Funktionen $f: X \to (\mathbb{R}, \mathcal{T}_{nat})$ initiale Topologie auf X.

3

b) Sei \mathbb{K} ein Körper. Wie läßt sich die Zariskitopologie auf \mathbb{K}^n als Initialtopologie darstellen?

3

Aufgabe 6: Seien (X, \mathcal{T}_X) , (Y, \mathcal{T}_Y) und (Z, \mathcal{T}_Z) topologische Räume sowie $f: X \to Y$ und $g: Y \to Z$ surjektive, stetige Abbildungen. \mathcal{T}_Y sei die finale Topologie von $(f: X \to Y)$. Beweisen Sie:

 \mathcal{T}_Z ist finale Topologie von $(g:Y\to Z) \Leftrightarrow \mathcal{T}_Z$ ist finale Topologie von $(g\circ f:X\to Z)$.

4