Modular Forms for the Orthogonal Group O(2,5)

Der Fakultät für Mathematik, Informatik und Naturwissenschaften der Rheinisch-Westfälischen Technischen Hochschule Aachen vorgelegte
Dissertation zur Erlangung des akademischen Grades eines
Doktors der Naturwissenschaften

von

Diplom-Mathematiker
Ingo Herbert Klöcker
aus Aachen

For Odo, Sandra, and Maja

Contents

Introduction 1
O. Basic Notation 5

1. Orthogonal Groups 7
1.1. Lattices and orthogonal groups 7
1.2. $\mathrm{O}(2, l+2)$ and the attached half-space 9
1.3. The orthogonal modular group 10
1.4. Generators of certain orthogonal modular groups 13
1.5. The commutator subgroups of certain orthogonal modular groups 21
1.6. Abelian characters of the orthogonal modular groups 22
1.6.1. The determinant 22
1.6.2. The orthogonal character(s) 22
1.6.3. The Siegel character 22
1.7. Parabolic subgroups 26
2. Modular Forms 29
2.1. Orthogonal modular forms 29
2.2. Rankin-Cohen type differential operators 35
2.3. Jacobi forms 38
2.4. Maaß spaces 42
2.5. Restrictions of modular forms to submanifolds 45
2.5.1. The general case 45
2.5.2. Restrictions of modular forms living on $\mathcal{H}_{D_{4}}$ 49
2.5.3. Restrictions of modular forms living on $\mathcal{H}_{A_{3}}$ 50
2.5.4. Restrictions of modular forms living on $\mathcal{H}_{A_{1}^{(3)}}$ 51
2.6. Hermitian modular forms of degree 2 53
2.7. Quaternionic modular forms of degree 2 57
2.8. Quaternionic theta series 60
3. Vector-valued Modular Forms 65
3.1. The metaplectic group 65
3.2. Vector-valued modular forms 66
3.3. The Weil representation 68
3.4. A dimension formula 70
3.5. Examples of vector-valued modular forms 73
3.5.1. Eisenstein series 73
3.5.2. Theta series 74
4. Borcherds Products 77
4.1. Weyl chambers and the Weyl vector 77
4.2. Quadratic divisors 83
4.3. Borcherds products 84
4.3.1. Borcherds products for $S=A_{3}$ 87
4.3.2. Borcherds products for $S=A_{1}^{(3)}$ 89
5. Graded Rings of Orthogonal Modular Forms 91
5.1. The graded ring for $S=A_{3}$ 91
5.2. The graded ring for $S=A_{1}^{(3)}$ 98
A. Orthogonal and Symplectic Transformations 107
A.1. The case $S=D_{4}$ 108
A.2. The case $S=A_{1}^{(3)}$ 109
A.3. The case $S=A_{3}$ 110
B. Orthogonal and Unitary Transformations 111
B.1. The case $S=A_{1}^{(2)}$ 112
B.2. The case $S=A_{2}$ 113
B.3. The case $S=S_{2}$ 114
C. Eichler Transformations 115
D. Discriminant Groups 117
E. Dimensions of Spaces of Vector-valued Modular Forms 119
Bibliography 121
Notation 125
Index 133

Introduction

We consider modular forms for orthogonal groups $\mathrm{O}(2, l+2)$ with particular emphasis on the case $l=3$. Modular forms for $\mathrm{O}(2,3)$ correspond to Siegel modular forms of degree 2. In the 1960's Igusa [Ig64] used theta constants in order to describe the graded ring of Siegel modular forms of degree 2. Using Igusa's method Freitag [Fr67] was able to determine the graded ring of symmetric Hermitian modular forms of degree 2 over the Gaussian number field $\mathbb{Q}(\sqrt{-1})$ which corresponds to the case of modular forms for $\mathrm{O}(2,4)$. Nagaoka [Na96], Ibukiyama [Ib99b] and Aoki [AI05] completed the description the graded ring in terms of generators and relations. Other cases corresponding to modular forms for $\mathrm{O}(2,4)$ where dealt with by Dern and Krieg. They determined the graded rings of Hermitian modular forms of degree 2 including the Abelian characters for the number fields $\mathbb{Q}(\sqrt{-1}), \mathbb{Q}(\sqrt{-2})$ and $\mathbb{Q}(\sqrt{-3})$ (cf. [De01], [DK03], [DK04]). Instead of using estimations on theta series as in Igusa's approach they applied the theory of Borcherds products (cf. [Bo98]) in order to obtain Hermitian modular forms with known zeros. Then a similar reduction process as the one used by Igusa and Freitag yields their structure theorems. The general case of modular forms for $\mathrm{O}(2, l+2)$ was studied by Freitag and Hermann [FH00] from a geometrical point of view. They derived partial results on modular forms for $\mathrm{O}(2,5)$ by embedding suitable lattices into the Hurwitz quaternions.

