Modular Forms for the Orthogonal Group O(2,5)

Ingo Klöcker

Lehrstuhl A für Mathematik RWTH Aachen

Seminar Aachen-Köln-Lille-Siegen on Automorphic Forms

Université de Lille, November 9, 2005

Outline

Introduction

Orthogonal Modular Forms

Vector-valued Modular Forms

Borcherds Products

The Graded Ring of Modular Forms

History

- ▶ O(2,1): Elliptic modular forms. It is well-known that the graded ring $\mathcal{A}(\mathsf{SL}_2(\mathbb{Z}))$ of elliptic modular forms is a polynomial ring in the elliptic Eisenstein series g_2 and g_3 (of weight 4 and 6).
- \triangleright O(2,2): Hilbert modular forms.
- ▶ O(2,3): Siegel modular forms of degree 2. J.-I. Igusa (1962): The graded ring $\mathcal{A}(\operatorname{Sp}_2(\mathbb{Z}))$ is a polynomial ring in the Siegel Eisenstein series E_4 , E_6 , E_{10} and E_{12} .

History (continued)

- ▶ O(2,4): Hermitian modular forms of degree 2. E. Freitag (1967): The graded ring for $\mathbb{Q}(\sqrt{-1})$, T. Dern (2001): The graded ring for $\mathbb{Q}(\sqrt{-3})$ and $\mathbb{Q}(\sqrt{-2})$ (with A. Krieg).
- \triangleright O(2,5): This is the case we will consider.
- ► O(2,6): Quaternionic modular forms of degree 2. A. Krieg (2005)

Symmetric Matrices and Quadratic Forms

ightharpoonup S: a symmetric, positive definite, even $\ell \times \ell$ matrix

- ► $(x,y)_T = {}^t x T y$ and $q_T(x) = \frac{1}{2}(x,x)_T = \frac{1}{2} {}^t x T x = \frac{1}{2} T[x]$ Abbreviations:
 - $(\cdot,\cdot)=(\cdot,\cdot)_S, q=q_S,$
 - $(\cdot,\cdot)_0=(\cdot,\cdot)_{S_0},\ q_0=q_{S_0},$
 - $(\cdot,\cdot)_1 = (\cdot,\cdot)_{S_1}, q_1 = q_{S_1}.$
- ► Mostly, $S = A_3 = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$ or $S = A_1^{(3)} = \begin{pmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{pmatrix}$.

Lattices in Quadratic Spaces

- $lack \Lambda=\mathbb{Z}^\ell$, $\Lambda_0=\mathbb{Z}^{\ell+2}$, $\Lambda_1=\mathbb{Z}^{\ell+4}$ (lattices in $(\Lambda\otimes\mathbb{R},q)$, ...)
- ► Dual lattices:

$$\Lambda_{\mathcal{T}}^{\sharp} = \{ \mu \in \Lambda_{\mathcal{T}} \otimes \mathbb{R}; \ (\lambda, \mu)_{\mathcal{T}} \in \mathbb{Z} \text{ for all } \lambda \in \Lambda_{\mathcal{T}} \} = \mathcal{T}^{-1} \Lambda_{\mathcal{T}}$$

- ► We have:
 - $\qquad \quad \wedge^{\sharp} = S^{-1} \mathbb{Z}^{\ell}, \ \Lambda_0^{\sharp} = \mathbb{Z} \times \Lambda^{\sharp} \times \mathbb{Z}, \ \Lambda_1^{\sharp} = \mathbb{Z} \times \Lambda_0^{\sharp} \times \mathbb{Z},$
 - $ightharpoonup \Lambda^{\sharp}/\Lambda \cong \Lambda_0^{\sharp}/\Lambda_0 \cong \Lambda_1^{\sharp}/\Lambda_1$,
 - $\blacktriangleright |\Lambda^{\sharp}/\Lambda| = \det S$.
- $ightharpoonup \overline{q}_T: \Lambda_T^{\sharp}/\Lambda_T o \mathbb{Q}/\mathbb{Z}, \ \mu + \Lambda_T \mapsto q_T(\mu) + \mathbb{Z}$
- ► $S = A_3$: Λ^{\sharp}/Λ is represented by 4 vectors of norm 0, $2 \times \frac{3}{8}$, $\frac{1}{2}$.
- $S=A_1^{(3)}$: Λ^{\sharp}/Λ is represented by 8 vectors of norm 0, $3\times\frac{1}{4}$, $3\times\frac{1}{2}$, $\frac{3}{4}$.

