Modular Forms for the Orthogonal Group $O(2, 5)$

Ingo Klöcker

Lehrstuhl A für Mathematik
RWTH Aachen

Japanese-German Number Theory Workshop
MPIM Bonn
2005-07-27
Outline

Introduction

Orthogonal Modular Forms

Vector-valued Modular Forms

Borcherds Products

The Graded Ring of Modular Forms
Outline

Introduction

Orthogonal Modular Forms

Vector-valued Modular Forms

Borcherds Products

The Graded Ring of Modular Forms
History

- **O(2, 1):** Elliptic modular forms.
 It is well-known that the graded ring $A(\text{SL}_2(\mathbb{Z}))$ of elliptic modular forms is a polynomial ring in the elliptic Eisenstein series g_2 and g_3 (of weight 4 and 6).

- **O(2, 2):** Hilbert modular forms.
 Cf. S. Mayer’s talk.

- **O(2, 3):** Siegel modular forms of degree 2.
 J.-I. Igusa (1962): The graded ring $A(\text{Sp}_2(\mathbb{Z}))$ is a polynomial ring in the Siegel Eisenstein series E_4, E_6, E_{10} and E_{12}.
Introduction

History

- O(2, 1): Elliptic modular forms. It is well-known that the graded ring $A(\text{SL}_2(\mathbb{Z}))$ of elliptic modular forms is a polynomial ring in the elliptic Eisenstein series g_2 and g_3 (of weight 4 and 6).

- O(2, 3): Siegel modular forms of degree 2. J.-I. Igusa (1962): The graded ring $A(\text{Sp}_2(\mathbb{Z}))$ is a polynomial ring in the Siegel Eisenstein series E_4, E_6, E_{10} and E_{12}.
History

- **O(2, 1):** Elliptic modular forms.
 It is well-known that the graded ring $\mathcal{A}(\text{SL}_2(\mathbb{Z}))$ of elliptic modular forms is a polynomial ring in the elliptic Eisenstein series g_2 and g_3 (of weight 4 and 6).

- **O(2, 2):** Hilbert modular forms.
 Cf. S. Mayer’s talk.

- **O(2, 3):** Siegel modular forms of degree 2.
 J.-I. Igusa (1962): The graded ring $\mathcal{A}(\text{Sp}_2(\mathbb{Z}))$ is a polynomial ring in the Siegel Eisenstein series E_4, E_6, E_{10} and E_{12}.
History (continued)

- **O(2, 4):** Hermitian modular forms of degree 2.
 - E. Freitag (1967): The graded ring for \(\mathbb{Q}(\sqrt{-1}) \).
 - T. Dern (2001): The graded ring for \(\mathbb{Q}(\sqrt{-3}) \) and \(\mathbb{Q}(\sqrt{-2}) \) (with A. Krieg).

- **O(2, 5):** This is the case we will consider.

- **O(2, 6):** Quaternionic modular forms of degree 2.
History (continued)

- **O(2, 4):** Hermitian modular forms of degree 2.
 E. Freitag (1967): The graded ring for $\mathbb{Q}(\sqrt{-1})$,
 T. Dern (2001): The graded ring for $\mathbb{Q}(\sqrt{-3})$ and $\mathbb{Q}(\sqrt{-2})$ (with A. Krieg).

- **O(2, 5):** This is the case we will consider.

- **O(2, 6):** Quaternionic modular forms of degree 2.
 A. Krieg (2005)
History (continued)

- **O(2, 4):** Hermitian modular forms of degree 2.
 - E. Freitag (1967): The graded ring for \(\mathbb{Q}(\sqrt{-1}) \),
 - T. Dern (2001): The graded ring for \(\mathbb{Q}(\sqrt{-3}) \) and \(\mathbb{Q}(\sqrt{-2}) \) (with A. Krieg).

- **O(2, 5):** This is the case we will consider.

- **O(2, 6):** Quaternionic modular forms of degree 2.
Outline

Introduction

Orthogonal Modular Forms

Vector-valued Modular Forms

Borcherds Products

The Graded Ring of Modular Forms
Symmetric Matrices and Quadratic Forms

- S: a symmetric, positive definite, even $\ell \times \ell$ matrix

$$
S_0 := \begin{pmatrix}
0 & 0 & 1 \\
0 & -S & 0 \\
1 & 0 & 0
\end{pmatrix}, \quad S_1 := \begin{pmatrix}
0 & 0 & 1 \\
0 & S_0 & 0 \\
1 & 0 & 0
\end{pmatrix}, \quad \text{signature of } S_1 \text{ is } (2, \ell + 2)
$$

- $(x, y)_T = txTy$ and $q_T(x) = \frac{1}{2} (x, x)_T = \frac{1}{2} txTx = \frac{1}{2} T[x]$

Abbreviations:

- $(\cdot, \cdot)_S, q = q_S$
- $(\cdot, \cdot)_0 = (\cdot, \cdot)_{S_0}, q_0 = q_{S_0}$
- $(\cdot, \cdot)_1 = (\cdot, \cdot)_{S_1}, q_1 = q_{S_1}$

- Mostly $S = A_3 = \begin{pmatrix}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{pmatrix}$,

$$
q_S(x_1, x_2, x_3) = x_1^2 + x_1 x_2 + x_2^2 + x_2 x_3 + x_3^2.
$$
Symmetric Matrices and Quadratic Forms

- **S**: a symmetric, positive definite, even $\ell \times \ell$ matrix

- $S_0 := \begin{pmatrix} 0 & 0 & 1 \\ 0 & -S & 0 \\ 1 & 0 & 0 \end{pmatrix}$, $S_1 := \begin{pmatrix} 0 & 0 & 1 \\ 0 & S_0 & 0 \\ 1 & 0 & 0 \end{pmatrix}$, signature of S_1 is $(2, \ell + 2)$

- $(x, y)^T = txTy$ and $q_T(x) = \frac{1}{2} (x, x)^T = \frac{1}{2} txTx = \frac{1}{2} T[x]$

Abbreviations:

- $(\cdot, \cdot)_S, q = q_S$,
- $(\cdot, \cdot)_0 = (\cdot, \cdot)_{S_0}, q_0 = q_{S_0}$,
- $(\cdot, \cdot)_1 = (\cdot, \cdot)_{S_1}, q_1 = q_{S_1}$.

- Mostly $S = A_3 = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}$,

 $q_S(x_1, x_2, x_3) = x_1^2 + x_1x_2 + x_2^2 + x_2x_3 + x_3^2$.
Symmetric Matrices and Quadratic Forms

- \(S \): a symmetric, positive definite, even \(\ell \times \ell \) matrix

\[
S_0 := \begin{pmatrix} 0 & 0 & 1 \\ 0 & -S & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad S_1 := \begin{pmatrix} 0 & 0 & 1 \\ 0 & S_0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \text{ signature of } S_1 \text{ is } (2, \ell + 2)
\]

- \((x, y) \) = \(t_x T_y \) and \(q_T(x) = \frac{1}{2} (x, x) T = \frac{1}{2} t_x T x = \frac{1}{2} T [x] \)

Abbreviations:

- \((\cdot, \cdot) = (\cdot, \cdot)_S, q = q_S,\)
- \((\cdot, \cdot)_0 = (\cdot, \cdot)_{S_0}, q_0 = q_{S_0},\)
- \((\cdot, \cdot)_1 = (\cdot, \cdot)_{S_1}, q_1 = q_{S_1}.\)

- Mostly \(S = A_3 = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}, \)

\[q_S(x_1, x_2, x_3) = x_1^2 + x_1 x_2 + x_2^2 + x_2 x_3 + x_3^2.\]
Symmetric Matrices and Quadratic Forms

- \(S \): a symmetric, positive definite, even \(\ell \times \ell \) matrix

\[
S_0 := \begin{pmatrix} 0 & 0 & 1 \\ 0 & -S & 0 \\ 1 & 0 & 0 \end{pmatrix}, \quad S_1 := \begin{pmatrix} 0 & 0 & 1 \\ 0 & S_0 & 0 \\ 1 & 0 & 0 \end{pmatrix}, \text{ signature of } S_1 \text{ is } (2, \ell + 2)
\]

- \((x, y)^T = t_x T y \text{ and } q_T(x) = \frac{1}{2} (x, x)^T = \frac{1}{2} t_x T x = \frac{1}{2} T [x]\)

Abbreviations:

- \((\cdot, \cdot) = (\cdot, \cdot)_S, q = q_S,\)
- \((\cdot, \cdot)_0 = (\cdot, \cdot)_{S_0}, q_0 = q_{S_0},\)
- \((\cdot, \cdot)_1 = (\cdot, \cdot)_{S_1}, q_1 = q_{S_1}.\)

- Mostly \(S = A_3 = \begin{pmatrix} 2 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 2 \end{pmatrix}, \)

\[q_S(x_1, x_2, x_3) = x_1^2 + x_1 x_2 + x_2^2 + x_2 x_3 + x_3^2.\]
Lattices in Quadratic Spaces

- $\Lambda = \mathbb{Z}^\ell$, $\Lambda_0 = \mathbb{Z}^{\ell+2}$, $\Lambda_1 = \mathbb{Z}^{\ell+4}$ (lattices in quadratic spaces $(\Lambda \otimes \mathbb{R}, (\cdot, \cdot))$, ...)

- Dual lattices: $\Lambda^\#_T = \{ \mu \in \Lambda \otimes \mathbb{R}; (\lambda, \mu)_T \in \mathbb{Z} \text{ for all } \lambda \in \Lambda \} = T^{-1}\Lambda$

- We have:
 - $\Lambda^\# = S^{-1}\mathbb{Z}^\ell$, $\Lambda^\#_0 = \mathbb{Z} \times \Lambda^\# \times \mathbb{Z}$, $\Lambda^\#_1 = \mathbb{Z} \times \Lambda^\#_0 \times \mathbb{Z}$,
 - $\Lambda^\#/\Lambda \cong \Lambda^\#_0/\Lambda_0 \cong \Lambda^\#_1/\Lambda_1$,
 - $|\Lambda^\#/\Lambda| = \det S$.

