Modular Forms for the Orthogonal Group $\mathrm{O}(2,5)$

Ingo Klöcker
Lehrstuhl A für Mathematik
RWTH Aachen
Japanese-German Number Theory Workshop
MPIM Bonn
2005-07-27

Outline

Introduction

Orthogonal Modular Forms

Vector-valued Modular Forms

Borcherds Products

The Graded Ring of Modular Forms

History

- $\mathrm{O}(2,1)$: Elliptic modular forms.

It is well-known that the graded ring $\mathcal{A}\left(\mathrm{SL}_{2}(\mathbb{Z})\right)$ of elliptic modular forms is a polynomial ring in the elliptic Eisenstein series g_{2} and g_{3} (of weight 4 and 6).

- $\mathrm{O}(2,2)$: Hilbert modular forms.

Cf. S. Mayer's talk.

- $\mathrm{O}(2,3)$: Siegel modular forms of degree 2. J.-I. Igusa (1962): The graded ring $\mathcal{A}\left(\operatorname{Sp}_{2}(\mathbb{Z})\right)$ is a polynomial ring in the Siegel Eisenstein series E_{4}, E_{6}, E_{10} and E_{12}.

History (continued)

- $\mathrm{O}(2,4)$: Hermitian modular forms of degree 2.
E. Freitag (1967): The graded ring for $\mathbb{Q}(\sqrt{-1})$,
T. Dern (2001): The graded ring for $\mathbb{Q}(\sqrt{-3})$ and $\mathbb{Q}(\sqrt{-2})$ (with A. Krieg).
- $O(2,5)$: This is the case we will consider.
- $O(2,6)$: Quaternionic modular forms of degree 2. A. Krieg (2005)

Symmetric Matrices and Quadratic Forms

- S: a symmetric, positive definite, even $\ell \times \ell$ matrix
- $S_{0}:=\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & -S & 0 \\ 1 & 0 & 0\end{array}\right), \quad S_{1}:=\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & S_{0} & 0 \\ 1 & 0 & 0\end{array}\right)$, signature of S_{1} is $(2, \ell+2)$
- $(x, y)_{T}={ }^{t_{x}} T_{y} \quad$ and $\quad q_{T}(x)=\frac{1}{2}(x, x)_{T}=\frac{1}{2}{ }^{t} x T x=\frac{1}{2} T[x]$ Abbreviations:
- $(\cdot, \cdot)=(\cdot, \cdot)_{s}, q=q_{s}$,
- $(\cdot, \cdot)_{0}=(\cdot, \cdot)_{S_{0}}, q_{0}=q_{S_{0}}$,
- $(\cdot, \cdot)_{1}=(\cdot, \cdot)_{S_{1}}, q_{1}=q_{S_{1}}$.
- Mostly $S=A_{3}=\left(\begin{array}{lll}2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2\end{array}\right)$, $q_{S}\left(x_{1}, x_{2}, x_{3}\right)=x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}+x_{2} x_{3}+x_{3}^{2}$.

Lattices in Quadratic Spaces

- $\Lambda=\mathbb{Z}^{\ell}, \Lambda_{0}=\mathbb{Z}^{\ell+2}, \Lambda_{1}=\mathbb{Z}^{\ell+4}$ (lattices in quadratic spaces $(\Lambda \otimes \mathbb{R},(\cdot, \cdot)), \ldots)$
- Dual lattices: $\Lambda_{T}^{\sharp}=\left\{\mu \in \Lambda \otimes \mathbb{R} ;(\lambda, \mu)_{T} \in \mathbb{Z}\right.$ for all $\left.\lambda \in \Lambda\right\}=T^{-1} \Lambda$
- We have:
- $\Lambda^{\sharp}=S^{-1} \mathbb{Z}^{\ell}, \Lambda_{0}^{\sharp}=\mathbb{Z} \times \Lambda^{\sharp} \times \mathbb{Z}, \Lambda_{1}^{\sharp}=\mathbb{Z} \times \Lambda_{0}^{\sharp} \times \mathbb{Z}$,
- $\Lambda^{\sharp} / \Lambda \cong \Lambda_{0}^{\sharp} / \Lambda_{0} \cong \Lambda_{1}^{\sharp} / \Lambda_{1}$,
- $\left|\Lambda^{\sharp} / \Lambda\right|=\operatorname{det} S$.
- $\bar{q}_{T}: \Lambda_{T}^{\sharp} / \Lambda_{T} \rightarrow \mathbb{Q} / \mathbb{Z}, \mu+\Lambda_{T} \mapsto q_{T}(\mu)+\mathbb{Z}$
- $S=A_{3}: \Lambda^{\sharp} / \Lambda=A_{3}^{-1} \mathbb{Z}^{3} / \mathbb{Z}^{3}$ is represented by $(0,0,0),\left(\frac{1}{4}, \frac{1}{2},-\frac{1}{4}\right)$, $\left(\frac{1}{2}, 0, \frac{1}{2}\right),\left(-\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right)$ with norm $0, \frac{3}{8}, \frac{1}{2}, \frac{3}{8}$, respectively.