Orthogonal Groups and the Half-Space

- ▶ $O(\Lambda) = \{M \in O(T; \mathbb{R}); M\Lambda = \Lambda\}$
- $ightharpoonup \mathcal{P}_S = \{ v \in \mathbb{R}^{\ell+2}; \ q_0(v) > 0, \ ^t v S_0 \ \mathrm{e} > 0 \} \ \mathrm{where} \ \mathrm{e} = (1,0,\ldots,0,1)$
- ▶ Half space: $\mathcal{H}_S = \{ w = u + iv \in \mathbb{C}^{\ell+2}; \ v = \operatorname{Im}(w) \in \mathcal{P}_S \}$
- $ightharpoonup O(S_1; \mathbb{R})$ acts on $\mathcal{H}_S \cup (-\mathcal{H}_S)$:

$$\begin{array}{ll} M\langle w\rangle &= j(M,w)^{-1} \cdot (-q_0(w)b + Aw + c) \\ j(M,w) &= -\gamma q_0(w) + {}^t dw + \delta \end{array} \qquad M = \begin{pmatrix} \alpha & {}^t a & \beta \\ b & A & c \\ \gamma & {}^t d & \delta \end{pmatrix}$$

- $ightharpoonup \Gamma_S = O(\Lambda_1) \cap O^+(S_1; \mathbb{R})$

Properties of the Orthogonal Modular Group

▶ Γ_S is (in our case) generated by J, T_λ , $\lambda \in \Lambda_0$, and R_A , $A \in O(\Lambda)$, where

$$J\langle w
angle = -q_0(w)^{-1} \cdot (au_2, -z, au_1)$$
 (inversion), $T_\lambda \langle w
angle = w + \lambda$ (translation), $R_A \langle w
angle = (au_1, Az, au_2)$ (rotation).

- ▶ Γ_S acts on $\Lambda_1^{\sharp}/\Lambda_1$ by multiplication. It permutes elements of $\Lambda_1^{\sharp}/\Lambda_1$ of the same norm (modulo \mathbb{Z}).
- ▶ Abelian characters of Γ_{A_3} and $\Gamma_{A_1^{(3)}}$:

$$\Gamma^{ab}_{\mathcal{A}_3} = \langle
u_\pi, \; \mathsf{det}
angle \quad \mathsf{and} \quad \Gamma^{ab}_{\mathcal{A}_1^{(3)}} = \langle
u_2, \;
u_\pi, \; \mathsf{det}
angle \, ,$$

where ν_{π} is the sign of the permutation of the elements of $\Lambda_1^{\sharp}/\Lambda_1$ of same norm and ν_2 is an extension of the Siegel character.

What is an Orthogonal Modular Form?

Definition

An (orthogonal) modular form of weight $k \in \mathbb{Z}$ with respect to a subgroup Γ of Γ_S of finite index and an abelian character $\nu : \Gamma \to \mathbb{C}^{\times}$ of finite order is a holomorphic function $f : \mathcal{H}_S \to \mathbb{C}$ satisfying

$$f(M\langle w \rangle) = \nu(M) j(M, w)^k f(w)$$
 for all $w \in \mathcal{H}_S$ and $M \in \Gamma$.

We denote the vector space of all such functions by $[\Gamma, k, \nu]$.

First results:

- ▶ If $-I \in \Gamma$ and $\nu(-I) \neq (-1)^k$ then $[\Gamma, k, \nu] = \{0\}$.
- If k < 0 then $[Γ, k, ν] = {0}.$

Fourier Expansion

All modular forms $f \in [\Gamma, k, \nu]$ have a Fourier expansion of the form

$$f(w) = \sum_{\mu \in \Lambda_0^{\sharp} \cap \overline{\mathcal{P}_S}} \alpha_f(\mu) \ e^{2\pi i (\mu, w)_0/h},$$

where h depends on $\Gamma \leq \Gamma_S$ and the character ν .

If $\alpha_f(\mu) = 0$ unless $\mu \in \mathcal{P}_S$ then f is a **cusp form**, $f \in [\Gamma, k, \nu]_0$.

What is Our Goal?