Using similar methods as Dern and Krieg we will characterize the graded rings of orthogonal modular forms for two maximal discrete subgroups of $\mathrm{O}(2,5)$. Let S be an even positive definite symmetric matrix of rank l, and let

$$
S_{0}:=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & -S & 0 \\
1 & 0 & 0
\end{array}\right), S_{1}:=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & S & 0 \\
1 & 0 & 0
\end{array}\right) .
$$

The bilinear form associated to S_{0} is given by $(a, b)_{0}={ }^{t} a S_{0} b$ for $a, b \in \mathbb{R}^{l+2}$ and the corresponding quadratic form is $q_{0}=\frac{1}{2}(\cdot, \cdot)_{0}$. The attached half-space is

$$
\mathcal{H}_{S}=\left\{w=u+i v \in \mathbb{C}^{l+2} ; v \in \mathcal{P}_{S}\right\},
$$

where $\mathcal{P}_{S}=\left\{v \in \mathbb{R}^{l+2} ;(v, v)_{0}>0,(v, \mathrm{e})>0\right\}, \mathrm{e}={ }^{t}(1,0, \ldots, 0,1)$. The orthogonal group

$$
\mathrm{O}\left(S_{1} ; \mathbb{R}\right)=\left\{M \in \operatorname{Mat}(l+4 ; \mathbb{R}) ;{ }^{t} M S_{1} M=S_{1}\right\}
$$

acts on $\mathcal{H}_{S} \cup\left(-\mathcal{H}_{S}\right)$ as group of biholomorphic rational transformations via

$$
w \mapsto M\langle w\rangle=\left(-q_{0}(w) b+A w+c\right) j(M, w)^{-1} \quad \text { for } M=\left(\begin{array}{ccc}
\alpha_{a} & \beta \\
b & A & c \\
\gamma & t_{d} & \delta
\end{array}\right) \in \mathrm{O}\left(S_{1} ; \mathbb{R}\right)
$$

where $j(M, w)=-\gamma q_{0}(w)+{ }^{t} d w+\delta$. The orthogonal modular group is given by

$$
\Gamma_{S}=\left\{M \in \mathrm{O}\left(S_{1} ; \mathbb{R}\right) ; M\left\langle\mathcal{H}_{S}\right\rangle=\mathcal{H}_{S}, M \Lambda_{1}=\Lambda_{1}\right\}
$$

An orthogonal modular form of weight $k \in \mathbb{Z}$ with respect to an Abelian character ν of Γ_{S} is a holomorphic function $f: \mathcal{H}_{S} \rightarrow \mathbb{C}$ satisfying

$$
\left(\left.f\right|_{k} M\right)(w):=j(M, w)^{-k} f(M\langle w\rangle)=\nu(M) f(w) \quad \text { for all } w \in \mathcal{H}_{S}, M \in \Gamma_{S}
$$

