Modular Forms for the Orthogonal Group O(2,5)

Ingo Klöcker

Lehrstuhl A für Mathematik RWTH Aachen

Japanese-German Number Theory Workshop MPIM Bonn 2005-07-27

Outline

Introduction

Orthogonal Modular Forms

Vector-valued Modular Forms

Borcherds Products

The Graded Ring of Modular Forms

History

- ▶ O(2,1): Elliptic modular forms. It is well-known that the graded ring $\mathcal{A}(\mathsf{SL}_2(\mathbb{Z}))$ of elliptic modular forms is a polynomial ring in the elliptic Eisenstein series g_2 and g_3 (of weight 4 and 6).
- ► O(2,2): Hilbert modular forms. Cf. S. Mayer's talk.
- ▶ O(2,3): Siegel modular forms of degree 2. J.-I. Igusa (1962): The graded ring $\mathcal{A}(\operatorname{Sp}_2(\mathbb{Z}))$ is a polynomial ring in the Siegel Eisenstein series E_4 , E_6 , E_{10} and E_{12} .

History (continued)

- ▶ O(2,4): Hermitian modular forms of degree 2. E. Freitag (1967): The graded ring for $\mathbb{Q}(\sqrt{-1})$, T. Dern (2001): The graded ring for $\mathbb{Q}(\sqrt{-3})$ and $\mathbb{Q}(\sqrt{-2})$ (with A. Krieg).
- \triangleright O(2,5): This is the case we will consider.
- ► O(2,6): Quaternionic modular forms of degree 2. A. Krieg (2005)

Symmetric Matrices and Quadratic Forms

ightharpoonup S: a symmetric, positive definite, even $\ell imes \ell$ matrix

$$lacksymbol{\triangleright} S_0 := egin{pmatrix} 0 & 0 & 1 \ 0 & -S & 0 \ 1 & 0 & 0 \end{pmatrix}, \quad S_1 := egin{pmatrix} 0 & 0 & 1 \ 0 & S_0 & 0 \ 1 & 0 & 0 \end{pmatrix}$$
, signature of S_1 is $(2,\ell+2)$

- ► $(x,y)_T = {}^t x T y$ and $q_T(x) = \frac{1}{2}(x,x)_T = \frac{1}{2} {}^t x T x = \frac{1}{2} T[x]$ Abbreviations:
 - $(\cdot,\cdot)=(\cdot,\cdot)_S, q=q_S,$
 - $(\cdot,\cdot)_0=(\cdot,\cdot)_{S_0},\ q_0=q_{S_0},$
 - $(\cdot,\cdot)_1=(\cdot,\cdot)_{S_1},\ q_1=q_{S_1}.$
- ► Mostly $S = A_3 = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$, $q_S(x_1, x_2, x_3) = x_1^2 + x_1 x_2 + x_2^2 + x_2 x_3 + x_3^2$.

Lattices in Quadratic Spaces

- ▶ Dual lattices: $\Lambda_T^\sharp = \{\mu \in \Lambda \otimes \mathbb{R}; \ (\lambda, \mu)_T \in \mathbb{Z} \text{ for all } \lambda \in \Lambda\} = T^{-1}\Lambda$
- ► We have:

 - $ightharpoonup \Lambda^{\sharp}/\Lambda \cong \Lambda_0^{\sharp}/\Lambda_0 \cong \Lambda_1^{\sharp}/\Lambda_1$,
 - $|\Lambda^{\sharp}/\Lambda| = \det S.$
- $ightharpoonup \overline{q}_T: \Lambda_T^{\sharp}/\Lambda_T \to \mathbb{Q}/\mathbb{Z}, \ \mu + \Lambda_T \mapsto q_T(\mu) + \mathbb{Z}$
- ► $S = A_3$: $\Lambda^{\sharp}/\Lambda = A_3^{-1}\mathbb{Z}^3/\mathbb{Z}^3$ is represented by (0,0,0), $(\frac{1}{4},\frac{1}{2},-\frac{1}{4})$, $(\frac{1}{2},0,\frac{1}{2})$, $(-\frac{1}{4},\frac{1}{2},\frac{1}{4})$ with norm $0,\frac{3}{8},\frac{1}{2},\frac{3}{8}$, respectively.