Orthogonal Groups and the Half-space

- $\mathrm{O}(T ; \mathbb{R})=\left\{M \in \operatorname{Mat}(\ell ; \mathbb{R}) ; T[M]:={ }^{t} M T M=T\right\}$

$$
=\left\{M \in \operatorname{Mat}(\ell ; \mathbb{R}) ; q_{T}(M x)=q_{T}(x) \text { for all } x \in \mathbb{R}^{\ell}\right\} .
$$

- $O(\Lambda)=\{M \in O(T ; \mathbb{R}) ; M \Lambda=\Lambda\}$
- $\mathcal{P}_{S}=\left\{v \in \mathbb{R}^{\ell+2} ; q_{0}(v)>0,{ }^{t} v S_{0} \mathrm{e}>0\right\}$ where $\mathrm{e}=(1,0, \ldots, 0,1)$
- Half space: $\mathcal{H}_{S}=\left\{w=u+i v \in \mathbb{C}^{\ell+2} ; v=\operatorname{Im}(w) \in \mathcal{P}_{S}\right\}$
- $\mathrm{O}\left(S_{1} ; \mathbb{R}\right)$ acts on $\mathcal{H}_{S} \cup\left(-\mathcal{H}_{S}\right)$:

$$
\left.\begin{array}{rl}
M\langle w\rangle & =j(M, w)^{-1} \cdot\left(-q_{0}(w) b+A w+c\right) \quad M=\left(\begin{array}{ccc}
\alpha & t_{a} & \beta \\
b & A & c \\
(M, w) & =-\gamma q_{0}(w)+{ }^{t} d w+\delta
\end{array}{ }^{t^{t} d}\right.
\end{array}\right)
$$

- $\mathrm{O}^{+}\left(S_{1} ; \mathbb{R}\right)=\left\{M \in \mathrm{O}\left(S_{1} ; \mathbb{R}\right) ; M\left\langle\mathcal{H}_{S}\right\rangle=\mathcal{H}_{S}\right\}$
- $\Gamma_{S}=\mathrm{O}\left(\Lambda_{1}\right) \cap \mathrm{O}^{+}\left(S_{1} ; \mathbb{R}\right)$

Properties of the Orthogonal Modular Group

- Γ_{S} is (in our case) generated by $J, T_{\lambda}, \lambda \in \Lambda_{0}$, and $R_{A}, A \in O(\Lambda)$, where

$$
\begin{aligned}
J\langle w\rangle & =-q_{0}(w)^{-1} \cdot\left(\tau_{2},-z, \tau_{1}\right) \\
T_{\lambda}\langle w\rangle & =w+\lambda \\
R_{A}\langle w\rangle & =\left(\tau_{1}, A z, \tau_{2}\right)
\end{aligned}
$$

- Γ_{S} acts on $\Lambda_{1}^{\sharp} / \Lambda_{1}$ by multiplication.

It permutes elements of $\Lambda_{1}^{\sharp} / \Lambda_{1}$ with the same norm (modulo \mathbb{Z}). The signs of those permutations are abelian characters of Γ_{s}.

- $S=A_{3}$: Abelian characters of $\Gamma_{A_{3}}$:

$$
\Gamma_{A_{3}}^{\mathrm{ab}}=\left\langle\nu_{\pi}, \operatorname{det}\right\rangle,
$$

where ν_{π} is the sign of the permutation of the two elements of $\Lambda^{\sharp} / \Lambda$ of norm $\frac{3}{8}$.