Products of modular forms are again modular forms. Thus

$$\mathcal{A}(\Gamma_{\mathcal{S}}) = \bigoplus_{k \in \mathbb{Z}} [\Gamma_{\mathcal{S}}, k, 1] \quad \text{and} \quad \mathcal{A}(\Gamma_{\mathcal{S}}') = \bigoplus_{k \in \mathbb{Z}} [\Gamma_{\mathcal{S}}', k, 1] = \bigoplus_{k \in \mathbb{Z}} \bigoplus_{\nu \in \Gamma_{\mathbf{S}}^{\mathbf{ab}}} [\Gamma_{\mathcal{S}}, k, \nu]$$

form graded rings.

Goal: Determine generators and algebraic structure of $\mathcal{A}(\Gamma_S)$ and $\mathcal{A}(\Gamma_S')$.

Due to $-I \in \Gamma_{A_3}$ and $\nu_{\pi}(-I) = \det(-I) = -1$ we get a first result:

- ▶ If k is even then $[\Gamma_{A_3}, k, \nu_{\pi}] = [\Gamma_{A_3}, k, \det] = \{0\}.$
- ▶ If k is odd then $[\Gamma_{A_3}, k, 1] = [\Gamma_{A_3}, k, \nu_{\pi} \det] = \{0\}.$

We get similar results for $S = A_1^{(3)}$.

Vector-valued Modular Forms

Definition

A holomorphic function $f: \mathcal{H} \to \mathbb{C}[\Lambda^{\sharp}/\Lambda]$ is a vector-valued modular form of weight $k \in \frac{1}{2}\mathbb{Z}$ with respect to $\rho_{\mathcal{S}}$ if

$$f(M\tau) = \varphi(\tau)^{2k} \rho_S(M,\varphi) f(\tau), \quad \text{for all } (M,\varphi) \in \mathsf{Mp}_2(\mathbb{Z})$$

and if f has a Fourier expansion of the form

$$f(au) = \sum_{\mu \in \Lambda^{\sharp}/\Lambda} \sum_{\substack{n \in q_S(\mu) + \mathbb{Z} \\ n \geq n_0}} c_{\mu}(n) q^n e_{\mu}.$$

- ▶ $n_0 \ge 0$: Holomorphic modular forms, $[Mp_2(\mathbb{Z}), k, \rho_S]$,
- ▶ $n_0 < 0$: Nearly holomorphic modular forms, $[Mp_2(\mathbb{Z}), k, \rho_S]_{\infty}$.

What to Know About Vector-valued Modular Forms

 Nearly holomorphic modular forms are uniquely determined by their principal part

$$\sum_{\substack{\mu \in \Lambda^{\sharp}/\Lambda}} \sum_{\substack{n \in q_{\mathcal{S}}(\mu) + \mathbb{Z} \\ n \leq 0}} c_{\mu}(n) q^{n} e_{\mu}.$$

- ▶ Skoruppa: Formula for dimension of $[Mp_2(\mathbb{Z}), k, \rho_S]$ for $k \geq 2$.
- ► Examples:
 - ▶ Eisenstein series $(k \in \frac{1}{2}\mathbb{Z}, k > 2)$

$$E_k(\tau) = \frac{1}{2} \sum_{(M,\varphi) \in \langle T \rangle \backslash \operatorname{Mp}_2(\mathbb{Z})} \varphi(\tau)^{-2k} \ \rho_{\mathcal{S}}(M,\varphi)^{-1} e_0.$$

Bruinier, Kuss: Formula for Fourier coefficients of E_k .

► Theta series

Borcherds Theorem

Theorem

Let $f \in [\mathsf{Mp}_2(\mathbb{Z}), -\ell/2, \rho_S^\sharp]_\infty$ with Fourier coefficients $c_\mu(n)$, such that $c_0(0) \in 2\mathbb{Z}$ and $c_\mu(n) \in \mathbb{Z}$ whenever n < 0. Then there exists a Borcherds product $\psi_k : \mathcal{H}_S \to \mathbb{C}$ with the following properties:

- ψ_k is a meromorphic modular form of weight $k = c_0(0)/2$ with respect to Γ_S and some abelian character χ .
- ▶ The zeros and poles of ψ_k are explicitely known and depend only on the principal part of f.
- \blacktriangleright ψ_k is given by the normally convergent product expansion

$$\psi_k(w) = e^{2\pi i (\varrho_f, w)_0} \prod_{\substack{\lambda_0 \in \Lambda_0^{\sharp} \\ \lambda_0 > 0}} \left(1 - e^{2\pi i (\lambda_0, w)_0} \right)^{c_{(0, \lambda_0, 0)}(q_0(\lambda_0))}.$$