Orthogonal Groups and the Half-space

- $\begin{array}{l} \blacktriangleright \ \ \mathsf{O}(T;\mathbb{R}) = \{ M \in \mathsf{Mat}(\ell;\mathbb{R}); \ T[M] := {}^t \! M T M = T \} \\ = \{ M \in \mathsf{Mat}(\ell;\mathbb{R}); \ q_T(Mx) = q_T(x) \ \text{for all} \ x \in \mathbb{R}^\ell \}. \end{array}$
- $ightharpoonup \mathcal{P}_S = \{ v \in \mathbb{R}^{\ell+2}; \ q_0(v) > 0, \ ^t v S_0 \ \mathrm{e} > 0 \} \ \mathrm{where} \ \mathrm{e} = (1,0,\dots,0,1)$
- ▶ Half space: $\mathcal{H}_S = \{ w = u + iv \in \mathbb{C}^{\ell+2}; \ v = \operatorname{Im}(w) \in \mathcal{P}_S \}$
- $ightharpoonup O(S_1; \mathbb{R})$ acts on $\mathcal{H}_S \cup (-\mathcal{H}_S)$:

$$\begin{array}{ll}
M\langle w \rangle &= j(M,w)^{-1} \cdot (-q_0(w)b + Aw + c) \\
j(M,w) &= -\gamma q_0(w) + {}^t dw + \delta
\end{array}
\qquad M = \begin{pmatrix} \alpha & {}^t a & \beta \\ b & A & c \\ \gamma & {}^t d & \delta \end{pmatrix}$$

- $ightharpoonup O^+(S_1; \mathbb{R}) = \{ M \in O(S_1; \mathbb{R}); \ M \langle \mathcal{H}_S \rangle = \mathcal{H}_S \}$
- $ightharpoonup \Gamma_S = O(\Lambda_1) \cap O^+(S_1; \mathbb{R})$

Properties of the Orthogonal Modular Group

▶ Γ_S is (in our case) generated by J, T_λ , $\lambda \in \Lambda_0$, and R_A , $A \in O(\Lambda)$, where

$$J\langle w
angle = -q_0(w)^{-1} \cdot (au_2, -z, au_1)$$
 (inversion), $T_\lambda \langle w
angle = w + \lambda$ (translation), $R_A \langle w
angle = (au_1, Az, au_2)$ (rotation).

- ▶ Γ_S acts on $\Lambda_1^{\sharp}/\Lambda_1$ by multiplication. It permutes elements of $\Lambda_1^{\sharp}/\Lambda_1$ with the same norm (modulo \mathbb{Z}). The signs of those permutations are abelian characters of Γ_S .
- $S = A_3$: Abelian characters of Γ_{A_3} :

$$\Gamma^{\mathsf{ab}}_{A_3} = \left\langle \nu_\pi, \; \mathsf{det} \right
angle,$$

where ν_{π} is the sign of the permutation of the two elements of Λ^{\sharp}/Λ of norm $\frac{3}{8}$.

What is an Orthogonal Modular Form?

Definition

An (orthogonal) modular form of weight $k \in \mathbb{Z}$ with respect to a subgroup Γ of Γ_S of finite index and an abelian character $\nu : \Gamma \to \mathbb{C}^{\times}$ of finite order is a holomorphic function $f : \mathcal{H}_S \to \mathbb{C}$ satisfying

$$f(M\langle w\rangle) = \nu(M) j(M, w)^k f(w)$$
 for all $w \in \mathcal{H}_S$ and $M \in \Gamma$.

We denote the vector space of all such functions by $[\Gamma, k, \nu]$.

- ▶ If $-I \in \Gamma$ and $\nu(-I) \neq (-1)^k$ then $[\Gamma, k, \nu] = \{0\}$.
- ▶ If k < 0 then $[\Gamma, k, \nu] = \{0\}$.

What is Our Goal?

Products of modular forms are again modular forms. Thus

$$\mathcal{A}(\Gamma_{\mathcal{S}}) = \bigoplus_{k \in \mathbb{Z}} [\Gamma_{\mathcal{S}}, k, 1] \quad \text{and} \quad \mathcal{A}(\Gamma_{\mathcal{S}}') = \bigoplus_{k \in \mathbb{Z}} [\Gamma_{\mathcal{S}}', k, 1] = \bigoplus_{k \in \mathbb{Z}} \bigoplus_{\nu \in \Gamma_{\mathcal{S}}^{ab}} [\Gamma_{\mathcal{S}}, k, \nu]$$

form graded rings.