What is an Orthogonal Modular Form?

Definition

An (orthogonal) modular form of weight $k \in \mathbb{Z}$ with respect to a subgroup Γ of Γ_{S} of finite index and an abelian character $\nu: \Gamma \rightarrow \mathbb{C}^{\times}$of finite order is a holomorphic function $f: \mathcal{H}_{S} \rightarrow \mathbb{C}$ satifying

$$
f(M\langle w\rangle)=\nu(M) j(M, w)^{k} f(w) \quad \text { for all } w \in \mathcal{H}_{S} \text { and } M \in \Gamma .
$$

We denote the vector space of all such functions by $[\Gamma, k, \nu]$.

- If $-I \in \Gamma$ and $\nu(-I) \neq(-1)^{k}$ then $[\Gamma, k, \nu]=\{0\}$.
- If $k<0$ then $[\Gamma, k, \nu]=\{0\}$.

What is Our Goal?

Products of modular forms are again modular forms. Thus

$$
\mathcal{A}\left(\Gamma_{S}\right)=\bigoplus_{k \in \mathbb{Z}}\left[\Gamma_{S}, k, 1\right] \quad \text { and } \quad \mathcal{A}\left(\Gamma_{S}^{\prime}\right)=\bigoplus_{k \in \mathbb{Z}}\left[\Gamma_{S}^{\prime}, k, 1\right]=\bigoplus_{k \in \mathbb{Z}} \bigoplus_{\nu \in \Gamma_{s}^{\mathrm{ab}}}\left[\Gamma_{S}, k, \nu\right]
$$

form graded rings.
Goal: Determine generators and algebraic structure of $\mathcal{A}\left(\Gamma_{A_{3}}\right)$ and $\mathcal{A}\left(\Gamma_{A_{3}}^{\prime}\right)$.
Due to $-I \in \Gamma_{A_{3}}$ and $\nu_{\pi}(-I)=\operatorname{det}(-I)=-1$ we get a first result:

- If k is even then $\left[\Gamma_{A_{3}}, k, \nu_{\pi}\right]=\left[\Gamma_{A_{3}}, k, \operatorname{det}\right]=\{0\}$.
- If k is odd then $\left[\Gamma_{A_{3}}, k, 1\right]=\left[\Gamma_{A_{3}}, k, \nu_{\pi} \operatorname{det}\right]=\{0\}$.

The Metaplectic Group

The metaplectic group $\mathrm{Mp}_{2}(\mathbb{Z})$ is given by

$$
\left\{(M, \varphi) ; M=\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}_{2}(\mathbb{Z}), \varphi: \mathcal{H} \rightarrow \mathbb{C} \text { holom., } \varphi^{2}(\tau)=c \tau+d\right\}
$$

It operates on the upper half-plane \mathcal{H} via

$$
(M, \varphi) \tau=M \tau=\frac{a \tau+b}{c \tau+d}
$$

and is generated by

$$
T=\left(\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), 1\right) \quad \text { and } \quad J=\left(\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \sqrt{\tau}\right) .
$$

The Weil Representation

Let

- $S \in \operatorname{Sym}(\ell ; \mathbb{R})$ be a symmetric, even matrix of signature $\left(b^{+}, b^{-}\right)$,
- $\Lambda=\mathbb{Z}^{\ell}$,
- $(\cdot, \cdot)=(\cdot, \cdot)_{S}$,
- $\left(e_{\mu}\right)_{\mu \in \Lambda^{\sharp} / \Lambda}$ be the standard basis of the group ring $\mathbb{C}\left[\Lambda^{\sharp} / \Lambda\right]$.