Borcherds' Obstruction Condition

A necessary and sufficient condition for the existence of nearly holomorphic modular forms

Theorem

There exists a nearly holomorphic modular form $f \in [\mathsf{Mp}_2(\mathbb{Z}), -\ell/2, \rho_S^\sharp]_\infty$ with prescribed principal part

$$\sum_{\substack{\mu \in \Lambda_1^{\sharp}/\Lambda_1}} \sum_{\substack{n \in -q_S(\mu) + \mathbb{Z} \\ n \leq 0}} c_{\mu}(n) q^n e_{\mu},$$

if and only if

$$\sum_{\substack{\mu \in \Lambda_1^{\sharp}/\Lambda_1}} \sum_{\substack{n \in -q_{\mathcal{S}}(\mu) + \mathbb{Z} \\ n < 0}} c_{\mu}(n) \ a_{\mu}(-n) = 0$$

for all holomorphic modular forms $g \in [Mp_2(\mathbb{Z}), 2 + \ell/2, \rho_S]$ with Fourier expansion $g(\tau) = \sum_{\mu \in \Lambda_1^{\sharp}/\Lambda_1} \sum_{n \in q_S(\mu) + \mathbb{Z}, \ n \geq 0} a_{\mu}(n) q^n e_{\mu}$.

Input for Borcherds Theorem in the Case $S = A_3$

The obstruction space $[\mathsf{Mp}_2(\mathbb{Z}), 7/2, \rho_{A_3}]$ is of dimension 1 and spanned by

$$E_{7/2}(au) = 1 \ e_0 - 8 \ q^{3/8} \left(e_{rac{1}{4}} + e_{-rac{1}{4}}
ight) - 18 \ q^{1/2} \ e_{rac{1}{2}} - 108 \ q \ e_0 + O(q^{11/8}).$$

Thus the condition for the principal part of $f \in [\mathsf{Mp}_2(\mathbb{Z}), -3/2,
ho_{A_3}^\sharp]_\infty$ is

$$c_0(0) = 8 \left(c_{\frac{1}{4}} \left(-\frac{3}{8} \right) + c_{-\frac{1}{4}} \left(-\frac{3}{8} \right) \right) + 18 c_{\frac{1}{2}} \left(-\frac{1}{2} \right) + 108 c_0(-1) + \cdots$$

Possible principal parts are given by

$$q^{-3/8} \left(e_{\frac{1}{4}} + e_{-\frac{1}{4}} \right) + 16 e_0,$$

$$q^{-1/2} e_{\frac{1}{2}} + 18 e_0,$$

$$q^{-1} e_0 + 108 e_0.$$

Borcherds Products for Γ_{A_3}

Theorem

There exist Borcherds products

$$\psi_8 \in [\Gamma_{A_3}, 8, 1]_0, \quad \psi_9 \in [\Gamma_{A_3}, 9, \nu_\pi]_0 \quad \text{ and } \quad \psi_{54} \in [\Gamma_{A_3}, 54, \nu_\pi \det]_0.$$

The zeros of the products are all of first order and are given by

$$\bigcup_{M\in \Gamma_{A_3}} M\langle \mathcal{H}_{A_2}\rangle, \quad \bigcup_{M\in \Gamma_{A_3}} M\langle \mathcal{H}_{A_1^{(2)}}\rangle \quad \text{and} \quad \bigcup_{M\in \Gamma_{A_3}} M\langle \mathcal{H}_{\mathcal{S}_2}\rangle,$$

respectively, where

$$\mathcal{H}_{A_2} = \{ (\tau_1, z_1, z_2, z_3, \tau_2) \in \mathcal{H}_{A_3}; \ z_3 = 0 \} \cong H(2; \mathbb{Q}(\sqrt{-3})),$$

$$\mathcal{H}_{A_1^{(2)}} = \{ (\tau_1, z_1, z_2, z_3, \tau_2) \in \mathcal{H}_{A_3}; \ z_2 = 0 \} \cong H(2; \mathbb{Q}(\sqrt{-1})),$$

$$\mathcal{H}_{S_2} = \{ (\tau_1, z_1, z_2, z_3, \tau_2) \in \mathcal{H}_{A_3}; \ z_1 + z_3 = 0 \} \cong H(2; \mathbb{Q}(\sqrt{-2})).$$

Tools for Proving the Main Result

Corollary

Let $k \in \mathbb{Z}$ and $n \in \{0, 1\}$.