- $q_T: \Lambda^\#_T/\Lambda_T \to \mathbb{Q}/\mathbb{Z}$, $\mu + \Lambda_T \mapsto q_T(\mu) + \mathbb{Z}$

- $S = A_3$: $\Lambda^\#/\Lambda = A_3^{-1}\mathbb{Z}^3/\mathbb{Z}^3$ is represented by $(0, 0, 0)$, $(\frac{1}{4}, \frac{1}{2}, -\frac{1}{4})$, $(\frac{1}{2}, 0, \frac{1}{2})$, $(-\frac{1}{4}, \frac{1}{2}, \frac{1}{4})$ with norm 0, $\frac{3}{8}$, $\frac{1}{2}$, $\frac{3}{8}$, respectively.
Lattices in Quadratic Spaces

- **L = \mathbb{Z}^\ell**, \(\Lambda_0 = \mathbb{Z}^{\ell+2}\), \(\Lambda_1 = \mathbb{Z}^{\ell+4}\) (lattices in quadratic spaces \((\Lambda \otimes \mathbb{R}, (\cdot, \cdot)), \ldots\))

- **Dual lattices**: \(\Lambda^\# = \{\mu \in \Lambda \otimes \mathbb{R}; (\lambda, \mu)_T \in \mathbb{Z} \text{ for all } \lambda \in \Lambda\} = T^{-1}\Lambda\)

- **We have**:
 - \(\Lambda^\# = S^{-1}\mathbb{Z}^\ell\), \(\Lambda^\#_0 = \mathbb{Z} \times \Lambda^\# \times \mathbb{Z}\), \(\Lambda^\#_1 = \mathbb{Z} \times \Lambda^\#_0 \times \mathbb{Z}\),
 - \(\Lambda^\#/\Lambda \cong \Lambda^\#_0/\Lambda_0 \cong \Lambda^\#_1/\Lambda_1\),
 - \(|\Lambda^\#/\Lambda| = \det S\).

- \(\overline{q}_T : \Lambda^\#_T/\Lambda_T \rightarrow \mathbb{Q}/\mathbb{Z}, \mu + \Lambda_T \mapsto q_T(\mu) + \mathbb{Z}\)

- \(S = A_3: \Lambda^\#/\Lambda = A_3^{-1}\mathbb{Z}^3/\mathbb{Z}^3\) is represented by \((0, 0, 0), (\frac{1}{4}, \frac{1}{2}, -\frac{1}{4}), (\frac{1}{2}, 0, \frac{1}{2}), (-\frac{1}{4}, \frac{1}{2}, \frac{1}{4})\) with norm \(0, \frac{3}{8}, \frac{1}{2}, \frac{3}{8}\), respectively.
Lattices in Quadratic Spaces

- \(\Lambda = \mathbb{Z}^l, \Lambda_0 = \mathbb{Z}^{l+2}, \Lambda_1 = \mathbb{Z}^{l+4} \) (lattices in quadratic spaces \((\Lambda \otimes \mathbb{R}, (\cdot, \cdot)), \ldots\))

- Dual lattices: \(\Lambda_T^\# = \{ \mu \in \Lambda \otimes \mathbb{R}; (\lambda, \mu)_T \in \mathbb{Z} \text{ for all } \lambda \in \Lambda \} = T^{-1} \Lambda \)

- We have:
 - \(\Lambda^\# = S^{-1} \mathbb{Z}^l, \Lambda_0^\# = \mathbb{Z} \times \Lambda^\# \times \mathbb{Z}, \Lambda_1^\# = \mathbb{Z} \times \Lambda_0^\# \times \mathbb{Z} \),
 - \(\Lambda^\#/\Lambda \cong \Lambda_0^\#/\Lambda_0 \cong \Lambda_1^\#/\Lambda_1 \),
 - \(\left| \Lambda^\#/\Lambda \right| = \det S \).

- \(q_T : \Lambda_T^\#/\Lambda_T \rightarrow \mathbb{Q}/\mathbb{Z}, \mu + \Lambda_T \mapsto q_T(\mu) + \mathbb{Z} \)

- \(S = A_3: \Lambda^\#/\Lambda = A_3^{-1} \mathbb{Z}^3/\mathbb{Z}^3 \) is represented by \((0, 0, 0), (1/4, 1/2, -1/4), (1/2, 0, 1/2), (-1/4, 1/2, 1/4)\) with norm 0, 3/8, 1/2, 3/8, respectively.
Lattices in Quadratic Spaces

- $\Lambda = \mathbb{Z}^\ell$, $\Lambda_0 = \mathbb{Z}^{\ell+2}$, $\Lambda_1 = \mathbb{Z}^{\ell+4}$ (lattices in quadratic spaces $(\Lambda \otimes \mathbb{R}, (\cdot, \cdot))$, ...)

- Dual lattices: $\Lambda^\#_T = \{ \mu \in \Lambda \otimes \mathbb{R}; (\lambda, \mu)_T \in \mathbb{Z} \text{ for all } \lambda \in \Lambda \} = T^{-1} \Lambda$

- We have:
 - $\Lambda^\# = S^{-1} \mathbb{Z}^\ell$, $\Lambda^\#_0 = \mathbb{Z} \times \Lambda^\# \times \mathbb{Z}$, $\Lambda^\#_1 = \mathbb{Z} \times \Lambda^\#_0 \times \mathbb{Z}$,
 - $\Lambda^\# / \Lambda \cong \Lambda^\#_0 / \Lambda_0 \cong \Lambda^\#_1 / \Lambda_1$,
 - $|\Lambda^\# / \Lambda| = \det S$.

- $q_T : \Lambda^\#_T / \Lambda_T \rightarrow \mathbb{Q} / \mathbb{Z}$, $\mu + \Lambda_T \mapsto q_T(\mu) + \mathbb{Z}$

- $S = A_3$: $\Lambda^\# / \Lambda = A_3^{-1} \mathbb{Z}^3 / \mathbb{Z}^3$ is represented by $(0, 0, 0), (\frac{1}{4}, \frac{1}{2}, -\frac{1}{4}), (\frac{1}{2}, 0, \frac{1}{2}), (-\frac{1}{4}, \frac{1}{2}, \frac{1}{4})$ with norm $0, \frac{3}{8}, \frac{1}{2}, \frac{3}{8}$, respectively.
Lattices in Quadratic Spaces

- \(\Lambda = \mathbb{Z}^\ell, \Lambda_0 = \mathbb{Z}^{\ell+2}, \Lambda_1 = \mathbb{Z}^{\ell+4} \) (lattices in quadratic spaces \((\Lambda \otimes \mathbb{R}, (\cdot, \cdot)), \ldots\))

- Dual lattices: \(\Lambda_0^\# = \{ \mu \in \Lambda \otimes \mathbb{R}; (\lambda, \mu)_T \in \mathbb{Z} \text{ for all } \lambda \in \Lambda \} = T^{-1} \Lambda \)

- We have:
 - \(\Lambda^\# = S^{-1} \mathbb{Z}^\ell, \Lambda_0^\# = \mathbb{Z} \times \Lambda^\# \times \mathbb{Z}, \Lambda_1^\# = \mathbb{Z} \times \Lambda_0^\# \times \mathbb{Z} \)
 - \(\Lambda^\#/\Lambda \cong \Lambda_0^#/\Lambda_0 \cong \Lambda_1^#/\Lambda_1 \)
 - \(|\Lambda^#/\Lambda| = \det S \)

- \(q_T : \Lambda_0^#/\Lambda_T \to \mathbb{Q}/\mathbb{Z}, \mu + \Lambda_T \mapsto q_T(\mu) + \mathbb{Z} \)

- \(S = A_3: \Lambda^#/\Lambda = A_3^{-1} \mathbb{Z}^3/\mathbb{Z}^3 \) is represented by \((0, 0, 0), (\frac{1}{4}, \frac{1}{2}, -\frac{1}{4}), (\frac{1}{2}, 0, \frac{1}{2}), (-\frac{1}{4}, \frac{1}{2}, \frac{1}{4})\) with norm \(0, \frac{3}{8}, \frac{1}{2}, \frac{3}{8}\), respectively.
Lattices in Quadratic Spaces

- \(\Lambda = \mathbb{Z}^\ell, \Lambda_0 = \mathbb{Z}^{\ell+2}, \Lambda_1 = \mathbb{Z}^{\ell+4} \) (lattices in quadratic spaces \((\Lambda \otimes \mathbb{R}, \cdot, \cdot)\), ...)

- Dual lattices: \(\Lambda^\#_T = \{ \mu \in \Lambda \otimes \mathbb{R}; (\lambda, \mu)_T \in \mathbb{Z} \text{ for all } \lambda \in \Lambda \} = T^{-1} \Lambda \)

- We have:
 - \(\Lambda^\# = S^{-1} \mathbb{Z}^\ell, \Lambda^\#_0 = \mathbb{Z} \times \Lambda^\# \times \mathbb{Z}, \Lambda^\#_1 = \mathbb{Z} \times \Lambda^\#_0 \times \mathbb{Z}, \)
 - \(\Lambda^\# / \Lambda \cong \Lambda^\#_0 / \Lambda_0 \cong \Lambda^\#_1 / \Lambda_1, \)
 - \(|\Lambda^\# / \Lambda| = \det S. \)

- \(\overline{q}_T : \Lambda^\#_T / \Lambda_T \rightarrow \mathbb{Q} / \mathbb{Z}, \mu + \Lambda_T \mapsto q_T(\mu) + \mathbb{Z} \)

- \(S = A_3: \Lambda^\# / \Lambda = A_3^{-1} \mathbb{Z}^3 / \mathbb{Z}^3 \) is represented by \((0, 0, 0), (\frac{1}{4}, \frac{1}{2}, -\frac{1}{4}), (\frac{1}{2}, 0, \frac{1}{2}), (\frac{1}{2}, 0, \frac{1}{2}), (\frac{1}{2}, 0, \frac{1}{2}) \) with norm \(0, \frac{3}{8}, \frac{1}{2}, \frac{3}{8} \), respectively.
Lattices in Quadratic Spaces

- \(\Lambda = \mathbb{Z}^\ell, \Lambda_0 = \mathbb{Z}^{\ell+2}, \Lambda_1 = \mathbb{Z}^{\ell+4} \) (lattices in quadratic spaces \((\Lambda \otimes \mathbb{R}, (\cdot, \cdot)), \ldots\))

- Dual lattices: \(\Lambda^\#_T = \{ \mu \in \Lambda \otimes \mathbb{R}; (\lambda, \mu)_T \in \mathbb{Z} \text{ for all } \lambda \in \Lambda \} = T^{-1}\Lambda \)

- We have:
 - \(\Lambda^\# = S^{-1}\mathbb{Z}^\ell, \Lambda^\#_0 = \mathbb{Z} \times \Lambda^\# \times \mathbb{Z}, \Lambda^\#_1 = \mathbb{Z} \times \Lambda^\#_0 \times \mathbb{Z} \)
 - \(\Lambda^\#/\Lambda \cong \Lambda^\#_0/\Lambda_0 \cong \Lambda^\#_1/\Lambda_1 \)
 - \(|\Lambda^\#/\Lambda| = \det S \)

- \(\bar{q}_T : \Lambda^\#_T/\Lambda_T \to \mathbb{Q}/\mathbb{Z}, \mu + \Lambda_T \mapsto q_T(\mu) + \mathbb{Z} \)

- \(S = A_3: \Lambda^\#/\Lambda = A_3^{-1}\mathbb{Z}^3/\mathbb{Z}^3 \) is represented by \((0, 0, 0), (\frac{1}{4}, \frac{1}{2}, -\frac{1}{4}), (\frac{1}{2}, 0, \frac{1}{2}), (-\frac{1}{4}, \frac{1}{2}, \frac{1}{4})\) with norm \(\frac{3}{8}, \frac{1}{2}, \frac{3}{8}\), respectively.
Orthogonal Groups and the Half-space

- $O(T; \mathbb{R}) = \{ M \in \text{Mat}(\ell; \mathbb{R}); \ T[M] := tMTM = T \} = \{ M \in \text{Mat}(\ell; \mathbb{R}); \ q_T(Mx) = q_T(x) \text{ for all } x \in \mathbb{R}^\ell \}$.