The vector space $\left[\Gamma_{S}, k, \nu\right]$ of those functions is finite dimensional. If $f_{j} \in\left[\Gamma_{S}, k_{j}, \nu_{j}\right]$, $j=1,2$, then $f_{1} f_{2} \in\left[\Gamma_{S}, k_{1}+k_{2}, \nu_{1} \nu_{2}\right]$. Thus

$$
\mathcal{A}\left(\Gamma_{S}\right)=\bigoplus_{k \in \mathbb{Z}}\left[\Gamma_{S}, k, 1\right] \quad \text { and } \quad \mathcal{A}\left(\Gamma_{S}^{\prime}\right)=\bigoplus_{k \in \mathbb{Z}} \bigoplus_{\nu \in \Gamma_{S}^{\mathrm{ab}}}\left[\Gamma_{S}, k, \nu\right],
$$

where Γ_{S}^{\prime} is the commutator subgroup of Γ_{S} and Γ_{S}^{ab} is the group of Abelian characters of Γ_{S}, form graded rings. Our main goal is the explicit description of those graded rings in terms of generators for

$$
S=A_{3}=\left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right) \quad \text { and } \quad S=A_{1}^{(3)}=\left(\begin{array}{ccc}
2 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 2
\end{array}\right) .
$$

It turns out that in both cases the graded ring $\mathcal{A}\left(\Gamma_{S}\right)$ is a polynomial ring in six (algebraically independent) generators while the graded rings $\mathcal{A}\left(\Gamma_{S}^{\prime}\right)$ are free \mathcal{R}-modules of rank 2 and 4, respectively, where in both cases \mathcal{R} is an extension of degree two of $\mathcal{A}\left(\Gamma_{S}\right)$. In the case of $S=A_{3}$ we can simply take certain Eisenstein series and Borcherds products as generators. In the other case we determine the invariant ring of a finite representation which is given by the action of a subgroup of the quaternionic symplectic group on quaternionic theta series. The restrictions of the primary invariants and some Borcherds products generate the graded rings for $S=A_{1}^{(3)}$. In both cases Borcherds products play an important role. In a first step the explicitly known zeros of the Borcherds products allow us to reduce the problem of determining the graded ring $\mathcal{A}\left(\Gamma_{S}^{\prime}\right)$ of modular forms with Abelian characters to the problem of determining the graded ring $\mathcal{A}\left(\Gamma_{S}\right)$ of modular forms of even weight with respect to the trivial character. In the next step we use the fact that we already know the generators of the graded rings of modular forms living on certain submanifolds of \mathcal{H}_{S} on which suitable Borcherds products vanish of first order. In the case of $S=A_{3}$ we can derive our results from Dern's result for $\mathbb{Q}(\sqrt{-3})$, and in the case of $S=A_{1}^{(3)}$ we use the results for $\mathbb{Q}(\sqrt{-1})$. As an application of our results we describe the attached fields of orthogonal modular functions.

We now briefly describe the content of this thesis:
In the first chapter we collect the necessary facts and results about orthogonal groups. In particular, we explicitly determine generators and Abelian characters of certain orthogonal modular groups Γ_{S}, and we introduce the paramodular subgroup of Γ_{S}.

In the second chapter we define the main object of our studies, the orthogonal modular forms, and state some fundamental results. In particular, we show that, unlike elliptic modular forms, orthogonal modular forms automatically possess an absolutely and locally uniformly convergent Fourier series due to Koecher's principle. Moreover, we introduce the notion of cusp forms and show that, as usual, the subspace of cusp forms can be characterized by Siegel's Φ-operator. Then we consider a certain differential operator which allows us to construct non-trivial orthogonal modular forms from a number of algebraically independent orthogonal modular forms. The next two sections deal with Jacobi forms and the Maaß space. An explicit formula for the dimension of certain Maaß spaces is derived from a dimension formula for spaces of Jacobi forms. Next we take a look at restrictions of orthogonal modular forms to submanifolds and give a brief introduction into Hermitian and quaternionic modular forms of degree 2 . We translate the results about graded rings of Hermitian modular forms of degree 2 from the symplectic point of view to our terminology, and we define orthogonal Eisenstein series for $S=A_{3}$ and $S=A_{1}^{(3)}$ as restrictions of quaternionic Eisenstein series. Finally, we consider a 5 -dimensional finite representation of $\Gamma_{A_{1}^{(3)}}$, determine its invariant ring using the MAGMA and get five algebraically independent modular forms for $\Gamma_{A_{1}^{(3)}}$ whose restrictions to a certain submanifold generate the graded ring of orthogonal modular forms of even weight and trivial character corresponding to Hermitian modular forms over the Gaussian number field.
In the third chapter we recall fundamental facts about vector-valued elliptic modular forms for the metaplectic group $\mathrm{Mp}(2 ; \mathbb{Z})$. We focus on holomorphic vector-valued modular forms with respect to the Weil representation ρ_{S} attached to a certain quadratic module ($\Lambda^{\sharp} / \Lambda, \bar{q}_{S}$) associated to S. A dimension formula for spaces of holomorphic vector-valued modular forms is given, and two classes of vector-valued modular forms whose Fourier expansions can be explicitly calculated are introduced: Eisenstein series and theta series. Moreover, so-called nearly holomorphic vector-valued modular forms, that is vector-valued modular forms with a pole in the cusp ∞, are defined.