The Weil representation ρ_{S} of $\mathrm{Mp}_{2}(\mathbb{Z})$ on $\mathbb{C}\left[\Lambda^{\sharp} / \Lambda\right]$ is defined by

$$
\begin{aligned}
\rho_{S}(T) e_{\mu} & =e^{\pi i(\mu, \mu)} e_{\mu}, \\
\rho_{S}(J) e_{\mu} & =\frac{\sqrt{i}}{\sqrt{|\operatorname{det} S|}} \sum_{\nu \in \Lambda^{\sharp} / \Lambda} e^{-2 \pi i(\mu, \nu)} e_{\nu} .
\end{aligned}
$$

Vector-valued Modular Forms

Definition

A holomorphic function $f: \mathcal{H} \rightarrow \mathbb{C}\left[\Lambda^{\sharp} / \Lambda\right]$ is a vector-valued modular form of weight $k \in \frac{1}{2} \mathbb{Z}$ with respect to ρ_{S} if

$$
f(M \tau)=\varphi(\tau)^{2 k} \rho_{S}(M, \varphi) f(\tau), \quad \text { for all }(M, \varphi) \in M_{2}(\mathbb{Z})
$$

and if f has a Fourier expansion of the form

$$
f(\tau)=\sum_{\mu \in \Lambda^{\sharp} / \Lambda} \sum_{\substack{n \in q_{s}(\mu)+\mathbb{Z} \\ n \geq n_{0}}} c_{\mu}(n) q^{n} e_{\mu} .
$$

- $n_{0} \geq 0$: Holomorphic modular forms, $\left[\mathrm{Mp}_{2}(\mathbb{Z}), k, \rho_{S}\right]$,
- $n_{0}<0$: Nearly holomorphic modular forms, $\left[\mathrm{Mp}_{2}(\mathbb{Z}), k, \rho_{S}\right]_{\infty}$.

What to Know About Vector-valued Modular Forms

- Nearly holomorphic modular forms are uniquely determined by their principal part

$$
\sum_{\mu \in \Lambda^{\sharp / \Lambda} / \wedge} \sum_{\substack{n \in q_{s}(\mu)+\mathbb{Z} \\ n \leq 0}} c_{\mu}(n) q^{n} e_{\mu} .
$$

- Skoruppa: Formula for dimension of $\left[\mathrm{Mp}_{2}(\mathbb{Z}), k, \rho_{s}\right]$ for $k \geq 2$.
- Examples:
- Eisenstein series ($k \in \frac{1}{2} \mathbb{Z}, k>2$)

$$
E_{k}(\tau)=\frac{1}{2} \sum_{(M, \varphi) \in\langle T\rangle \backslash M_{p_{2}}(\mathbb{Z})} \varphi(\tau)^{-2 k} \rho_{S}(M, \varphi)^{-1} e_{0} .
$$

Bruinier, Kuss: Formula for Fourier coefficients of E_{k}.

- Theta series.

Borcherds Theorem

Theorem

Let $f \in\left[\mathrm{Mp}_{2}(\mathbb{Z}),-\ell / 2, \rho_{S}^{\sharp}\right]_{\infty}$ with Fourier coefficients $c_{\mu}(n)$, such that $c_{0}(0) \in 2 \mathbb{Z}$ and $c_{\mu}(n) \in \mathbb{Z}$ whenever $n<0$. Then there exists a Borcherds product $\psi_{k}: \mathcal{H}_{s} \rightarrow \mathbb{C}$ with the following properties:

- ψ_{k} is a meromorphic modular form of weight $k=c_{0}(0) / 2$ with respect to Γ_{S} and some abelian character χ.
- The zeros and poles of ψ_{k} are explicitely known and depend only on the principal part of f.
- ψ_{k} is given by the normally convergent product expansion

$$
\psi_{k}(w)=e^{2 \pi i\left(\varrho_{f}, w\right)} \prod_{\substack{\lambda_{0} \in \Lambda_{0}^{\sharp} \\ \lambda_{0}>0}}\left(1-e^{2 \pi i\left(\lambda_{0}, w\right)}\right)^{c_{\left(0, \lambda_{0}, 0\right)}\left(q_{0}\left(\lambda_{0}\right)\right)} .
$$

Borcherds' Obstruction Condition

A necessary and sufficient condition for the existence of nearly holomorphic modular forms