- 1. If k is odd and $f \in [\Gamma_{A_3}, k, \nu_{\pi}^{n+1} \det^n]$, then f vanishes on $\mathcal{H}_{A_1^{(2)}}$ and $f/\psi_9 \in [\Gamma_{A_3}, k-9, \nu_{\pi}^n \det^n]$.
- 2. If $f \in [\Gamma_{A_3}, k, \nu_{\pi}^{k+1} \det]$, then f vanishes on \mathcal{H}_{S_2} and $f/\psi_{54} \in [\Gamma_{A_3}, k-54, \nu_{\pi}^k]$.

Theorem

(Dern 2001) The graded ring $\mathcal{A}(\Gamma_{A_2})=igoplus_{k\in\mathbb{Z}}[\Gamma_{A_2},2k,1]$ is a polynomial ring in

$$E_4|_{\mathcal{H}_{A_2}}, \quad E_6|_{\mathcal{H}_{A_2}}, \quad E_{10}|_{\mathcal{H}_{A_2}}, \quad E_{12}|_{\mathcal{H}_{A_2}} \quad and \quad \psi_9^2|_{\mathcal{H}_{A_2}}.$$

The Graded Ring of Modular Forms for Γ_{A_3}

Theorem

a) The graded ring $\mathcal{A}(\Gamma_{A_3})=\bigoplus_{k\in\mathbb{Z}}[\Gamma_{A_3},2k,1]$ is a polynomial ring in

$$E_4, \quad E_6, \quad \psi_8, \quad E_{10}, \quad E_{12} \quad \text{and} \quad \psi_9^2.$$

b) The graded ring $\mathcal{A}(\Gamma'_{A_3}) = \bigoplus_{k \in \mathbb{Z}} [\Gamma'_{A_3}, k, 1]$ is generated by

$$E_4$$
, E_6 , ψ_8 , ψ_9 , E_{10} , E_{12} and ψ_{54}

and is isomorphic to

$$\mathbb{C}[X_1,\ldots,X_7]/(X_7^2-p(X_1,\ldots,X_6))$$

where $p \in \mathbb{C}[X_1, \dots, X_6]$ such that $\psi_{54}^2 = p(E_4, E_6, \psi_8, \psi_9, E_{10}, E_{12})$.

Fields of Orthogonal Modular Functions for Γ_{A_3}

Corollary

1. The field $\mathcal{K}(\Gamma_{A_3})$ of orthogonal modular functions with respect to Γ_{A_3} and the trivial character is a rational function field in the generators

$$\frac{E_6^2}{E_4^3}, \quad \frac{\psi_8}{E_4^2}, \quad \frac{E_{10}}{E_4\,E_6}, \quad \frac{E_{12}}{E_4^3} \quad \text{and} \quad \frac{\psi_9^2}{E_6^3}.$$

2. The field $\mathcal{K}(\Gamma'_{A_3})$ of all orthogonal modular functions with respect to Γ'_{A_3} is an extension of degree 2 over $\mathcal{K}(\Gamma_{A_3})$ generated by ψ_{54}/ψ_9^6 .

Borcherds Products for $\Gamma_{A_1^{(3)}}$

Theorem

There exist Borcherds products

$$\psi_3 \in [\Gamma_{A_1^{(3)}}, 3, \nu_2 \nu_\pi \det]_0, \quad \psi_{18} \in [\Gamma_{A_1^{(3)}}, 18, \nu_\pi]_0, \quad \psi_{30} \in [\Gamma_{A_1^{(3)}}, 30, \nu_2]_0.$$