In the fourth chapter we briefly review the theory of Borcherds products specializing Borcherds's results to our setting. Borcherds products are constructed from nearly holomorphic vector-valued modular forms of weight $-l / 2$ with respect to the dual Weil representation ρ_{S}^{\sharp}. They are orthogonal modular forms, but in general they are not holomorphic. The most remarkable property of a Borcherds product is the fact that its zeros and poles are completely determined by the principal part of the nearly holomorphic modular form the Borcherds product is constructed from. The zeros and poles lie on so-called rational quadratic divisors which correspond to embedded orthogonal half-spaces of codimension 1. It is intuitively clear that it is desirable to find holomorphic Borcherds products with as few zeros of as low order as possible. The existence of nearly holomorphic modular forms with suitably nice principal part is controlled by the so-called obstruction space, the space
of holomorphic vector-valued modular forms of weight $2+l / 2$ with respect to ρ_{S}.
In the fifth chapter we derive our main results. For $S=A_{3}$ and $S=A_{1}^{(3)}$ we start by determining nice Borcherds products. In the first case the obstruction space is 1 -dimensional and spanned by an Eisenstein series while in the other case it is 3 -dimensional and spanned by an Eisenstein series and two theta series. Nevertheless in both cases the existence of principal parts of nearly holomorphic modular forms mainly depends only on the Fourier coefficients of the Eisenstein series. This allows us to construct Borcherds products which vanish only on one rational quadratic divisor and only of first order. Orthogonal modular forms with non-trivial character have to vanish on certain rational quadratic divisors. Since the Borcherds products we constructed vanish of first order we can divide orthogonal modular forms with non-trivial character by suitable Borcherds products. This way we can reduce all orthogonal modular forms to orthogonal modular forms with respect to the trivial character. It turns out that in the two cases we consider all non-trivial orthogonal modular forms with respect to the trivial character are of even weight. Thus it remains to determine the graded rings of modular forms of even weight and with trivial character. In the case of $S=A_{3}$ we show that the ring of orthogonal modular forms of even weight and with trivial character corresponding to Hermitian modular forms for $\mathbb{Q}(\sqrt{-3})$ is generated by the restrictions of four orthogonal Eisenstein series and the restriction of the square of a Borcherds product. So by subtracting a suitable polynomial in those functions from an arbitrary modular form of even weight and with trivial character we get a function which vanishes on a submanifold corresponding to the Hermitian half-space for $\mathbb{Q}(\sqrt{-3})$. Again we can divide by a suitable Borcherds product and by induction we get our main result in the case of $S=A_{3}$. In the other case we use the five algebraically independent modular forms we determined in chapter two in order to derive a corresponding result. We conclude the chapter by a few corollaries including the determination of the algebraic structure of the fields of orthogonal modular functions.

This thesis was written at the Lehrstuhl A für Mathematik, Aachen University. The work was supervised by Prof. Dr. A. Krieg. I am indebted to him for his valuable suggestions and encouragement. Without his support this work would not have been possible.

Furthermore, I would like to thank Prof. Dr. N. Skoruppa for supporting me during my stay at Bordeaux and for accepting to act as second referee.