- $O(\Lambda) = \{ M \in O(T; \mathbb{R}); \ MA_\Lambda = \Lambda \}$

- $P_S = \{ v \in \mathbb{R}^{\ell+2}; \ q_0(v) > 0, \ ^tvS_0e > 0 \}$ where $e = (1, 0, \ldots, 0, 1)$

- Half space: $H_S = \{ w = u + iv \in \mathbb{C}^{\ell+2}; \ v = \text{Im}(w) \in P_S \}$

- $O(S_1; \mathbb{R})$ acts on $H_S \cup (-H_S)$:

 $$M\langle w \rangle = j(M, w)^{-1} \cdot (-q_0(w)b + Aw + c) \quad \quad M = \begin{pmatrix} \alpha & t_a & \beta \\ b & A & c \\ \gamma & t_d & \delta \end{pmatrix}$$

 $$j(M, w) = -\gamma q_0(w) + \ ^tdw + \delta$$

- $O^+(S_1; \mathbb{R}) = \{ M \in O(S_1; \mathbb{R}); \ M\langle H_S \rangle = H_S \}$

- $\Gamma_S = O(\Lambda_1) \cap O^+(S_1; \mathbb{R})$
Orthogonal Modular Forms and the Half-space

- $O(T; \mathbb{R}) = \{ M \in \text{Mat}(\ell; \mathbb{R}); \; T[M] := tMTM = T \} = \{ M \in \text{Mat}(\ell; \mathbb{R}); \; q_T(Mx) = q_T(x) \; \text{for all} \; x \in \mathbb{R}^\ell \}$

- $O(\Lambda) = \{ M \in O(T; \mathbb{R}); \; M\Lambda = \Lambda \}$

- $P_S = \{ v \in \mathbb{R}^{\ell+2}; \; q_0(v) > 0, \; t^
u S_0 e > 0 \}$ where $e = (1, 0, \ldots, 0, 1)$

- Half space: $\mathcal{H}_S = \{ w = u + iv \in \mathbb{C}^{\ell+2}; \; v = \text{Im}(w) \in P_S \}$

- $O(S_1; \mathbb{R})$ acts on $\mathcal{H}_S \cup (-\mathcal{H}_S)$:

 $M\langle w \rangle = j(M, w)^{-1} \cdot (-q_0(w)b + Aw + c) = \begin{pmatrix} \alpha & t a & \beta \\ b & A & c \\ \gamma & t d & \delta \end{pmatrix}$

 $j(M, w) = -\gamma q_0(w) + t dw + \delta$

- $O^+(S_1; \mathbb{R}) = \{ M \in O(S_1; \mathbb{R}); \; M\langle \mathcal{H}_S \rangle = \mathcal{H}_S \}$

- $\Gamma_S = O(\Lambda_1) \cap O^+(S_1; \mathbb{R})$
Orthogonal Groups and the Half-space

- $O(T; \mathbb{R}) = \{ M \in \text{Mat}(\ell; \mathbb{R}); \ T[M] := tMTM = T \}
 = \{ M \in \text{Mat}(\ell; \mathbb{R}); \ q_T(Mx) = q_T(x) \text{ for all } x \in \mathbb{R}^\ell \}$.

- $O(\Lambda) = \{ M \in O(T; \mathbb{R}); \ M\Lambda = \Lambda \}$

- $P_S = \{ v \in \mathbb{R}^{\ell+2}; \ q_0(v) > 0, \ t_1vS_0e > 0 \}$ where $e = (1, 0, \ldots, 0, 1)$

- Half space: $H_S = \{ w = u + iv \in \mathbb{C}^{\ell+2}; \ v = \text{Im}(w) \in P_S \}$

- $O(S_1; \mathbb{R})$ acts on $H_S \cup (-H_S)$:

 $M\langle w \rangle = j(M, w)^{-1} \cdot (-q_0(w)b + Aw + c)$

 $j(M, w) = -\gamma q_0(w) + t_1dw + \delta$

- $O^+(S_1; \mathbb{R}) = \{ M \in O(S_1; \mathbb{R}); \ M\langle H_S \rangle = H_S \}$

- $\Gamma_S = O(\Lambda_1) \cap O^+(S_1; \mathbb{R})$
Orthogonal Groups and the Half-space

- $O(T; \mathbb{R}) = \{ M \in \text{Mat}(\ell; \mathbb{R}); \ T[M] := tMTM = T \} = \{ M \in \text{Mat}(\ell; \mathbb{R}); \ q_T(Mx) = q_T(x) \text{ for all } x \in \mathbb{R}^\ell \}$.

- $O(\Lambda) = \{ M \in O(T; \mathbb{R}); \ M\Lambda = \Lambda \}$

- $\mathcal{P}_S = \{ v \in \mathbb{R}^{\ell+2}; \ q_0(v) > 0, \ t,vS_0 e > 0 \}$ where $e = (1,0,\ldots,0,1)$

- Half space: $\mathcal{H}_S = \{ w = u + iv \in \mathbb{C}^{\ell+2}; \ v = \text{Im}(w) \in \mathcal{P}_S \}$

- $O(S_1; \mathbb{R})$ acts on $\mathcal{H}_S \cup (-\mathcal{H}_S)$:
- $M\langle w \rangle = j(M, w)^{-1} \cdot (-q_0(w)b + Aw + c)$
- $j(M, w) = -\gamma q_0(w) + tdw + \delta$

- $O^+(S_1; \mathbb{R}) = \{ M \in O(S_1; \mathbb{R}); \ M\langle \mathcal{H}_S \rangle = \mathcal{H}_S \}$

- $\Gamma_S = O(\Lambda_1) \cap O^+(S_1; \mathbb{R})$
Orthogonal Groups and the Half-space

- $O(T; \mathbb{R}) = \{ M \in \text{Mat}(\ell; \mathbb{R}); \ T[M] := tMTM = T \}$
 $= \{ M \in \text{Mat}(\ell; \mathbb{R}); \ q_T(Mx) = q_T(x) \text{ for all } x \in \mathbb{R}^\ell \}$.

- $O(\Lambda) = \{ M \in O(T; \mathbb{R}); \ M\Lambda = \Lambda \}$

- $\mathcal{P}_S = \{ v \in \mathbb{R}^{\ell+2}; \ q_0(v) > 0, \ t\nu S_0 e > 0 \}$ where $e = (1, 0, \ldots, 0, 1)$

- Half space: $\mathcal{H}_S = \{ w = u + iv \in \mathbb{C}^{\ell+2}; \ v = \text{Im}(w) \in \mathcal{P}_S \}$

- $O(S_1; \mathbb{R})$ acts on $\mathcal{H}_S \cup (-\mathcal{H}_S)$:

 $M\langle w \rangle = j(M, w)^{-1} \cdot (-q_0(w)b + Aw + c)$
 $j(M, w) = -\gamma q_0(w) + t\nu + \delta$

- $O^+(S_1; \mathbb{R}) = \{ M \in O(S_1; \mathbb{R}); \ M\langle \mathcal{H}_S \rangle = \mathcal{H}_S \}$

- $\Gamma_S = O(\Lambda_1) \cap O^+(S_1; \mathbb{R})$
Orthogonal Groups and the Half-space

- \(\Omega(T; \mathbb{R}) = \{ M \in \text{Mat}(\ell; \mathbb{R}); \ T[M] := tM^T M = T \} = \{ M \in \text{Mat}(\ell; \mathbb{R}); \ q_T(Mx) = q_T(x) \text{ for all } x \in \mathbb{R}^\ell \} \).

- \(\Omega(\Lambda) = \{ M \in \Omega(T; \mathbb{R}); \ M\Lambda = \Lambda \} \)

- \(\mathcal{P}_S = \{ v \in \mathbb{R}^{\ell+2}; \ q_0(v) > 0, \ t_v S_0 e > 0 \} \) where \(e = (1, 0, \ldots, 0, 1) \)

- Half space: \(\mathcal{H}_S = \{ w = u + iv \in \mathbb{C}^{\ell+2}; \ v = \text{Im}(w) \in \mathcal{P}_S \} \)

- \(\Omega(S_1; \mathbb{R}) \) acts on \(\mathcal{H}_S \cup (-\mathcal{H}_S): \)

\[
M\langle w \rangle = j(M, w)^{-1} \cdot (-q_0(w)b + Aw + c) \\
j(M, w) = -\gamma q_0(w) + tdw + \delta
\]

\[
M = \begin{pmatrix} \alpha & t a & \beta \\ b & A & c \\ \gamma & t d & \delta \end{pmatrix}
\]

- \(\Omega^+(S_1; \mathbb{R}) = \{ M \in \Omega(S_1; \mathbb{R}); \ M\langle \mathcal{H}_S \rangle = \mathcal{H}_S \} \)

- \(\Gamma_S = \Omega(\Lambda_1) \cap \Omega^+(S_1; \mathbb{R}) \)
Orthogonal Groups and the Half-space

$\mathbf{O}(T; \mathbb{R}) = \{ M \in \text{Mat}(\ell; \mathbb{R}); \ T[M] := tMTM = T \} = \{ M \in \text{Mat}(\ell; \mathbb{R}); \ q_T(Mx) = q_T(x) \text{ for all } x \in \mathbb{R}^\ell \}$.

$\mathbf{O}(\Lambda) = \{ M \in \mathbf{O}(T; \mathbb{R}); \ M\Lambda = \Lambda \}$

$\mathcal{P}_S = \{ v \in \mathbb{R}^{\ell+2}; \ q_0(v) > 0, \ t^vS_0 e > 0 \}$ where $e = (1,0,\ldots,0,1)$

Half space: $\mathcal{H}_S = \{ w = u + iv \in \mathbb{C}^{\ell+2}; \ v = \text{Im}(w) \in \mathcal{P}_S \}$

$\mathbf{O}(S_1; \mathbb{R})$ acts on $\mathcal{H}_S \cup (-\mathcal{H}_S)$:

$$
M\langle w \rangle = j(M, w)^{-1} \cdot (-q_0(w)b + Aw + c) \\
j(M, w) = -\gamma q_0(w) + t^dw + \delta
$$

$\mathbf{O}^+(S_1; \mathbb{R}) = \{ M \in \mathbf{O}(S_1; \mathbb{R}); \ M\langle \mathcal{H}_S \rangle = \mathcal{H}_S \}$

$\Gamma_S = \mathbf{O}(\Lambda_1) \cap \mathbf{O}^+(S_1; \mathbb{R})$
Properties of the Orthogonal Modular Group

- Γ_S is (in our case) generated by J, T_λ, $\lambda \in \Lambda_0$, and R_A, $A \in O(\Lambda)$, where

\[
J\langle w \rangle = -q_0(w)^{-1} \cdot (\tau_2, -z, \tau_1) \quad \text{(inversion)},
\]
\[
T_\lambda\langle w \rangle = w + \lambda \quad \text{(translation)},
\]
\[
R_A\langle w \rangle = (\tau_1, Az, \tau_2) \quad \text{(rotation)}.
\]

- Γ_S acts on $\Lambda_1^\# / \Lambda_1$ by multiplication.
 It permutes elements of $\Lambda_1^\# / \Lambda_1$ with the same norm (modulo \mathbb{Z}).
 The signs of those permutations are abelian characters of Γ_S.