Goal: Determine generators and algebraic structure of $\mathcal{A}(\Gamma_{A_3})$ and $\mathcal{A}(\Gamma'_{A_3})$.

Due to $-I \in \Gamma_{A_3}$ and $\nu_{\pi}(-I) = \det(-I) = -1$ we get a first result:

- ▶ If k is even then $[\Gamma_{A_3}, k, \nu_{\pi}] = [\Gamma_{A_3}, k, \det] = \{0\}.$
- ▶ If k is odd then $[\Gamma_{A_3}, k, 1] = [\Gamma_{A_3}, k, \nu_{\pi} \det] = \{0\}.$

The Metaplectic Group

The metaplectic group $Mp_2(\mathbb{Z})$ is given by

$$\left\{ (M,\varphi) \, ; \, \, M = \left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix} \right) \in \mathsf{SL}_2(\mathbb{Z}), \, \, \varphi : \mathcal{H} \to \mathbb{C} \, \, \mathsf{holom.}, \, \, \varphi^2(\tau) = c\tau + d \right\}.$$

It operates on the upper half-plane ${\cal H}$ via

$$(M,\varphi)\tau = M\tau = \frac{a\tau + b}{c\tau + d}$$

and is generated by

$$\mathcal{T} = \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, 1 \right) \quad \text{and} \quad J = \left(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \sqrt{\tau} \right).$$

The Weil Representation

Let

- $ightharpoonup S\in \mathsf{Sym}(\ell;\mathbb{R})$ be a symmetric, even matrix of signature (b^+,b^-) ,
- $ightharpoonup \Lambda = \mathbb{Z}^{\ell}$,
- $(\cdot, \cdot) = (\cdot, \cdot)_{\mathcal{S}},$
- $(e_{\mu})_{\mu \in \Lambda^{\sharp}/\Lambda}$ be the standard basis of the group ring $\mathbb{C}[\Lambda^{\sharp}/\Lambda]$.

The Weil representation ρ_S of $\operatorname{Mp}_2(\mathbb{Z})$ on $\mathbb{C}[\Lambda^{\sharp}/\Lambda]$ is defined by

$$ho_{S}(T) \; e_{\mu} = e^{\pi i (\mu, \mu)} \; e_{\mu}, \
ho_{S}(J) \; e_{\mu} = rac{\sqrt{i}^{b^{-} - b^{+}}}{\sqrt{|\det S|}} \sum_{
u \in \Lambda^{\sharp}/\Lambda} e^{-2\pi i (\mu, \nu)} \; e_{
u}.$$

Vector-valued Modular Forms

Definition

A holomorphic function $f: \mathcal{H} \to \mathbb{C}[\Lambda^{\sharp}/\Lambda]$ is a vector-valued modular form of weight $k \in \frac{1}{2}\mathbb{Z}$ with respect to ρ_S if

$$f(M\tau) = \varphi(\tau)^{2k} \ \rho_S(M,\varphi) \ f(\tau), \qquad \text{for all } (M,\varphi) \in \mathsf{Mp}_2(\mathbb{Z})$$

and if f has a Fourier expansion of the form

$$f(au) = \sum_{\mu \in \Lambda^{\sharp}/\Lambda} \sum_{\substack{n \in q_S(\mu) + \mathbb{Z} \\ n \geq n_0}} c_{\mu}(n) q^n e_{\mu}.$$

- ▶ $n_0 \ge 0$: Holomorphic modular forms, $[Mp_2(\mathbb{Z}), k, \rho_S]$,
- ▶ $n_0 < 0$: Nearly holomorphic modular forms, $[Mp_2(\mathbb{Z}), k, \rho_S]_{\infty}$.