Part of this work was funded by a scholarship of the Graduiertenkolleg "Analyse und Konstruktion in der Mathematik" of Aachen University. For the granted financial support I would like to thank the speaker of the Graduiertenkolleg, Prof. Dr. V. Enß.

Moreover, I thank all my present and former colleagues at the Lehrstuhl A für Mathematik for many valuable discussions.

Last but not least, I would like to express my deepest gratitude to my parents and my brother and his wife for their continued support, encouragement, patience and love over all my years of study.

0. Basic Notation

We use the following notation (for a detailed list see the table of notation on pages 125 ff .): \mathbb{N} is the set of positive integers, \mathbb{N}_{0} is the set of non-negative integers, \mathbb{Z} is the ring of the integers, \mathbb{Q}, \mathbb{R} and \mathbb{C} are the fields of rational, real and complex numbers, respectively, and \mathbb{H} is the skew field of Hamilton quaternions with standard basis $1, i_{1}, i_{2}, i_{3}=i_{1} i_{2}$.

Let R be a suitable ring with unity, i.e., commutative whenever necessary. Mat $(n, m ; R)$ is the group of $n \times m$ matrices over R, $\operatorname{Mat}(n ; R)$ is the ring of $n \times n$ matrices over R, $\mathrm{GL}(n ; R)$ and $\mathrm{SL}(n ; R)$ are the general linear group and the special linear group in $\operatorname{Mat}(n ; R)$, respectively. $\operatorname{Sym}(n ; R)$ denotes the set of symmetric matrices, $\operatorname{Her}(n ; R)$ the set of Hermitian matrices, and $\operatorname{Pos}(n ; R) \subset \operatorname{Her}(n ; R)$ the ring of positive definite Hermitian matrices in $\operatorname{Mat}(n ; R)$. For $H \in \operatorname{Her}(n ; R)$ we write $H>0$ if H is positive definite and we write $H \geq 0$ if H is positive semi-definite. I_{n} is the identity matrix in $\operatorname{Mat}(n ; R)$. If the dimension is obvious then we also write simply I.

For $A \in \operatorname{Mat}(n ; R)$ and $B \in \operatorname{Mat}(n, m ; R)$ we denote the transpose of B by ${ }^{t} B$, the conjugate transpose of B by ${ }^{\bar{E}} \bar{B}$, and we define $A[B]:={ }^{\bar{E}} \bar{B} A B$. For matrices $A_{j} \in$ $\operatorname{Mat}\left(n_{j} ; R\right), 1 \leq j \leq n$, we define

$$
A_{1} \times \ldots \times A_{n}:=\left(\begin{array}{ccc}
A_{1} & 0 & 0 \\
0 & \ddots & 0 \\
0 & 0 & A_{n}
\end{array}\right)
$$

and for $a_{1}, \ldots, a_{n} \in R$ we denote the diagonal matrix with diagonal elements a_{j} by $\left[a_{1}, \ldots, a_{n}\right]$.

Let G be a group. For $g, h \in G$ we define the commutator of g and h by $[g, h]:=$ $g h g^{-1} h^{-1}$. We denote the commutator subgroup of G by G^{\prime} and the commutator factor group of G by $G^{\text {ab }}:=G / G^{\prime}$. The latter coincides with the group of Abelian characters $G \rightarrow \mathbb{C}^{\times}$which we also denote by $G^{\text {ab }}$.

We will sometimes write column vectors as row vectors because row vectors take less vertical space. In this case we will omit the "transpose" symbol whenever it is clear from the context what we actually mean.