- $S = A_3$: Abelian characters of Γ_{A_3}:

\[
\Gamma_{A_3}^{ab} = \langle \nu_\pi, \det \rangle,
\]

where ν_π is the sign of the permutation of the two elements of $\Lambda_1^\# / \Lambda$ of norm $\frac{3}{8}$.

Ingo Klöcker (RWTH Aachen)
Properties of the Orthogonal Modular Group

- Γ_S is (in our case) generated by J, T_λ, $\lambda \in \Lambda_0$, and R_A, $A \in O(\Lambda)$, where

$$J\langle w \rangle = -q_0(w)^{-1} \cdot (\tau_2, -z, \tau_1) \quad \text{(inversion)},$$

$$T_\lambda \langle w \rangle = w + \lambda \quad \text{(translation)},$$

$$R_A \langle w \rangle = (\tau_1, Az, \tau_2) \quad \text{(rotation)}.$$

- Γ_S acts on $\Lambda_1^\# / \Lambda_1$ by multiplication.
 It permutes elements of $\Lambda_1^\# / \Lambda_1$ with the same norm (modulo \mathbb{Z}).
 The signs of those permutations are abelian characters of Γ_S.

- $S = A_3$: Abelian characters of Γ_{A_3}:

$$\Gamma_{A_3}^{ab} = \langle \nu_\pi, \det \rangle,$$

where ν_π is the sign of the permutation of the two elements of $\Lambda_1^\# / \Lambda$ of norm $\frac{3}{8}$.

Ingo Klöcker (RWTH Aachen)
Properties of the Orthogonal Modular Group

- Γ_S is (in our case) generated by J, T_λ, $\lambda \in \Lambda_0$, and R_A, $A \in O(\Lambda)$, where

\[
J\langle w \rangle = -q_0(w)^{-1} \cdot (\tau_2, -z, \tau_1) \quad \text{(inversion)},
\]
\[
T_\lambda\langle w \rangle = w + \lambda \quad \text{(translation)},
\]
\[
R_A\langle w \rangle = (\tau_1, Az, \tau_2) \quad \text{(rotation)}.
\]

- Γ_S acts on $\Lambda^\#_1/\Lambda_1$ by multiplication.
 It permutes elements of $\Lambda^\#_1/\Lambda_1$ with the same norm (modulo \mathbb{Z}).
 The signs of those permutations are abelian characters of Γ_S.

- $S = A_3$: Abelian characters of Γ_{A_3}:

\[
\Gamma_{A_3}^{ab} = \langle \nu_\pi, \det \rangle,
\]

where ν_π is the sign of the permutation of the two elements of $\Lambda^\#_1/\Lambda$ of norm $\frac{3}{8}$.
What is an Orthogonal Modular Form?

Definition

An \textit{(orthogonal) modular form} of weight \(k \in \mathbb{Z} \) with respect to a subgroup \(\Gamma \) of \(\Gamma_S \) of finite index and an abelian character \(\nu : \Gamma \to \mathbb{C}^\times \) of finite order is a holomorphic function \(f : \mathcal{H}_S \to \mathbb{C} \) satisfying

\[
f(M\langle w \rangle) = \nu(M) j(M, w)^k f(w) \quad \text{for all } w \in \mathcal{H}_S \text{ and } M \in \Gamma.
\]

We denote the vector space of all such functions by \([\Gamma, k, \nu]\).

\begin{itemize}
\item If \(-I \in \Gamma\) and \(\nu(-I) \neq (-1)^k\) then \([\Gamma, k, \nu] = \{0\}\).
\item If \(k < 0\) then \([\Gamma, k, \nu] = \{0\}\).
\end{itemize}
What is an Orthogonal Modular Form?

Definition
An (orthogonal) modular form of weight $k \in \mathbb{Z}$ with respect to a subgroup Γ of Γ_S of finite index and an abelian character $\nu : \Gamma \to \mathbb{C}^\times$ of finite order is a holomorphic function $f : \mathcal{H}_S \to \mathbb{C}$ satisfying

$$f(M\langle w \rangle) = \nu(M) j(M, w)^k f(w) \quad \text{for all } w \in \mathcal{H}_S \text{ and } M \in \Gamma.$$

We denote the vector space of all such functions by $[\Gamma, k, \nu]$.

- If $-I \in \Gamma$ and $\nu(-I) \neq (-1)^k$ then $[\Gamma, k, \nu] = \{0\}$.
- If $k < 0$ then $[\Gamma, k, \nu] = \{0\}$.

Ingo Klöcker (RWTH Aachen)
What is an Orthogonal Modular Form?

Definition
An (orthogonal) modular form of weight $k \in \mathbb{Z}$ with respect to a subgroup Γ of Γ_S of finite index and an abelian character $\nu : \Gamma \to \mathbb{C}^\times$ of finite order is a holomorphic function $f : \mathcal{H}_S \to \mathbb{C}$ satisfying

$$f(M \langle w \rangle) = \nu(M) j(M, w)^k f(w) \quad \text{for all } w \in \mathcal{H}_S \text{ and } M \in \Gamma.$$

We denote the vector space of all such functions by $[\Gamma, k, \nu]$.

- If $-I \in \Gamma$ and $\nu(-I) \neq (-1)^k$ then $[\Gamma, k, \nu] = \{0\}$.
- If $k < 0$ then $[\Gamma, k, \nu] = \{0\}$.

Ingo Klöcker (RWTH Aachen)
What is Our Goal?

Products of modular forms are again modular forms. Thus

\[A(\Gamma_S) = \bigoplus_{k \in \mathbb{Z}} [\Gamma_S, k, 1] \quad \text{and} \quad A(\Gamma'_S) = \bigoplus_{k \in \mathbb{Z}} [\Gamma'_S, k, 1] = \bigoplus_{k \in \mathbb{Z}} \bigoplus_{\nu \in \Gamma_{ab}^S} [\Gamma_S, k, \nu] \]

form graded rings.

Goal: Determine generators and algebraic structure of \(A(\Gamma_{A_3}) \) and \(A(\Gamma'_{A_3}) \).

Due to \(-I \in \Gamma_{A_3}\) and \(\nu_\pi(-I) = \det(-I) = -1 \) we get a first result:

- If \(k \) is even then \([\Gamma_{A_3}, k, \nu_\pi] = [\Gamma_{A_3}, k, \det] = \{0\} \).
- If \(k \) is odd then \([\Gamma_{A_3}, k, 1] = [\Gamma_{A_3}, k, \nu_\pi \det] = \{0\} \).
What is Our Goal?

Products of modular forms are again modular forms. Thus

\[\mathcal{A}(\Gamma_S) = \bigoplus_{k \in \mathbb{Z}} [\Gamma_S, k, 1] \quad \text{and} \quad \mathcal{A}(\Gamma'_S) = \bigoplus_{k \in \mathbb{Z}} [\Gamma'_S, k, 1] = \bigoplus_{k \in \mathbb{Z}} \bigoplus_{\nu \in \Gamma^{ab}_S} [\Gamma_S, k, \nu] \]

form graded rings.

Goal: Determine generators and algebraic structure of \(\mathcal{A}(\Gamma_{A_3}) \) and \(\mathcal{A}(\Gamma'_{A_3}) \).

Due to \(-I \in \Gamma_{A_3} \) and \(\nu_{\pi}(-I) = \det(-I) = -1 \) we get a first result:

- If \(k \) is even then \([\Gamma_{A_3}, k, \nu_{\pi}] = [\Gamma_{A_3}, k, \det] = \{0\}\).
- If \(k \) is odd then \([\Gamma_{A_3}, k, 1] = [\Gamma_{A_3}, k, \nu_{\pi} \det] = \{0\}\).
What is Our Goal?

Products of modular forms are again modular forms. Thus

\[A(\Gamma_S) = \bigoplus_{k \in \mathbb{Z}} [\Gamma_S, k, 1] \quad \text{and} \quad A(\Gamma'_S) = \bigoplus_{k \in \mathbb{Z}} [\Gamma'_S, k, 1] = \bigoplus_{k \in \mathbb{Z}} \bigoplus_{\nu \in \Gamma^{ab}_S} [\Gamma_S, k, \nu] \]

form graded rings.

Goal: Determine generators and algebraic structure of \(A(\Gamma_{A_3}) \) and \(A(\Gamma'_{A_3}) \).

Due to \(-l \in \Gamma_{A_3}\) and \(\nu_\pi(-l) = \det(-l) = -1\) we get a first result:

- If \(k\) is even then \([\Gamma_{A_3}, k, \nu_\pi] = [\Gamma_{A_3}, k, \det] = \{0\}\).
- If \(k\) is odd then \([\Gamma_{A_3}, k, 1] = [\Gamma_{A_3}, k, \nu_\pi \det] = \{0\}\).
Outline

Introduction

Orthogonal Modular Forms

Vector-valued Modular Forms

Borcherds Products

The Graded Ring of Modular Forms
The Metaplectic Group

The metaplectic group $\text{Mp}_2(\mathbb{Z})$ is given by

$$\{(M, \varphi); \ M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}), \ \varphi: \mathcal{H} \to \mathbb{C} \text{ holom.}, \ \varphi^2(\tau) = c\tau + d\}.$$

It operates on the upper half-plane \mathcal{H} via

$$(M, \varphi)\tau = M\tau = \frac{a\tau + b}{c\tau + d}$$

and is generated by

$$T = \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, 1 \right) \text{ and } J = \left(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \sqrt{\tau} \right).$$
The Metaplectic Group

The metaplectic group $\text{Mp}_2(\mathbb{Z})$ is given by
\[
\{(M, \varphi); \quad M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}), \quad \varphi: \mathcal{H} \to \mathbb{C} \text{ holom.}, \quad \varphi^2(\tau) = c\tau + d\}.
\]
It operates on the upper half-plane \mathcal{H} via
\[
(M, \varphi) \tau = M \tau = \frac{a\tau + b}{c\tau + d}
\]
and is generated by
\[
T = \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, 1 \right) \quad \text{and} \quad J = \left(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \sqrt{\tau} \right).
\]
The Metaplectic Group

The metaplectic group $\text{Mp}_2(\mathbb{Z})$ is given by

$$\{(M, \varphi); \ M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \text{SL}_2(\mathbb{Z}), \ \varphi : \mathcal{H} \rightarrow \mathbb{C} \text{ holom.}, \ \varphi^2(\tau) = c\tau + d\}.$$

It operates on the upper half-plane \mathcal{H} via

$$(M, \varphi)\tau = M\tau = \frac{a\tau + b}{c\tau + d}$$

and is generated by

$$T = \left(\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, 1 \right) \quad \text{and} \quad J = \left(\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \sqrt{\tau} \right).$$
The Weil Representation

Let

- \(S \in \text{Sym}(\ell; \mathbb{R}) \) be a symmetric, even matrix of signature \((b^+, b^-)\),
- \(\Lambda = \mathbb{Z}^\ell \),
- \((\cdot, \cdot) = (\cdot, \cdot)_S\),
- \((e_\mu)_{\mu \in \Lambda^\# / \Lambda}\) be the standard basis of the group ring \(\mathbb{C}[^\# / \Lambda]\).