What to Know About Vector-valued Modular Forms

 Nearly holomorphic modular forms are uniquely determined by their principal part

$$\sum_{\mu \in \Lambda^{\sharp}/\Lambda} \sum_{\substack{n \in q_{\mathcal{S}}(\mu) + \mathbb{Z} \\ n \leq 0}} c_{\mu}(n) q^{n} e_{\mu}.$$

- ▶ Skoruppa: Formula for dimension of $[Mp_2(\mathbb{Z}), k, \rho_S]$ for $k \ge 2$.
- ► Examples:
 - ▶ Eisenstein series $(k \in \frac{1}{2}\mathbb{Z}, k > 2)$

$$E_k(\tau) = \frac{1}{2} \sum_{(M,\varphi) \in \langle T \rangle \backslash \text{Mp}_2(\mathbb{Z})} \varphi(\tau)^{-2k} \rho_{\mathcal{S}}(M,\varphi)^{-1} e_0.$$

Bruinier, Kuss: Formula for Fourier coefficients of E_k .

► Theta series

Borcherds Theorem

Theorem

Let $f \in [\mathsf{Mp}_2(\mathbb{Z}), -\ell/2, \rho_S^{\sharp}]_{\infty}$ with Fourier coefficients $c_{\mu}(n)$, such that $c_0(0) \in 2\mathbb{Z}$ and $c_{\mu}(n) \in \mathbb{Z}$ whenever n < 0. Then there exists a Borcherds product $\psi_k : \mathcal{H}_S \to \mathbb{C}$ with the following properties:

- ψ_k is a meromorphic modular form of weight $k = c_0(0)/2$ with respect to Γ_S and some abelian character χ .
- ▶ The zeros and poles of ψ_k are explicitly known and depend only on the principal part of f.
- \blacktriangleright ψ_k is given by the normally convergent product expansion

$$\psi_k(w) = e^{2\pi i (\varrho_f, w)} \prod_{\substack{\lambda_0 \in \Lambda_0^{\sharp} \\ \lambda_0 > 0}} \left(1 - e^{2\pi i (\lambda_0, w)} \right)^{c_{(0, \lambda_0, 0)}(q_0(\lambda_0))}$$

Borcherds' Obstruction Condition

A necessary and sufficient condition for the existence of nearly holomorphic modular forms

Theorem

There exists a nearly holomorphic modular form $f \in [\mathsf{Mp}_2(\mathbb{Z}), -\ell/2, \rho_S^\sharp]_\infty$ with prescribed principal part

$$\sum_{\substack{\mu \in \Lambda_1^{\sharp}/\Lambda_1}} \sum_{\substack{n \in -q_{\mathcal{S}}(\mu) + \mathbb{Z} \\ n \leq 0}} c_{\mu}(n) q^n e_{\mu},$$

if and only if

$$\sum_{\substack{\mu \in \Lambda_1^{\sharp}/\Lambda_1}} \sum_{\substack{n \in -q_S(\mu) + \mathbb{Z} \\ n < 0}} c_{\mu}(n) \ a_{\mu}(-n) = 0$$

for all holomorphic modular forms $g \in [Mp_2(\mathbb{Z}), 2 + \ell/2, \rho_S]$ with Fourier expansion $g(\tau) = \sum_{\mu \in \Lambda^{\sharp}/\Lambda_1} \sum_{n \in q_S(\mu) + \mathbb{Z}, \ n \geq 0} a_{\mu}(n) q^n \ e_{\mu}$.

Input for Borcherds Theorem in the Case $S = A_3$

The obstruction space $[\mathsf{Mp}_2(\mathbb{Z}), 7/2, \rho_{A_3}]$ is of dimension 1 and spanned by

$$E_{7/2}(\tau) = 1 \ e_0 - 8 \ q^{3/8} \left(e_{\frac{1}{4}} + e_{-\frac{1}{4}} \right) - 18 \ q^{1/2} \ e_{\frac{1}{2}} - 108 \ q \ e_0 + O(q^{11/8}).$$

Thus the condition for the principal part of $f \in [\mathsf{Mp}_2(\mathbb{Z}), -3/2,
ho_{\mathcal{A}_3}^\sharp]_\infty$ is

$$c_0(0) = 8 \left(c_{\frac{1}{4}} \left(-\frac{3}{8} \right) + c_{-\frac{1}{4}} \left(-\frac{3}{8} \right) \right) + 18 c_{\frac{1}{2}} \left(-\frac{1}{2} \right) + 108 c_0(-1) + \cdots$$