1. Orthogonal Groups

1.1. Lattices and orthogonal groups

Definition 1.1 A lattice is a free \mathbb{Z}-module of finite rank equipped with a symmetric \mathbb{Z} valued bilinear form (\cdot, \cdot). We call a lattice Λ even if (λ, λ) is even for all $\lambda \in \Lambda$. The associated quadratic form q is defined by

$$
q(\lambda)=\frac{1}{2}(\lambda, \lambda) \quad \text { for all } \lambda \in \Lambda
$$

Let Λ be a lattice. If Λ is even then q obviously takes its values in \mathbb{Z}.
Henceforth we always assume that Λ is non-degenerate. We set $V:=\Lambda \otimes \mathbb{R}$. Since Λ contains a basis of the \mathbb{R}-vector space V the bilinear form (\cdot, \cdot) on $\Lambda \times \Lambda$ induces a bilinear form on $V \times V$ which we again denote by (\cdot, \cdot). The associated quadratic form is again denoted by q. Then the pair (V, q) is a quadratic space.

Definition 1.2 For a lattice Λ with attached bilinear form (\cdot, \cdot) the dual lattice Λ^{\sharp} is defined by

$$
\Lambda^{\sharp}:=\{\mu \in V ; \quad(\mu, \lambda) \in \mathbb{Z} \text { for all } \lambda \in \Lambda\} .
$$

We obviously have $\Lambda \subset \Lambda^{\sharp}$. Therefore the following definitions make sense.
Definition 1.3 Let Λ be a lattice.
a) The finite Abelian group

$$
\operatorname{Dis}(\Lambda):=\Lambda^{\sharp} / \Lambda
$$

is called the discriminant group of Λ.
b) The level of the lattice Λ is defined by

$$
\min \left\{n \in \mathbb{N} ; n q(\mu) \in \mathbb{Z} \text { for all } \mu \in \Lambda^{\sharp}\right\} .
$$

c) $\mu \in \Lambda^{\sharp}$ is called primitive if $\mathbb{Q} \mu \cap \Lambda^{\sharp}=\mathbb{Z} \mu$, i.e., $\max \left\{n \in \mathbb{N} ; \frac{1}{n} \mu \in \Lambda^{\sharp}\right\}=1$.

Proposition 1.4 Let Λ be an even lattice. Then the map $\bar{q}: \operatorname{Dis}(\Lambda) \rightarrow \mathbb{Q} / \mathbb{Z}$ which is induced by q on $\operatorname{Dis}(\Lambda)$, i.e., which is given by

$$
\bar{q}(\mu+\Lambda)=q(\mu)+\mathbb{Z}
$$

for all $\mu \in \Lambda^{\sharp}$, is well defined.

Proof Let $\mu+\Lambda=\mu^{\prime}+\Lambda \in \operatorname{Dis}(\Lambda)$. Then $\mu^{\prime}=\mu+\lambda$ for some $\lambda \in \Lambda$ and

$$
q\left(\mu^{\prime}\right)-q(\mu)=q(\mu+\lambda)-q(\mu)=(\mu, \lambda)+q(\lambda) \in \mathbb{Z}
$$

Thus $\bar{q}\left(\mu^{\prime}+\Lambda\right)=\bar{q}(\mu+\Lambda)$.
Now let $l \in \mathbb{N}, \Lambda=\mathbb{Z}^{l}, V=\Lambda \otimes \mathbb{R} \cong \mathbb{R}^{l}$, and let $S \in \operatorname{Sym}(l ; \mathbb{R}) \cap \operatorname{GL}(l ; \mathbb{R})$ be a nonsingular real symmetric matrix. We define the symmetric bilinear form $(\cdot, \cdot)_{S}$ on V associated to S by $(x, y)_{S}={ }^{t} x S y$ for $x, y \in V$, and we denote the corresponding quadratic form by q_{S}, i.e.,

$$
q_{S}(x)=\frac{1}{2}(x, x)_{S}=\frac{1}{2} S[x]
$$

for $x \in V$. If it is clear to which matrix S the bilinear form $(\cdot, \cdot)_{S}$ and the quadratic form q_{S} correspond to then we simply write (\cdot, \cdot) and q respectively.
If $S \in \operatorname{Sym}(l ; \mathbb{Z}) \cap \mathrm{GL}(l ; \mathbb{R})$ is a nonsingular integral symmetric matrix then Λ together with $(\cdot, \cdot)_{S}$ is a lattice of rank l, the lattice associated to S. Obviously we have $\Lambda^{\sharp}=S^{-1} \Lambda$, and thus the discriminant group $\operatorname{Dis}(\Lambda)$ is of order $\operatorname{det} S$. We call S an even matrix if the associated lattice is an even lattice.