The Weil representation \(\rho_S\) of \(\text{Mp}_2(\mathbb{Z})\) on \(\mathbb{C}[\Lambda^\# / \Lambda]\) is defined by

\[
\rho_S(T) e_\mu = e^{\pi i (\mu, \mu)} e_\mu,
\]

\[
\rho_S(J) e_\mu = \frac{\sqrt{i}^{b^- - b^+}}{\sqrt{|\det S|}} \sum_{\nu \in \Lambda^\# / \Lambda} e^{-2\pi i (\mu, \nu)} e_\nu.
\]
Vector-valued Modular Forms

Definition
A holomorphic function $f : \mathcal{H} \to \mathbb{C}[\Lambda^\# / \Lambda]$ is a **vector-valued modular form** of weight $k \in \frac{1}{2} \mathbb{Z}$ with respect to ρ_S if

$$f(M\tau) = \varphi(\tau)^{2k} \rho_S(M, \varphi) f(\tau), \quad \text{for all } (M, \varphi) \in \text{Mp}_2(\mathbb{Z})$$

and if f has a Fourier expansion of the form

$$f(\tau) = \sum_{\mu \in \Lambda^\# / \Lambda} \sum_{n \in q_S(\mu) + \mathbb{Z}} c_\mu(n) q^n e_\mu.$$

- $n_0 \geq 0$: Holomorphic modular forms, $[\text{Mp}_2(\mathbb{Z}), k, \rho_S]$,
- $n_0 < 0$: Nearly holomorphic modular forms, $[\text{Mp}_2(\mathbb{Z}), k, \rho_S]_\infty$.
What to Know About Vector-valued Modular Forms

- Nearly holomorphic modular forms are uniquely determined by their principal part

\[\sum_{\mu \in \Lambda^\# / \Lambda} \sum_{\substack{n \in q_S(\mu) + \mathbb{Z} \\ n \leq 0}} c_\mu(n) q^n e_\mu. \]

- Skoruppa: Formula for dimension of \([Mp_2(\mathbb{Z}), k, \rho_S]\) for \(k \geq 2\).

- Examples:
 - Eisenstein series \((k \in \frac{1}{2} \mathbb{Z}, k > 2)\)

\[E_k(\tau) = \frac{1}{2} \sum_{(M, \varphi) \in \langle T \rangle \setminus Mp_2(\mathbb{Z})} \varphi(\tau)^{-2k} \rho_S(M, \varphi)^{-1} e_0. \]

 Bruinier, Kuss: Formula for Fourier coefficients of \(E_k\).

 - Theta series.
What to Know About Vector-valued Modular Forms

- Nearly holomorphic modular forms are uniquely determined by their principal part
 \[
 \sum_{\mu \in \Lambda^\# / \Lambda} \sum_{n \in q_S(\mu) + \mathbb{Z}} c_\mu(n) q^n e_\mu.
 \]

- Skoruppa: Formula for dimension of \([\text{Mp}_2(\mathbb{Z}), k, \rho_S]\) for \(k \geq 2\).

- Examples:
 - Eisenstein series \((k \in \frac{1}{2} \mathbb{Z}, k > 2)\)
 \[
 E_k(\tau) = \frac{1}{2} \sum_{(M, \varphi) \in \langle T \rangle \backslash \text{Mp}_2(\mathbb{Z})} \varphi(\tau)^{-2k} \rho_S(M, \varphi)^{-1} e_0.
 \]
 Bruinier, Kuss: Formula for Fourier coefficients of \(E_k\).
 - Theta series.
What to Know About Vector-valued Modular Forms

- Nearly holomorphic modular forms are uniquely determined by their principal part
 \[\sum_{\mu \in \Lambda^\# / \Lambda} \sum_{\substack{n \in q_S(\mu)+\mathbb{Z} \cap \mathbb{N} \leq 0}} c_\mu(n) q^n e_\mu. \]

- Skoruppa: Formula for dimension of \([Mp_2(\mathbb{Z}), k, \rho_S]\) for \(k \geq 2\).

- Examples:
 - Eisenstein series \((k \in \frac{1}{2} \mathbb{Z}, k > 2)\)
 \[E_k(\tau) = \frac{1}{2} \sum_{(M, \varphi) \in \langle T \rangle \setminus Mp_2(\mathbb{Z})} \varphi(\tau)^{-2k} \rho_S(M, \varphi)^{-1} e_0. \]
 - Bruinier, Kuss: Formula for Fourier coefficients of \(E_k\).
 - Theta series.
Outline

Introduction

Orthogonal Modular Forms

Vector-valued Modular Forms

Borcherds Products

The Graded Ring of Modular Forms
Borcherds Theorem

Theorem

Let \(f \in [\text{Mp}_2(\mathbb{Z}), -\ell/2, \rho_S^\#]_\infty \) with Fourier coefficients \(c_\mu(n) \), such that \(c_0(0) \in 2\mathbb{Z} \) and \(c_\mu(n) \in \mathbb{Z} \) whenever \(n < 0 \). Then there exists a Borcherds product \(\psi_k : \mathcal{H}_S \to \mathbb{C} \) with the following properties:

- \(\psi_k \) is a meromorphic modular form of weight \(k = c_0(0)/2 \) with respect to \(\Gamma_S \) and some abelian character \(\chi \).

- The zeros and poles of \(\psi_k \) are explicitly known and depend only on the principal part of \(f \).

- \(\psi_k \) is given by the normally convergent product expansion

\[
\psi_k(w) = e^{2\pi i (\ell, w)} \prod_{\lambda_0 \in \Lambda^\#_0} \left(1 - e^{2\pi i (\lambda_0, w)}\right)^{c(0, \lambda_0, 0)(q_0(\lambda_0))}.
\]
Borcherds Theorem

Theorem

Let $f \in \text{Mp}_2(\mathbb{Z}), -\ell/2, \rho_S^{\#}]_\infty$ with Fourier coefficients $c_\mu(n)$, such that $c_0(0) \in 2\mathbb{Z}$ and $c_\mu(n) \in \mathbb{Z}$ whenever $n < 0$. Then there exists a Borcherds product $\psi_k : \mathcal{H}_S \to \mathbb{C}$ with the following properties:

- ψ_k is a meromorphic modular form of weight $k = c_0(0)/2$ with respect to Γ_S and some abelian character χ.

- The zeros and poles of ψ_k are explicitly known and depend only on the principal part of f.

- ψ_k is given by the normally convergent product expansion

$$\psi_k(w) = e^{2\pi i (\varrho_f, w)} \prod_{\lambda_0 \in \Lambda_0^{\#}, \lambda_0 > 0} \left(1 - e^{2\pi i (\lambda_0, w)}\right)^{c(0, \lambda_0, 0)(q_0(\lambda_0))}.$$
Borcherds Theorem

Theorem
Let \(f \in [\text{Mp}_2(\mathbb{Z}), -\ell/2, \rho_S^\sharp]_\infty \) with Fourier coefficients \(c_\mu(n) \), such that \(c_0(0) \in 2\mathbb{Z} \) and \(c_\mu(n) \in \mathbb{Z} \) whenever \(n < 0 \). Then there exists a Borcherds product \(\psi_k : H_S \to \mathbb{C} \) with the following properties:

- \(\psi_k \) is a meromorphic modular form of weight \(k = c_0(0)/2 \) with respect to \(\Gamma_S \) and some abelian character \(\chi \).

- The zeros and poles of \(\psi_k \) are explicitly known and depend only on the principal part of \(f \).

- \(\psi_k \) is given by the normally convergent product expansion

\[
\psi_k(w) = e^{2\pi i (\rho_f, w)} \prod_{\lambda_0 \in \Lambda_0^\# \atop \lambda_0 > 0} \left(1 - e^{2\pi i (\lambda_0, w)} \right)^{c(0, \lambda_0, 0)(q_0(\lambda_0))}.
\]
Borcherds’ Obstruction Condition
A necessary and sufficient condition for the existence of nearly holomorphic modular forms

Theorem

There exists a nearly holomorphic modular form \(f \in [Mp_2(\mathbb{Z}), -\ell/2, \rho^\#_S]_\infty \)

with prescribed principal part

\[
\sum_{\mu \in \Lambda_1^\# / \Lambda_1} \sum_{\substack{n \in -qs(\mu) + \mathbb{Z} \atop n \leq 0}} c_\mu(n) q^n e_\mu,
\]

if and only if

\[
\sum_{\mu \in \Lambda_1^\# / \Lambda_1} \sum_{\substack{n \in -qs(\mu) + \mathbb{Z} \atop n \leq 0}} c_\mu(n) \ a_\mu(-n) = 0
\]

for all holomorphic modular forms \(g \in [Mp_2(\mathbb{Z}), 2 + \ell/2, \rho_S] \) *with Fourier expansion* \(g(\tau) = \sum_{\mu \in \Lambda_1^\# / \Lambda_1} \sum_{n \in qs(\mu) + \mathbb{Z}, \ n \geq 0} a_\mu(n) q^n e_\mu.\)
Input for Borcherds Theorem in the Case $S = A_3$

The obstruction space $[\text{Mp}_2(\mathbb{Z}), 7/2, \rho_{A_3}]$ is of dimension 1 and spanned by

$$E_{7/2}(\tau) = 1 e_0 - 8 q^{3/8} \left(e_{1/4} + e_{-1/4} \right) - 18 q^{1/2} e_{1/2} - 108 q e_0 + O(q^{11/8}).$$

Thus the condition for the principal part of $f \in [\text{Mp}_2(\mathbb{Z}), -3/2, \rho_{A_3}^\#]_\infty$ is

$$c_0(0) = 8 \left(c_{1/4} \left(-\frac{3}{8} \right) + c_{-1/4} \left(-\frac{3}{8} \right) \right) + 18 c_{1/2} \left(-\frac{1}{2} \right) + 108 c_0(-1) + \cdots.$$