The zeros of the products are all of first order and are given by

$$\bigcup_{M\in \Gamma_{A_1^{(3)}}} M\langle \mathcal{H}_{A_1^{(2)}}\rangle, \quad \bigcup_{M\in \Gamma_{A_1^{(3)}}} M\langle \mathcal{H}_{S_2}\rangle \quad \text{and} \quad \bigcup_{M\in \Gamma_{A_1^{(3)}}} M\langle \mathcal{H}_8\rangle,$$

respectively, where

$$\begin{split} \mathcal{H}_{A_{1}^{(2)}} &= \{ (\tau_{1}, z_{1}, z_{2}, z_{3}, \tau_{2}) \in \mathcal{H}_{A_{1}^{(3)}}; \ z_{3} = 0 \} \cong \textit{H}(2; \mathbb{Q}(\sqrt{-1})), \\ \mathcal{H}_{S_{2}} &= \{ (\tau_{1}, z_{1}, z_{2}, z_{3}, \tau_{2}) \in \mathcal{H}_{A_{1}^{(3)}}; \ z_{2} = z_{3} \} \cong \textit{H}(2; \mathbb{Q}(\sqrt{-2})), \\ \mathcal{H}_{8} &= \{ (\tau_{1}, z_{1}, z_{2}, z_{3}, \tau_{2}) \in \mathcal{H}_{A_{1}^{(3)}}; \ z_{3} = \frac{1}{2} \}. \end{split}$$

Tools for Proving the Main Result

Corollary

Let $S = A_1^{(3)}$, $k \in \mathbb{Z}$ and $n \in \{0, 1\}$.

- 1. If k is odd and $f \in [\Gamma'_S, k, 1]$, then f vanishes on $\mathcal{H}_{A_1^{(2)}}$ and $f/\psi_3 \in [\Gamma'_S, k-3, 1]$.
- 2. If $f \in [\Gamma_S, k, \nu_2^n \nu_\pi^{k+1} \det^k]$, then f vanishes on \mathcal{H}_{S_2} and $f/\psi_{18} \in [\Gamma_S, k-18, \nu_2^n \nu_\pi^k \det^k]$.
- 3. If $f \in [\Gamma_S, k, \nu_2^{k+1} \nu_\pi^n \det^k]$, then f vanishes on \mathcal{H}_8 and $f/\psi_{30} \in [\Gamma_S, k-30, \nu_2^k \nu_\pi^n \det^k]$.

Theorem

The graded ring $\mathcal{A}(\Gamma_{A_1^{(2)}})\cong\mathcal{A}(\Gamma(2,\mathbb{Q}(\sqrt{-1})))$ is a polynomial ring in the restrictions of functions h_4 , h_6 , h_8 , h_{10} , $h_{12}\in [\Gamma_{A_1^{(3)}},k,1]$ which are invariant polynomials in the restrictions of five quaternionic theta series.

The Graded Ring of Modular Forms for $\Gamma_{A_1^{(3)}}$

Theorem

a) The graded ring $\mathcal{A}(\Gamma_{A_i^{(3)}})=\bigoplus_{k\in\mathbb{Z}}[\Gamma_{A_i^{(3)}},2k,1]$ is a polynomial ring in

$$E_4$$
, E_6 , ψ_3^2 , h_8 , E_{10} and E_{12} .

b) The graded ring $\mathcal{A}(\Gamma'_{\mathcal{A}_{i}^{(3)}})=\bigoplus_{k\in\mathbb{Z}}[\Gamma'_{\mathcal{A}_{i}^{(3)}},k,1]$ is generated by

$$\psi_3, \quad E_4, \quad E_6, \quad h_8, \quad E_{10}, \quad E_{12}, \quad \psi_{18} \quad \text{and} \quad \psi_{30}$$

and is isomorphic to

$$\mathbb{C}[X_1,\ldots,X_8]/(X_7^2-p(X_1,\ldots,X_6),\ X_8^2-q(X_1,\ldots,X_6))$$

where $p, q \in \mathbb{C}[X_1, \dots, X_6]$ such that $\psi_{18}^2 = p(\psi_3, E_4, E_6, h_8, E_{10}, E_{12})$ and $\psi_{30}^2 = q(\psi_3, E_4, E_6, h_8, E_{10}, E_{12})$.

Fields of Orthogonal Modular Functions for $\Gamma_{A_1^{(3)}}$

Corollary

- 1. The field $\mathcal{K}(\Gamma_{A_1^{(3)}})$ of orthogonal modular functions with respect to $\Gamma_{A_1^{(3)}}$ and the trivial character is a rational function field in five generators.
- 2. The field $\mathcal{K}(\Gamma'_{A_1^{(3)}})$ of all orthogonal modular functions with respect to $\Gamma'_{A_1^{(3)}}$ is an extension of degree 4 over $\mathcal{K}(\Gamma_{A_1^{(3)}})$.