Theorem

There exists a nearly holomorphic modular form $f \in\left[\mathrm{Mp}_{2}(\mathbb{Z}),-\ell / 2, \rho_{S}^{\sharp}\right]_{\infty}$ with prescribed principal part

$$
\sum_{\mu \in \wedge_{1}^{\sharp} / \Lambda_{1}} \sum_{\substack{n \in-q_{s}(\mu)+\mathbb{Z} \\ n \leq 0}} c_{\mu}(n) q^{n} e_{\mu},
$$

if and only if

$$
\sum_{\mu \in \Lambda_{1}^{\sharp} / \Lambda_{1}} \sum_{\substack{n \in-q_{s}(\mu)+\mathbb{Z} \\ n \leq 0}} c_{\mu}(n) a_{\mu}(-n)=0
$$

for all holomorphic modular forms $g \in\left[\mathrm{Mp}_{2}(\mathbb{Z}), 2+\ell / 2, \rho_{s}\right]$ with Fourier expansion $g(\tau)=\sum_{\mu \in \Lambda_{1}^{\sharp} / \Lambda_{1}} \sum_{n \in q s(\mu)+\mathbb{Z}, n \geq 0} a_{\mu}(n) q^{n} e_{\mu}$.

Input for Borcherds Theorem in the Case $S=A_{3}$

The obstruction space $\left[\mathrm{Mp}_{2}(\mathbb{Z}), 7 / 2, \rho_{A_{3}}\right]$ is of dimension 1 and spanned by

$$
E_{7 / 2}(\tau)=1 e_{0}-8 q^{3 / 8}\left(e_{\frac{1}{4}}+e_{-\frac{1}{4}}\right)-18 q^{1 / 2} e_{\frac{1}{2}}-108 q e_{0}+O\left(q^{11 / 8}\right)
$$

Thus the condition for the principal part of $f \in\left[\mathrm{Mp}_{2}(\mathbb{Z}),-3 / 2, \rho_{A_{3}}^{\sharp}\right]_{\infty}$ is

$$
c_{0}(0)=8\left(c_{\frac{1}{4}}\left(-\frac{3}{8}\right)+c_{-\frac{1}{4}}\left(-\frac{3}{8}\right)\right)+18 c_{\frac{1}{2}}\left(-\frac{1}{2}\right)+108 c_{0}(-1)+\cdots .
$$

Possible principal parts are given by

$$
\begin{aligned}
q^{-1 / 2} e_{\frac{1}{2}} & q^{-3 / 8}\left(e_{\frac{1}{4}}+e_{-\frac{1}{4}}\right)
\end{aligned}+16 e_{0}, ~+18 e_{0}, ~+108 e_{0} .
$$

Borcherds Products for $\Gamma_{A_{3}}$

Theorem

There exist Borcherds products

$$
\psi_{8} \in\left[\Gamma_{A_{3}}, 8,1\right], \quad \psi_{9} \in\left[\Gamma_{A_{3}}, 9, \nu_{\pi}\right] \quad \text { and } \quad \psi_{54} \in\left[\Gamma_{A_{3}}, 54, \nu_{\pi} \operatorname{det}\right] .
$$

The zeros of the products are all of first order and are given by

$$
\bigcup_{M \in \Gamma_{A_{3}}} M\left\langle\mathcal{H}_{A_{2}}\right\rangle, \quad \bigcup_{M \in \Gamma_{A_{3}}} M\left\langle\mathcal{H}_{A_{1}^{2}}\right\rangle \quad \text { and } \quad \bigcup_{M \in \Gamma_{A_{3}}} M\left\langle\mathcal{H}_{S_{2}}\right\rangle
$$

respectively, where

$$
\begin{aligned}
& \mathcal{H}_{A_{2}}=\left\{\left(\tau_{1}, z_{1}, z_{2}, z_{3}, \tau_{2}\right) \in \mathcal{H}_{A_{3}} ; z_{3}=0\right\} \\
& \mathcal{H}_{A_{1}^{2}}=\left\{\left(\tau_{1}, z_{1}, z_{2}, z_{3}, \tau_{2}\right) \in \mathcal{H}_{A_{3}} ; z_{2}=0\right\} \\
& \mathcal{H}_{S_{2}}=\left\{\left(\tau_{1}, z_{1}, z_{2}, z_{3}, \tau_{2}\right) \in \mathcal{H}_{A_{3}} ; z_{1}+z_{3}=0\right\}
\end{aligned}
$$

Tools for Proving the Main Result

Corollary

Let $k \in \mathbb{Z}$ and $n \in\{0,1\}$.