Possible principal parts are given by

- $q^{-3/8} \left(e_{1/4} + e_{-1/4} \right) + 16 e_0,$
- $q^{-1/2} e_{1/2} + 18 e_0,$
- $q^{-1} e_0 + 108 e_0.$
Input for Borcherds Theorem in the Case $S = A_3$

The obstruction space $[\text{Mp}_2(\mathbb{Z}), 7/2, \rho_{A_3}]$ is of dimension 1 and spanned by

$$E_{7/2}(\tau) = 1 \ e_0 - 8 \ q^{3/8} \left(e_{1/4} + e_{-1/4} \right) - 18 \ q^{1/2} \ e_{1/2} - 108 \ q \ e_0 + O(q^{11/8}).$$

Thus the condition for the principal part of $f \in [\text{Mp}_2(\mathbb{Z}), -3/2, \rho_{A_3}^\#]_\infty$ is

$$c_0(0) = 8 \ \left(c_{1/4} \left(-\frac{3}{8} \right) + c_{-1/4} \left(-\frac{3}{8} \right) \right) + 18 \ c_{1/2} \left(-\frac{1}{2} \right) + 108 \ c_0(-1) + \cdots.$$

Possible principal parts are given by

$$q^{-3/8} \left(e_{1/4} + e_{-1/4} \right) + 16 \ e_0,$$

$$q^{-1/2} \ e_{1/2} + 18 \ e_0,$$

$$q^{-1} \ e_0 + 108 \ e_0.$$
Input for Borcherds Theorem in the Case $S = A_3$

The obstruction space $[Mp_2(\mathbb{Z}), 7/2, \rho_{A_3}]$ is of dimension 1 and spanned by

$$E_{7/2}(\tau) = 1 \cdot e_0 - 8 \cdot q^{3/8} \left(e_{1/4} + e_{-1/4} \right) - 18 q^{1/2} \cdot e_{1/2} - 108 q \cdot e_0 + O(q^{11/8}).$$

Thus the condition for the principal part of $f \in [Mp_2(\mathbb{Z}), -3/2, \rho_{A_3}]_{\infty}$ is

$$c_0(0) = 8 \left(c_{1/4} \left(-\frac{3}{8} \right) + c_{-1/4} \left(-\frac{3}{8} \right) \right) + 18 c_{1/2} \left(-\frac{1}{2} \right) + 108 c_0(-1) + \cdots.$$

Possible principal parts are given by

$$q^{-3/8} \left(e_{1/4} + e_{-1/4} \right) + 16 e_0,$$

$$q^{-1/2} \cdot e_{1/2} + 18 e_0,$$

$$q^{-1} \cdot e_0 + 108 e_0.$$
Borcherds Products for Γ_{A_3}

Theorem

There exist Borcherds products

$$\psi_8 \in [\Gamma_{A_3}, 8, 1], \quad \psi_9 \in [\Gamma_{A_3}, 9, \nu_\pi] \quad \text{and} \quad \psi_{54} \in [\Gamma_{A_3}, 54, \nu_\pi \det].$$

The zeros of the products are all of first order and are given by

$$\bigcup_{M \in \Gamma_{A_3}} M\langle \mathcal{H}_{A_2} \rangle, \quad \bigcup_{M \in \Gamma_{A_3}} M\langle \mathcal{H}_{A_1^2} \rangle \quad \text{and} \quad \bigcup_{M \in \Gamma_{A_3}} M\langle \mathcal{H}_{S_2} \rangle,$$

respectively, where

$$\mathcal{H}_{A_2} = \{(\tau_1, z_1, z_2, z_3, \tau_2) \in \mathcal{H}_{A_3}; \ z_3 = 0\},$$

$$\mathcal{H}_{A_1^2} = \{(\tau_1, z_1, z_2, z_3, \tau_2) \in \mathcal{H}_{A_3}; \ z_2 = 0\},$$

$$\mathcal{H}_{S_2} = \{(\tau_1, z_1, z_2, z_3, \tau_2) \in \mathcal{H}_{A_3}; \ z_1 + z_3 = 0\}.$$
Outline

Introduction

Orthogonal Modular Forms

Vector-valued Modular Forms

Borcherds Products

The Graded Ring of Modular Forms
Tools for Proving the Main Result

Corollary

Let \(k \in \mathbb{Z} \) and \(n \in \{0, 1\} \).

1. If \(k \) is odd and \(f \in [\Gamma_{A_3}, k, \nu^{n+1}_\pi \det^n] \), then \(f \) vanishes on \(\mathcal{H}_{A_2} \) and \(f/\psi_9 \in [\Gamma_{A_3}, k - 9, \nu^n_\pi \det^n] \).

2. If \(f \in [\Gamma_{A_3}, k, \nu^{k+1}_\pi \det] \), then \(f \) vanishes on \(\mathcal{H}_{S_2} \) and \(f/\psi_{54} \in [\Gamma_{A_3}, k - 54, \nu^k_\pi] \).

Theorem

(Dern 2001) The graded ring \(A(\Gamma_{A_2}) = \bigoplus_{k \in \mathbb{Z}} [\Gamma_{A_2}, 2k, 1] \) is a polynomial ring in

\[
E_4|\mathcal{H}_{A_2}, \quad E_6|\mathcal{H}_{A_2}, \quad E_{10}|\mathcal{H}_{A_2}, \quad E_{12}|\mathcal{H}_{A_2} \quad \text{and} \quad \psi_9^2|\mathcal{H}_{A_2}.
\]
Corollary

Let $k \in \mathbb{Z}$ and $n \in \{0, 1\}$.

1. If k is odd and $f \in [\Gamma_{A_3}, k, \nu^{n+1}_\pi \det^n]$, then f vanishes on \mathcal{H}_{A_2} and $f / \psi_9 \in [\Gamma_{A_3}, k - 9, \nu^n_\pi \det^n]$.

2. If $f \in [\Gamma_{A_3}, k, \nu^{k+1}_\pi \det]$, then f vanishes on \mathcal{H}_{S_2} and $f / \psi_{54} \in [\Gamma_{A_3}, k - 54, \nu^k_\pi]$.

Theorem

(Dern 2001) The graded ring $\mathcal{A}(\Gamma_{A_2}) = \bigoplus_{k \in \mathbb{Z}} [\Gamma_{A_2}, 2k, 1]$ is a polynomial ring in

$$E_4|_{\mathcal{H}_{A_2}}, \ E_6|_{\mathcal{H}_{A_2}}, \ E_{10}|_{\mathcal{H}_{A_2}}, \ E_{12}|_{\mathcal{H}_{A_2}} \ \text{and} \ \psi_9^2|_{\mathcal{H}_{A_2}}.$$
The Graded Ring of Modular Forms for Γ_{A_3}

Theorem

The graded ring $A(\Gamma_{A_3}) = \bigoplus_{k \in \mathbb{Z}}[\Gamma_{A_3}, 2k, 1]$ is a polynomial ring in $E_4, E_6, \psi_8, E_{10}, E_{12}$ and ψ_9^2.

Proof.

- Let $f \in [\Gamma_{A_3}, 2k, 1]$.
- According to Dern, $f|_{\mathcal{H}_{A_2}}$ is equal to a polynomial p in $E_4|_{\mathcal{H}_{A_2}}, E_6|_{\mathcal{H}_{A_2}}, E_{10}|_{\mathcal{H}_{A_2}}, E_{12}|_{\mathcal{H}_{A_2}}, \psi_9^2|_{\mathcal{H}_{A_2}}$.
- Thus $f - p(E_4, E_6, E_{10}, E_{12}, \psi_9^2)$ vanishes on \mathcal{H}_{A_2}.
- Then $(f - p(E_4, E_6, E_{10}, E_{12}, \psi_9^2))/\psi_8 \in [\Gamma_{A_3}, 2k - 8, 1]$.
- The assertion follows by induction.
The Graded Ring of Modular Forms for Γ_{A_3}

Theorem

The graded ring $\mathcal{A}(\Gamma_{A_3}) = \bigoplus_{k \in \mathbb{Z}}[\Gamma_{A_3}, 2k, 1]$ is a polynomial ring in $E_4, E_6, \psi_8, E_{10}, E_{12}$ and ψ_9^2.

Proof.

- Let $f \in [\Gamma_{A_3}, 2k, 1]$.
- According to Dern $f|_{\mathcal{H}_{A_2}}$ is equal to a polynomial p in $E_4|_{\mathcal{H}_{A_2}}, E_6|_{\mathcal{H}_{A_2}}, E_{10}|_{\mathcal{H}_{A_2}}, E_{12}|_{\mathcal{H}_{A_2}}, \psi_9^2|_{\mathcal{H}_{A_2}}$.
- Thus $f - p(E_4, E_6, E_{10}, E_{12}, \psi_9^2)$ vanishes on \mathcal{H}_{A_2}.
- Then $(f - p(E_4, E_6, E_{10}, E_{12}, \psi_9^2))/\psi_8 \in [\Gamma_{A_3}, 2k - 8, 1]$.
- The assertion follows by induction.
The Graded Ring of Modular Forms for Γ_{A_3}

Theorem

The graded ring $A(\Gamma_{A_3}) = \bigoplus_{k \in \mathbb{Z}}[\Gamma_{A_3}, 2k, 1]$ is a polynomial ring in $E_4, E_6, \psi_8, E_{10}, E_{12}$ and ψ^2_9.

Proof.

- Let $f \in [\Gamma_{A_3}, 2k, 1]$.
- According to Dern $f|_{H_{A_2}}$ is equal to a polynomial p in $E_4|_{H_{A_2}}, E_6|_{H_{A_2}}, E_{10}|_{H_{A_2}}, E_{12}|_{H_{A_2}}, \psi^2_9|_{H_{A_2}}$.
- Thus $f - p(E_4, E_6, E_{10}, E_{12}, \psi^2_9)$ vanishes on H_{A_2}.
- Then $(f - p(E_4, E_6, E_{10}, E_{12}, \psi^2_9)/\psi_8 \in [\Gamma_{A_3}, 2k - 8, 1]$.
- The assertion follows by induction.
The Graded Ring of Modular Forms for Γ_{A_3}

Theorem

The graded ring $A(\Gamma_{A_3}) = \bigoplus_{k \in \mathbb{Z}}[\Gamma_{A_3}, 2k, 1]$ is a polynomial ring in

$$E_4, \ E_6, \ \psi_8, \ E_{10}, \ E_{12} \ \text{and} \ \psi_9^2.$$

Proof.