Definition 1.5 Let $S \in \operatorname{Sym}(l ; \mathbb{R}) \cap \mathrm{GL}(l ; \mathbb{R})$ be a nonsingular real symmetric matrix. The real orthogonal group $\mathrm{O}(S ; \mathbb{R})$ with respect to S is defined by

$$
\begin{aligned}
\mathrm{O}(S ; \mathbb{R}) & :=\{M \in \operatorname{Mat}(l ; \mathbb{R}) ; S[M]=S\} \\
& =\left\{M \in \operatorname{Mat}(l ; \mathbb{R}) ; q_{S}(M x)=q_{S}(x) \text { for all } x \in \mathbb{R}^{l}\right\}
\end{aligned}
$$

Remark 1.6 Up to isomorphism the real orthogonal group $\mathrm{O}(S ; \mathbb{R})$ only depends on the signature $\left(b^{+}, b^{-}\right)$of S. Therefore one often writes $\mathrm{O}\left(b^{+}, b^{-}\right)$for $\mathrm{O}(S ; \mathbb{R})$. Moreover, note that $\operatorname{det}(S[M])=\operatorname{det} S$ yields $\operatorname{det} M= \pm 1$ for all $M \in \mathrm{O}(S ; \mathbb{R})$.

Definition 1.7 Suppose that $S \in \operatorname{Sym}(l ; \mathbb{Z}) \cap \mathrm{GL}(l ; \mathbb{R})$ is a nonsingular integral symmetric matrix. Let Λ be the lattice associated to S. The stabilizer of Λ in $\mathrm{O}(S ; \mathbb{R})$ is denoted by $\mathrm{O}(\Lambda)$, i.e., we have

$$
\mathrm{O}(\Lambda)=\{M \in \mathrm{O}(S ; \mathbb{R}) ; M \Lambda=\Lambda\}
$$

Remark 1.8 The condition $M \Lambda=\Lambda$ is equivalent to $M \in \operatorname{GL}(l ; \mathbb{Z})$. Thus $\mathrm{O}(\Lambda)$ is a subgroup of $\mathrm{GL}(l ; \mathbb{Z})$. In fact we have $\mathrm{O}(\Lambda)=\mathrm{O}(S ; \mathbb{R}) \cap \mathrm{GL}(l ; \mathbb{Z})$.

One easily verifies that we have $M \Lambda^{\sharp}=\Lambda^{\sharp}$ for all $M \in \mathrm{O}(\Lambda)$. Thus $\mathrm{O}(\Lambda)$ acts on the discriminant group $\operatorname{Dis}(\Lambda)$ of Λ which leads to the following definition.

Definition 1.9 Let Λ be the lattice associated to a nonsingular integral symmetric matrix S. The discriminant kernel $\mathrm{O}_{\mathrm{d}}(\Lambda)$ of $\mathrm{O}(\Lambda)$ is the kernel of the action of $\mathrm{O}(\Lambda)$ on the discriminant group $\operatorname{Dis}(\Lambda)$.

Finally we define a property of lattices which will be crucial for the existence of a nice system of generators of the corresponding modular group.

Definition 1.10 Let Λ be the lattice associated to a positive definite symmetric matrix S. We call Λ Euclidean iffor all $x \in \mathbb{R}^{l}$ there exists $\lambda \in \Lambda$ such that

$$
q_{S}(x+\lambda)<1 .
$$

1.2. $\mathrm{O}(2, l+2)$ and the attached half-space

We are particularly interested in certain integral symmetric matrices of signature $(2, l+2)$, $l \in \mathbb{N}$. Let $S \in \operatorname{Pos}(l ; \mathbb{R})$ be a positive definite even matrix. We set

$$
S_{0}:=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & -S & 0 \\
1 & 0 & 0
\end{array}\right) \text { and } S_{1}:=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & S_{0} & 0 \\
1 & 0 & 0
\end{array}\right)
$$