1. If k is odd and $f \in\left[\Gamma_{A_{3}}, k, \nu_{\pi}^{n+1} \operatorname{det}^{n}\right]$, then f vanishes on $\mathcal{H}_{A_{1}^{2}}$ and $f / \psi_{9} \in\left[\Gamma_{A_{3}}, k-9, \nu_{\pi}^{n} \operatorname{det}^{n}\right]$.
2. If $f \in\left[\Gamma_{A_{3}}, k, \nu_{\pi}^{k+1}\right.$ det $]$, then f vanishes on $\mathcal{H}_{S_{2}}$ and $f / \psi_{54} \in\left[\Gamma_{A_{3}}, k-54, \nu_{\pi}^{k}\right]$.

Theorem
(Dern 2001) The graded ring $\mathcal{A}\left(\Gamma_{A_{2}}\right)=\bigoplus_{k \in \mathbb{Z}}\left[\Gamma_{A_{2}}, 2 k, 1\right]$ is a polynomial ring in

$$
\left.E_{4}\right|_{\mathcal{H}_{A_{2}}}, \quad E_{6}{\mid \mathcal{H}_{A_{2}}},\left.\quad E_{10}\right|_{\mathcal{H}_{A_{2}}},\left.\quad E_{12}\right|_{\mathcal{H}_{A_{2}}} \quad \text { and } \quad \psi_{9}^{2}{\mid \mathcal{H}_{A_{2}}} .
$$

The Graded Ring of Modular Forms for $\Gamma_{A_{3}}$

Theorem
The graded ring $\mathcal{A}\left(\Gamma_{A_{3}}\right)=\bigoplus_{k \in \mathbb{Z}}\left[\Gamma_{A_{3}}, 2 k, 1\right]$ is a polynomial ring in $E_{4}, \quad E_{6}, \quad \psi_{8}, \quad E_{10}, \quad E_{12}$ and ψ_{9}^{2}.

Proof.

- Let $f \in\left[\Gamma_{A_{3}}, 2 k, 1\right]$.
- According to Dern $\left.f\right|_{\mathcal{H}_{A_{2}}}$ is equal to a polynomial p in $\left.E_{4}\right|_{\mathcal{H}_{A_{2}}},\left.E_{6}\right|_{\mathcal{H}_{A_{2}}}$, $\left.E_{10}\right|_{\mathcal{H}_{A_{2}}},\left.E_{12}\right|_{\mathcal{H}_{A_{2}}},\left.\psi_{9}^{2}\right|_{\mathcal{H}_{A_{2}}}$.
- Thus $f-p\left(E_{4}, E_{6}, E_{10}, E_{12}, \psi_{9}^{2}\right)$ vanishes on $\mathcal{H}_{A_{2}}$.
- Then $\left(f-p\left(E_{4}, E_{6}, E_{10}, E_{12}, \psi_{9}^{2}\right) / \psi_{8} \in\left[\Gamma_{A_{3}}, 2 k-8,1\right]\right.$.
- The assertion follows by induction.

The Graded Ring of Modular Forms for $\Gamma_{A_{3}}^{\prime}$

Theorem
The graded ring $\mathcal{A}\left(\Gamma_{A_{3}}^{\prime}\right)=\bigoplus_{k \in \mathbb{Z}}\left[\Gamma_{A_{3}}^{\prime}, k, 1\right]$ is generated by
$E_{4}, \quad E_{6}, \quad \psi_{8}, \quad \psi_{9}, \quad E_{10}, \quad E_{12} \quad$ and $\quad \psi_{54}$
and is isomorphic to

$$
\mathbb{C}\left[X_{1}, \ldots, X_{7}\right] /\left(X_{7}^{2}-p\left(X_{1}, \ldots, X_{6}\right)\right)
$$

where $p \in \mathbb{C}\left[X_{1}, \ldots, X_{6}\right]$ is the uniquely determined polynomial with

$$
\psi_{54}^{2}=p\left(E_{4}, E_{6}, \psi_{8}, \psi_{9}, E_{10}, E_{12}\right) .
$$

Proof of the Second Main Result

Proof.