- Let $f \in [\Gamma_{A_3}, 2k, 1]$.
- According to Dern $f|_{\mathcal{H}_{A_2}}$ is equal to a polynomial p in $E_4|_{\mathcal{H}_{A_2}}, \ E_6|_{\mathcal{H}_{A_2}}, \ E_{10}|_{\mathcal{H}_{A_2}}, \ E_{12}|_{\mathcal{H}_{A_2}}, \ \psi_9^2|_{\mathcal{H}_{A_2}}$.
- Thus $f - p(E_4, E_6, E_{10}, E_{12}, \psi_9^2)$ vanishes on \mathcal{H}_{A_2}.
- Then $(f - p(E_4, E_6, E_{10}, E_{12}, \psi_9^2)/\psi_8 \in [\Gamma_{A_3}, 2k - 8, 1]$.
- The assertion follows by induction.
The Graded Ring of Modular Forms for Γ_{A_3}

Theorem

The graded ring $A(\Gamma_{A_3}) = \bigoplus_{k \in \mathbb{Z}}[\Gamma_{A_3}, 2k, 1]$ is a polynomial ring in E_4, E_6, ψ_8, E_{10}, E_{12} and ψ_9^2.

Proof.

- Let $f \in [\Gamma_{A_3}, 2k, 1]$.
- According to Dern $f|_{\mathcal{H}_{A_2}}$ is equal to a polynomial p in $E_4|_{\mathcal{H}_{A_2}}$, $E_6|_{\mathcal{H}_{A_2}}$, $E_{10}|_{\mathcal{H}_{A_2}}$, $E_{12}|_{\mathcal{H}_{A_2}}$, $\psi_9^2|_{\mathcal{H}_{A_2}}$.
- Thus $f - p(E_4, E_6, E_{10}, E_{12}, \psi_9^2)$ vanishes on \mathcal{H}_{A_2}.
- Then $(f - p(E_4, E_6, E_{10}, E_{12}, \psi_9^2)/\psi_8 \in [\Gamma_{A_3}, 2k - 8, 1]$.
- The assertion follows by induction.
The Graded Ring of Modular Forms for Γ_{A_3}

Theorem

The graded ring $A(\Gamma_{A_3}) = \bigoplus_{k \in \mathbb{Z}} [\Gamma_{A_3}, 2k, 1]$ is a polynomial ring in $E_4, E_6, \psi_8, E_{10}, E_{12}$ and ψ_9^2.

Proof.

- Let $f \in [\Gamma_{A_3}, 2k, 1]$.
- According to Dern $f|_{\mathcal{H}_{A_2}}$ is equal to a polynomial p in $E_4|_{\mathcal{H}_{A_2}}, E_6|_{\mathcal{H}_{A_2}}, E_{10}|_{\mathcal{H}_{A_2}}, E_{12}|_{\mathcal{H}_{A_2}}, \psi_9^2|_{\mathcal{H}_{A_2}}$.
- Thus $f - p(E_4, E_6, E_{10}, E_{12}, \psi_9^2)$ vanishes on \mathcal{H}_{A_2}.
- Then $(f - p(E_4, E_6, E_{10}, E_{12}, \psi_9^2)/\psi_8 \in [\Gamma_{A_3}, 2k - 8, 1]$.
- The assertion follows by induction.
The Graded Ring of Modular Forms for Γ'_A_3

Theorem
The graded ring $\mathcal{A}(\Gamma'_A_3) = \bigoplus_{k \in \mathbb{Z}} [\Gamma'_A_3, k, 1]$ is generated by

\[E_4, E_6, \psi_8, \psi_9, E_{10}, E_{12} \text{ and } \psi_{54} \]

and is isomorphic to

\[\mathbb{C}[X_1, \ldots, X_7]/(X_7^2 - p(X_1, \ldots, X_6)) \]

where $p \in \mathbb{C}[X_1, \ldots, X_6]$ is the uniquely determined polynomial with

\[\psi_{54}^2 = p(E_4, E_6, \psi_8, \psi_9, E_{10}, E_{12}). \]
Proof of the Second Main Result

Proof.

- Let $f \in [\Gamma'_{A_3}, k, 1]$.
 - If k is odd, then f vanishes on \mathcal{H}_{A_1} and we have $f/\psi_9 \in [\Gamma'_{A_3}, k - 9, 1]$. So we can assume that k is even.
 - We know that $[\Gamma'_{A_3}, 2k, 1] = [\Gamma_{A_3}, 2k, 1] \oplus [\Gamma_{A_3}, 2k, \nu \pi \det]$. Thus $f = f_1 + f_{\nu \pi \det}$ with $f_\nu \in [\Gamma_{A_3}, 2k, \nu]$.
 - $f_{\nu \pi \det}$ vanishes on \mathcal{H}_{S_2} and we have $f_{\nu \pi \det}/\psi_{54} \in [\Gamma_{A_3}, 2k - 54, 1]$.
 - Now f_1 and $f_{\nu \pi \det}/\psi_{54}$ are polynomials in $E_4, E_6, \psi_8, E_{10}, E_{12}, \psi_9^2$. This completes the proof of the first result.
Proof of the Second Main Result

Proof.

- Let $f \in \Gamma_{A_3}' \ast k \ast 1$.
- If k is odd, then f vanishes on $\mathcal{H}_{A_1}^2$ and we have $f/\psi_9 \in \Gamma_{A_3}' \ast k - 9 \ast 1$. So we can assume that k is even.
- We know that $[\Gamma_{A_3}' \ast 2k \ast 1] = [\Gamma_{A_3} \ast 2k \ast 1] \oplus [\Gamma_{A_3} \ast 2k \ast \nu \pi \det]$. Thus $f = f_1 + f_{\nu \pi \det}$ with $f_{\nu} \in \Gamma_{A_3} \ast 2k \ast \nu$.
- $f_{\nu \pi \det}$ vanishes on \mathcal{H}_{S_2} and we have $f_{\nu \pi \det}/\psi_{54} \in \Gamma_{A_3} \ast 2k - 54 \ast 1$.
- Now f_1 and $f_{\nu \pi \det}/\psi_{54}$ are polynomials in E_4, E_6, ψ_8, E_{10}, E_{12}, ψ_9^2. This completes the proof of the first result.
Proof of the Second Main Result

Proof.

- Let $f \in \Gamma_{A_3}' \cdot k \cdot 1$.
- If k is odd, then f vanishes on $\mathcal{H}_{A_1^2}$ and we have $f/\psi_9 \in \Gamma_{A_3}' \cdot k - 9 \cdot 1$. So we can assume that k is even.
- We know that $\Gamma_{A_3}' \cdot 2k \cdot 1 = \Gamma_{A_3} \cdot 2k \cdot 1 \oplus \Gamma_{A_3} \cdot 2k \cdot \nu \cdot \det$. Thus $f = f_1 + f_{\nu \cdot \det}$ with $f_\nu \in \Gamma_{A_3} \cdot 2k \cdot \nu$.
- $f_{\nu \cdot \det}$ vanishes on \mathcal{H}_{S_2} and we have $f_{\nu \cdot \det}/\psi_{54} \in \Gamma_{A_3} \cdot 2k - 54 \cdot 1$.
- Now f_1 and $f_{\nu \cdot \det}/\psi_{54}$ are polynomials in $E_4, E_6, \psi_8, E_{10}, E_{12}, \psi_9^2$.

This completes the proof of the first result.
Proof of the Second Main Result

Proof.

- Let \(f \in [\Gamma'_{A_3}, k, 1] \).
- If \(k \) is odd, then \(f \) vanishes on \(\mathcal{H}_{A_1}^2 \) and we have \(f / \psi_9 \in [\Gamma'_{A_3}, k - 9, 1] \). So we can assume that \(k \) is even.
- We know that \([\Gamma'_{A_3}, 2k, 1] = [\Gamma_{A_3}, 2k, 1] \oplus [\Gamma_{A_3}, 2k, \nu \pi \det] \). Thus \(f = f_1 + f_{\nu \pi \det} \) with \(f_{\nu} \in [\Gamma_{A_3}, 2k, \nu] \).
- \(f_{\nu \pi \det} \) vanishes on \(\mathcal{H}_{S_2} \) and we have \(f_{\nu \pi \det} / \psi_{54} \in [\Gamma_{A_3}, 2k - 54, 1] \).
- Now \(f_1 \) and \(f_{\nu \pi \det} / \psi_{54} \) are polynomials in \(E_4, E_6, \psi_8, E_{10}, E_{12}, \psi_9^2 \).
 This completes the proof of the first result.
Proof of the Second Main Result

Proof.

- Let $f \in [\Gamma'_{A_3}, k, 1]$.
- If k is odd, then f vanishes on $\mathcal{H}_{A_1}^2$ and we have $f/\psi_9 \in [\Gamma'_{A_3}, k - 9, 1]$. So we can assume that k is even.
- We know that $[\Gamma'_{A_3}, 2k, 1] = [\Gamma_{A_3}, 2k, 1] \oplus [\Gamma_{A_3}, 2k, \nu \pi \det]$. Thus $f = f_1 + f_{\nu \pi \det}$ with $f_{\nu} \in [\Gamma_{A_3}, 2k, \nu]$.
- $f_{\nu \pi \det}$ vanishes on \mathcal{H}_{S_2} and we have $f_{\nu \pi \det}/\psi_{54} \in [\Gamma_{A_3}, 2k - 54, 1]$.
- Now f_1 and $f_{\nu \pi \det}/\psi_{54}$ are polynomials in $E_4, E_6, \psi_8, E_{10}, E_{12}, \psi_9^2$.

This completes the proof of the first result.
Proof of the Second Main Result (cont’d)

Proof.

—we have $\psi_{54}^2 \in [\Gamma_{A_3}, 108, 1]$. Thus $\psi_{54}^2 = p(E_4, E_6, \psi_8, \psi_9, E_{10}, E_{12})$.

—we want to show that $\mathcal{A}(\Gamma'_S) \cong \mathbb{C}[X_1, \ldots, X_7]/(X_7^2 - p(X_1, \ldots, X_6))$.

So let $Q \in \mathbb{C}[X_1, \ldots, X_7]$ such that $Q(E_4, \ldots, E_{12}, \psi_{54}) = 0$.

—there exist $Q_0, Q_1 \in \mathbb{C}[X_1, \ldots, X_6]$ such that

$Q \in Q_0 + X_7 Q_1 + (X_7^2 - p(X_1, \ldots, X_6))$.

—thus $Q_0(E_4, \ldots, E_{12}) + \psi_{54} \cdot Q_1(E_4, \ldots, E_{12}) = 0$.

—there exists a modular substitution mapping ψ_{54} to $-\psi_{54}$ and leaving E_4, \ldots, E_{12} invariant; hence

$Q_0(E_4, \ldots, E_{12}) - \psi_{54} \cdot Q_1(E_4, \ldots, E_{12}) = 0$.

—we conclude $Q_0(E_4, \ldots, E_{12}) = 0$ and $Q_1(E_4, \ldots, E_{12}) = 0$.

E_4, \ldots, E_{12} are algebraically independent. Therefore $Q_0 = Q_1 = 0$, which completes the proof.
Proof of the Second Main Result (cont’d)

Proof.