Possible principal parts are given by

$$q^{-3/8} \ \left(e_{\frac{1}{4}} + e_{-\frac{1}{4}}\right) + 16 \ e_0,$$

$$q^{-1/2} \ e_{\frac{1}{2}} \qquad \qquad + 18 \ e_0,$$

$$q^{-1} \ e_0 \qquad \qquad + 108 \ e_0.$$

Borcherds Products for Γ_{A_3}

Theorem

There exist Borcherds products

$$\psi_8 \in [\Gamma_{A_3}, 8, 1], \quad \psi_9 \in [\Gamma_{A_3}, 9, \nu_{\pi}] \quad \text{ and } \quad \psi_{54} \in [\Gamma_{A_3}, 54, \nu_{\pi} \det].$$

The zeros of the products are all of first order and are given by

$$\bigcup_{M\in \Gamma_{A_3}} M\langle \mathcal{H}_{A_2}\rangle, \quad \bigcup_{M\in \Gamma_{A_3}} M\langle \mathcal{H}_{A_1^2}\rangle \quad \text{and} \quad \bigcup_{M\in \Gamma_{A_3}} M\langle \mathcal{H}_{\mathcal{S}_2}\rangle,$$

respectively, where

$$\begin{split} \mathcal{H}_{A_2} &= \{ \left(\tau_1, z_1, z_2, z_3, \tau_2\right) \in \mathcal{H}_{A_3}; \ z_3 = 0 \}, \\ \mathcal{H}_{A_1^2} &= \{ \left(\tau_1, z_1, z_2, z_3, \tau_2\right) \in \mathcal{H}_{A_3}; \ z_2 = 0 \}, \\ \mathcal{H}_{S_2} &= \{ \left(\tau_1, z_1, z_2, z_3, \tau_2\right) \in \mathcal{H}_{A_3}; \ z_1 + z_3 = 0 \}. \end{split}$$

Tools for Proving the Main Result

Corollary

Let $k \in \mathbb{Z}$ and $n \in \{0, 1\}$.

- 1. If k is odd and $f \in [\Gamma_{A_3}, k, \nu_{\pi}^{n+1} \det^n]$, then f vanishes on $\mathcal{H}_{A_1^2}$ and $f/\psi_9 \in [\Gamma_{A_3}, k-9, \nu_{\pi}^n \det^n]$.
- 2. If $f \in [\Gamma_{A_3}, k, \nu_{\pi}^{k+1} \det]$, then f vanishes on \mathcal{H}_{S_2} and $f/\psi_{54} \in [\Gamma_{A_3}, k-54, \nu_{\pi}^k]$.

Theorem

(Dern 2001) The graded ring $\mathcal{A}(\Gamma_{A_2})=\bigoplus_{k\in\mathbb{Z}}[\Gamma_{A_2},2k,1]$ is a polynomial ring in

$$E_4|_{\mathcal{H}_{A_2}}, \quad E_6|_{\mathcal{H}_{A_2}}, \quad E_{10}|_{\mathcal{H}_{A_2}}, \quad E_{12}|_{\mathcal{H}_{A_2}} \quad \text{and} \quad \psi_9^2|_{\mathcal{H}_{A_2}}.$$

The Graded Ring of Modular Forms for Γ_{A_3}

Theorem

The graded ring $\mathcal{A}(\Gamma_{A_3})=\bigoplus_{k\in\mathbb{Z}}[\Gamma_{A_3},2k,1]$ is a polynomial ring in

$$E_4$$
, E_6 , ψ_8 , E_{10} , E_{12} and ψ_9^2 .

Proof.

- ▶ Let $f \in [\Gamma_{A_3}, 2k, 1]$.
- According to Dern $f|_{\mathcal{H}_{A_2}}$ is equal to a polynomial p in $E_4|_{\mathcal{H}_{A_2}}$, $E_6|_{\mathcal{H}_{A_2}}$, $E_{10}|_{\mathcal{H}_{A_3}}$, $E_{12}|_{\mathcal{H}_{A_3}}$, $\psi_9^2|_{\mathcal{H}_{A_3}}$.
- ► Thus $f p(E_4, E_6, E_{10}, E_{12}, \psi_9^2)$ vanishes on \mathcal{H}_{A_2} .
- ► Then $(f p(E_4, E_6, E_{10}, E_{12}, \psi_9^2)/\psi_8 \in [\Gamma_{A_3}, 2k 8, 1].$
- ▶ The assertion follows by induction.