- Let $f \in\left[\Gamma_{A_{3}}^{\prime}, k, 1\right]$.
- If k is odd, then f vanishes on $\mathcal{H}_{A_{1}^{2}}$ and we have $f / \psi_{9} \in\left[\Gamma_{A_{3}}^{\prime}, k-9,1\right]$. So we can assume that k is even.
- We know that $\left[\Gamma_{A_{3}}^{\prime}, 2 k, 1\right]=\left[\Gamma_{A_{3}}, 2 k, 1\right] \oplus\left[\Gamma_{A_{3}}, 2 k, \nu_{\pi}\right.$ det $]$. Thus $f=f_{1}+f_{\nu_{\pi} \text { det }}$ with $f_{\nu} \in\left[\Gamma_{A_{3}}, 2 k, \nu\right]$.
- $f_{\nu_{\pi} \text { det }}$ vanishes on $\mathcal{H}_{S_{2}}$ and we have $f_{\nu_{\pi} \text { det }} / \psi_{54} \in\left[\Gamma_{A_{3}}, 2 k-54,1\right]$.
- Now f_{1} and $f_{\nu_{\pi} \text { det }} / \psi_{54}$ are polynomials in $E_{4}, E_{6}, \psi_{8}, E_{10}, E_{12}, \psi_{9}^{2}$. This completes the proof of the first result.

Proof of the Second Main Result (cont'd)

Proof.

- We have $\psi_{54}^{2} \in\left[\Gamma_{A_{3}}, 108,1\right]$. Thus $\psi_{54}^{2}=p\left(E_{4}, E_{6}, \psi_{8}, \psi_{9}, E_{10}, E_{12}\right)$.
- We want to show that $\mathcal{A}\left(\Gamma_{S}^{\prime}\right) \cong \mathbb{C}\left[X_{1}, \ldots, X_{7}\right] /\left(X_{7}^{2}-p\left(X_{1}, \ldots, X_{6}\right)\right)$. So let $Q \in \mathbb{C}\left[X_{1}, \ldots, X_{7}\right]$ such that $Q\left(E_{4}, \ldots, E_{12}, \psi_{54}\right)=0$.
- There exist $Q_{0}, Q_{1} \in \mathbb{C}\left[X_{1}, \ldots, X_{6}\right]$ such that $Q \in Q_{0}+X_{7} Q_{1}+\left(X_{7}^{2}-p\left(X_{1}, \ldots, X_{6}\right)\right)$.
- Thus $Q_{0}\left(E_{4}, \ldots, E_{12}\right)+\psi_{54} \cdot Q_{1}\left(E_{4}, \ldots, E_{12}\right)=0$.
- There exists a modular substitution mapping ψ_{54} to $-\psi_{54}$ and leaving E_{4}, \ldots, E_{12} invariant; hence $Q_{0}\left(E_{4}, \ldots, E_{12}\right)-\psi_{54} \cdot Q_{1}\left(E_{4}, \ldots, E_{12}\right)=0$.
- We conclude $Q_{0}\left(E_{4}, \ldots, E_{12}\right)=0$ and $Q_{1}\left(E_{4}, \ldots, E_{12}\right)=0$.
- E_{4}, \ldots, E_{12} are algebraically independent. Therefore $Q_{0}=Q_{1}=0$, which completes the proof.

Fields of Orthogonal Modular Functions

Corollary

1. The field $\mathcal{K}\left(\Gamma_{A_{3}}\right)$ of orthogonal modular functions with respect to $\Gamma_{A_{3}}$ and the trivial character is a rational function field in the generators

$$
\frac{E_{6}^{2}}{E_{4}^{3}}, \frac{\psi_{8}}{E_{4}^{2}}, \quad \frac{E_{10}}{E_{4} E_{6}}, \frac{E_{12}}{E_{4}^{3}} \text { and } \frac{\psi_{9}^{2}}{E_{6}^{3}} .
$$

2. The field $\mathcal{K}\left(\Gamma_{A_{3}}^{\prime}\right)$ of all orthogonal modular functions with respect to $\Gamma_{A_{3}}^{\prime}$ is an extension of degree 2 over $\mathcal{K}\left(\Gamma_{A_{3}}\right)$ generated by ψ_{54} / ψ_{9}^{6}.