- We have \(\psi_{54}^2 \in [\Gamma_{A_3}, 108, 1] \). Thus \(\psi_{54}^2 = p(E_4, E_6, \psi_8, \psi_9, E_{10}, E_{12}) \).
- We want to show that \(\mathcal{A}(\Gamma'_S) \cong \mathbb{C}[X_1, \ldots, X_7]/(X_7^2 - p(X_1, \ldots, X_6)) \).

 So let \(Q \in \mathbb{C}[X_1, \ldots, X_7] \) such that \(Q(E_4, \ldots, E_{12}, \psi_{54}) = 0 \).
- There exist \(Q_0, Q_1 \in \mathbb{C}[X_1, \ldots, X_6] \) such that \(Q \in Q_0 + X_7 Q_1 + (X_7^2 - p(X_1, \ldots, X_6)) \).
- Thus \(Q_0(E_4, \ldots, E_{12}) + \psi_{54} \cdot Q_1(E_4, \ldots, E_{12}) = 0 \).
- There exists a modular substitution mapping \(\psi_{54} \) to \(-\psi_{54} \) and leaving \(E_4, \ldots, E_{12} \) invariant; hence \(Q_0(E_4, \ldots, E_{12}) - \psi_{54} \cdot Q_1(E_4, \ldots, E_{12}) = 0 \).
- We conclude \(Q_0(E_4, \ldots, E_{12}) = 0 \) and \(Q_1(E_4, \ldots, E_{12}) = 0 \).
- \(E_4, \ldots, E_{12} \) are algebraically independent. Therefore \(Q_0 = Q_1 = 0 \), which completes the proof.
Proof of the Second Main Result (cont’d)

Proof.

- We have $\psi_{54}^2 \in [\Gamma_{A_3}, 108, 1]$. Thus $\psi_{54}^2 = p(E_4, E_6, \psi_8, \psi_9, E_{10}, E_{12})$.
- We want to show that $A(\Gamma'_S) \cong \mathbb{C}[X_1, \ldots, X_7]/(X_7^2 - p(X_1, \ldots, X_6))$. So let $Q \in \mathbb{C}[X_1, \ldots, X_7]$ such that $Q(E_4, \ldots, E_{12}, \psi_{54}) = 0$.
- There exist $Q_0, Q_1 \in \mathbb{C}[X_1, \ldots, X_6]$ such that $Q = Q_0 + X_7 Q_1 + (X_7^2 - p(X_1, \ldots, X_6))$.
- Thus $Q_0(E_4, \ldots, E_{12}) + \psi_{54} \cdot Q_1(E_4, \ldots, E_{12}) = 0$.
- There exists a modular substitution mapping ψ_{54} to $-\psi_{54}$ and leaving E_4, \ldots, E_{12} invariant; hence $Q_0(E_4, \ldots, E_{12}) - \psi_{54} \cdot Q_1(E_4, \ldots, E_{12}) = 0$.
- We conclude $Q_0(E_4, \ldots, E_{12}) = 0$ and $Q_1(E_4, \ldots, E_{12}) = 0$.
- E_4, \ldots, E_{12} are algebraically independent. Therefore $Q_0 = Q_1 = 0$, which completes the proof.
Proof of the Second Main Result (cont’d)

Proof.

- We have \(\psi_{54}^2 \in [\Gamma_{A_3}, 108, 1] \). Thus \(\psi_{54}^2 = p(E_4, E_6, \psi_8, \psi_9, E_{10}, E_{12}) \).
- We want to show that \(\mathcal{A}(\Gamma'_S) \cong \mathbb{C}[X_1, \ldots, X_7]/(X_7^2 - p(X_1, \ldots, X_6)) \). So let \(Q \in \mathbb{C}[X_1, \ldots, X_7] \) such that \(Q(E_4, \ldots, E_{12}, \psi_{54}) = 0 \).
- There exist \(Q_0, Q_1 \in \mathbb{C}[X_1, \ldots, X_6] \) such that \(Q \in Q_0 + X_7 Q_1 + (X_7^2 - p(X_1, \ldots, X_6)) \).
- Thus \(Q_0(E_4, \ldots, E_{12}) + \psi_{54} \cdot Q_1(E_4, \ldots, E_{12}) = 0 \).
- There exists a modular substitution mapping \(\psi_{54} \) to \(-\psi_{54} \) and leaving \(E_4, \ldots, E_{12} \) invariant; hence \(Q_0(E_4, \ldots, E_{12}) - \psi_{54} \cdot Q_1(E_4, \ldots, E_{12}) = 0 \).
- We conclude \(Q_0(E_4, \ldots, E_{12}) = 0 \) and \(Q_1(E_4, \ldots, E_{12}) = 0 \).
- \(E_4, \ldots, E_{12} \) are algebraically independent. Therefore \(Q_0 = Q_1 = 0 \), which completes the proof.
Proof of the Second Main Result (cont’d)

Proof.

- We have \(\psi_{54}^2 \in [\Gamma_{A_3}, 108, 1] \). Thus \(\psi_{54}^2 = p(E_4, E_6, \psi_8, \psi_9, E_{10}, E_{12}) \).
- We want to show that \(\mathcal{A}(\Gamma'_5) \cong \mathbb{C}[X_1, \ldots, X_7]/(X_7^2 - p(X_1, \ldots, X_6)) \).

So let \(Q \in \mathbb{C}[X_1, \ldots, X_7] \) such that \(Q(E_4, \ldots, E_{12}, \psi_{54}) = 0 \).

- There exist \(Q_0, Q_1 \in \mathbb{C}[X_1, \ldots, X_6] \) such that \(Q \in Q_0 + X_7 Q_1 + (X_7^2 - p(X_1, \ldots, X_6)) \).
- Thus \(Q_0(E_4, \ldots, E_{12}) + \psi_{54} \cdot Q_1(E_4, \ldots, E_{12}) = 0 \).
- There exists a modular substitution mapping \(\psi_{54} \) to \(-\psi_{54} \) and leaving \(E_4, \ldots, E_{12} \) invariant; hence \(Q_0(E_4, \ldots, E_{12}) - \psi_{54} \cdot Q_1(E_4, \ldots, E_{12}) = 0 \).
- We conclude \(Q_0(E_4, \ldots, E_{12}) = 0 \) and \(Q_1(E_4, \ldots, E_{12}) = 0 \).
- \(E_4, \ldots, E_{12} \) are algebraically independent. Therefore \(Q_0 = Q_1 = 0 \), which completes the proof.

▶
Proof of the Second Main Result (cont’d)

Proof.

- We have $\psi_{54}^2 \in [\Gamma_{A_3}, 108, 1]$. Thus $\psi_{54}^2 = p(E_4, E_6, \psi_8, \psi_9, E_{10}, E_{12})$.
- We want to show that $A(\Gamma'_S) \cong \mathbb{C}[X_1, \ldots, X_7]/(X_7^2 - p(X_1, \ldots, X_6))$. So let $Q \in \mathbb{C}[X_1, \ldots, X_7]$ such that $Q(E_4, \ldots, E_{12}, \psi_{54}) = 0$.
- There exist $Q_0, Q_1 \in \mathbb{C}[X_1, \ldots, X_6]$ such that $Q \in Q_0 + X_7 Q_1 + (X_7^2 - p(X_1, \ldots, X_6))$.
- Thus $Q_0(E_4, \ldots, E_{12}) + \psi_{54} \cdot Q_1(E_4, \ldots, E_{12}) = 0$.
- There exists a modular substitution mapping ψ_{54} to $-\psi_{54}$ and leaving E_4, \ldots, E_{12} invariant; hence $Q_0(E_4, \ldots, E_{12}) - \psi_{54} \cdot Q_1(E_4, \ldots, E_{12}) = 0$.
- We conclude $Q_0(E_4, \ldots, E_{12}) = 0$ and $Q_1(E_4, \ldots, E_{12}) = 0$.
- E_4, \ldots, E_{12} are algebraically independent. Therefore $Q_0 = Q_1 = 0$, which completes the proof.
Proof of the Second Main Result (cont’d)

Proof.

- We have \(\psi_{54}^2 \in [\Gamma_{A_3}, 108, 1] \). Thus \(\psi_{54}^2 = p(E_4, E_6, \psi_8, \psi_9, E_{10}, E_{12}) \).
- We want to show that \(\mathcal{A}(\Gamma_S') \cong \mathbb{C}[X_1, \ldots, X_7]/(X_7^2 - p(X_1, \ldots, X_6)) \).
 So let \(Q \in \mathbb{C}[X_1, \ldots, X_7] \) such that \(Q(E_4, \ldots, E_{12}, \psi_{54}) = 0 \).
- There exist \(Q_0, Q_1 \in \mathbb{C}[X_1, \ldots, X_6] \) such that
 \(Q \in Q_0 + X_7Q_1 + (X_7^2 - p(X_1, \ldots, X_6)) \).
- Thus \(Q_0(E_4, \ldots, E_{12}) + \psi_{54} \cdot Q_1(E_4, \ldots, E_{12}) = 0 \).
- There exists a modular substitution mapping \(\psi_{54} \) to \(-\psi_{54} \) and leaving \(E_4, \ldots, E_{12} \) invariant; hence
 \(Q_0(E_4, \ldots, E_{12}) - \psi_{54} \cdot Q_1(E_4, \ldots, E_{12}) = 0 \).
- We conclude \(Q_0(E_4, \ldots, E_{12}) = 0 \) and \(Q_1(E_4, \ldots, E_{12}) = 0 \).
- \(E_4, \ldots, E_{12} \) are algebraically independent. Therefore \(Q_0 = Q_1 = 0 \), which completes the proof.
Fields of Orthogonal Modular Functions

Corollary

1. The field $\mathcal{K}(\Gamma_{A_3})$ of orthogonal modular functions with respect to Γ_{A_3} and the trivial character is a rational function field in the generators

$$\frac{E_6^2}{E_4^3}, \quad \frac{\psi_8}{E_4^2}, \quad \frac{E_{10}}{E_4 E_6}, \quad \frac{E_{12}}{E_4^3} \quad \text{and} \quad \frac{\psi_9^2}{E_6^3}.$$

2. The field $\mathcal{K}(\Gamma'_{A_3})$ of all orthogonal modular functions with respect to Γ'_{A_3} is an extension of degree 2 over $\mathcal{K}(\Gamma_{A_3})$ generated by ψ_5^4/ψ_9^6.
Fields of Orthogonal Modular Functions

Corollary

1. The field $\mathcal{K}(\Gamma_{A_3})$ of orthogonal modular functions with respect to Γ_{A_3} and the trivial character is a rational function field in the generators $\frac{E_6^2}{E_4^3}$, $\frac{\psi_8}{E_4^2}$, $\frac{E_{10}}{E_4 E_6}$, $\frac{E_{12}}{E_4^3}$ and $\frac{\psi_9^2}{E_6^3}$.

2. The field $\mathcal{K}(\Gamma'_{A_3})$ of all orthogonal modular functions with respect to Γ'_{A_3} is an extension of degree 2 over $\mathcal{K}(\Gamma_{A_3})$ generated by ψ_{54}/ψ_9^6.