The Graded Ring of Modular Forms for Γ'_{A_3}

Theorem

The graded ring $\mathcal{A}(\Gamma'_{A_3}) = \bigoplus_{k \in \mathbb{Z}} [\Gamma'_{A_3}, k, 1]$ is generated by

$$E_4$$
, E_6 , ψ_8 , ψ_9 , E_{10} , E_{12} and ψ_{54}

and is isomorphic to

$$\mathbb{C}[X_1,\ldots,X_7]/(X_7^2-p(X_1,\ldots,X_6))$$

where $p \in \mathbb{C}[X_1, \dots, X_6]$ is the uniquely determined polynomial with

$$\psi_{54}^2 = \rho(E_4, E_6, \psi_8, \psi_9, E_{10}, E_{12}).$$

Proof of the Second Main Result

Proof.

- ▶ Let $f \in [\Gamma'_{A_3}, k, 1]$.
- ▶ If k is odd, then f vanishes on $\mathcal{H}_{A_1^2}$ and we have $f/\psi_9 \in [\Gamma'_{A_2}, k-9, 1]$. So we can assume that k is even.
- ▶ We know that $[\Gamma'_{A_3}, 2k, 1] = [\Gamma_{A_3}, 2k, 1] \oplus [\Gamma_{A_3}, 2k, \nu_{\pi} \text{ det}]$. Thus $f = f_1 + f_{\nu_{\pi} \text{ det}}$ with $f_{\nu} \in [\Gamma_{A_3}, 2k, \nu]$.
- $f_{\nu_{\pi} \, \text{det}}$ vanishes on \mathcal{H}_{S_2} and we have $f_{\nu_{\pi} \, \text{det}}/\psi_{54} \in [\Gamma_{A_3}, 2k 54, 1]$.
- Now f_1 and $f_{\nu_{\pi} \, \text{det}}/\psi_{54}$ are polynomials in E_4 , E_6 , ψ_8 , E_{10} , E_{12} , ψ_9^2 . This completes the proof of the first result.

Proof of the Second Main Result (cont'd)

Proof.

- ▶ We have $\psi_{54}^2 \in [\Gamma_{A_3}, 108, 1]$. Thus $\psi_{54}^2 = p(E_4, E_6, \psi_8, \psi_9, E_{10}, E_{12})$.
- We want to show that $\mathcal{A}(\Gamma_S') \cong \mathbb{C}[X_1,\ldots,X_7]/(X_7^2-p(X_1,\ldots,X_6))$. So let $Q \in \mathbb{C}[X_1,\ldots,X_7]$ such that $Q(E_4,\ldots,E_{12},\psi_{54})=0$.
- ▶ There exist $Q_0, Q_1 \in \mathbb{C}[X_1, ..., X_6]$ such that $Q \in Q_0 + X_7 Q_1 + (X_7^2 p(X_1, ..., X_6))$.
- ► Thus $Q_0(E_4, \ldots, E_{12}) + \psi_{54} \cdot Q_1(E_4, \ldots, E_{12}) = 0$.
- ▶ There exists a modular substitution mapping ψ_{54} to $-\psi_{54}$ and leaving E_4, \ldots, E_{12} invariant; hence $Q_0(E_4, \ldots, E_{12}) \psi_{54} \cdot Q_1(E_4, \ldots, E_{12}) = 0$.
- We conclude $Q_0(E_4, \ldots, E_{12}) = 0$ and $Q_1(E_4, \ldots, E_{12}) = 0$.
- ▶ $E_4, ..., E_{12}$ are algebraically independent. Therefore $Q_0 = Q_1 = 0$, which completes the proof.

Fields of Orthogonal Modular Functions

Corollary

1. The field $\mathcal{K}(\Gamma_{A_3})$ of orthogonal modular functions with respect to Γ_{A_3} and the trivial character is a rational function field in the generators

$$\frac{E_6^2}{E_4^3}$$
, $\frac{\psi_8}{E_4^2}$, $\frac{E_{10}}{E_4 E_6}$, $\frac{E_{12}}{E_4^3}$ and $\frac{\psi_9^2}{E_6^3}$.

2. The field $\mathcal{K}(\Gamma'_{A_3})$ of all orthogonal modular functions with respect to Γ'_{A_3} is an extension of degree 2 over $\mathcal{K}(\Gamma_{A_3})$ generated by ψ_{54}/ψ_9^6 .