Then S_{0} is of signature $(1, l+1)$ and S_{1} is of signature $(2, l+2)$. We use the following abbreviations for the associated bilinear forms and quadratic forms:

$$
\begin{aligned}
(\cdot, \cdot) & =(\cdot, \cdot)_{S}, & q & =q_{S} \\
(\cdot, \cdot)_{0} & =(\cdot, \cdot)_{S_{0}}, & q_{0} & =q_{S_{0}} \\
(\cdot, \cdot)_{1} & =(\cdot, \cdot)_{S_{1}}, & q_{1} & =q_{S_{1}} .
\end{aligned}
$$

Moreover, we set $\mathrm{e}:={ }^{t}(1,0, \ldots, 0,1) \in \mathbb{R}^{l+2}$ and define

$$
\mathcal{H}_{S}:=\left\{w=u+i v \in \mathbb{C}^{l+2} ; v \in \mathcal{P}_{S}\right\}
$$

where

$$
\begin{aligned}
\mathcal{P}_{S} & :=\left\{v \in \mathbb{R}^{l+2} ; q_{0}(v)>0,(v, \mathrm{e})_{0}>0\right\} \\
& =\left\{\left(v_{0}, \tilde{v}, v_{l+1}\right) \in \mathbb{R} \times \mathbb{R}^{l} \times \mathbb{R} ; v_{0} v_{l+1}>q_{S}(\tilde{v}), v_{0}>0\right\} .
\end{aligned}
$$

Then \mathcal{P}_{S} is the domain of positivity of a certain Jordan algebra with unit element e, and \mathcal{H}_{S} is a Hermitian symmetric space of type (IV) in Cartan's classification and a Siegel domain of genus 1 (cf. [PS69]) and corresponds to the group $\mathrm{O}(2, l+2)$ (cf. [Kr 96$]$).

Note that we have

$$
\mathcal{H}_{S} \subset \mathcal{H} \times \mathbb{C}^{l} \times \mathcal{H}
$$

where $\mathcal{H}=\{\tau \in \mathbb{C} ; \operatorname{Im}(\tau)>0\}$ denotes the complex upper half plane. Therefore we will usually write the elements of \mathcal{H}_{S} in the form $w=\left(\tau_{1}, z, \tau_{2}\right), \tau_{1}, \tau_{2} \in \mathcal{H}, z \in \mathbb{C}^{l}$.

In the orthogonal context we write a matrix $M \in \operatorname{Mat}(l+4 ; \mathbb{R})$ always in the form

$$
M=\left(\begin{array}{ccc}
\alpha & { }^{t} a & \beta \\
b & A & c \\
\gamma & { }^{t} d & \delta
\end{array}\right), \text { where } A \in \operatorname{Mat}(l+2 ; \mathbb{R})
$$

Then we have $M \in \mathrm{O}\left(S_{1} ; \mathbb{R}\right)$ if and only if

$$
\left(\begin{array}{ccc}
2 \alpha \gamma+S_{0}[b] & \alpha^{t} d+{ }^{t} S_{0} A+\gamma^{t} a & \alpha \delta+{ }^{t} S_{0} c+\beta \gamma \tag{1.1}\\
\alpha d+{ }^{t} A S_{0} b+\gamma a & a^{t} d+S_{0}[A]+d^{t} a & \beta d+{ }^{t} A S_{0} c+\delta a \\
\alpha \delta+{ }^{t} S_{0} c+\beta \gamma & \beta^{t} d+{ }^{t}{ }^{t} S_{0} A+\delta^{t} a & 2 \beta \delta+S_{0}[c]
\end{array}\right)=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & S_{0} & 0 \\
1 & 0 & 0
\end{array}\right) .
$$

The real orthogonal group $\mathrm{O}\left(S_{1} ; \mathbb{R}\right)$ acts transitively on $\mathcal{H}^{S}:=\mathcal{H}_{S} \cup\left(-\mathcal{H}_{S}\right)$ as a group of biholomorphic automorphisms via

$$
w \mapsto M\langle w\rangle:=\left(-q_{0}(w) b+A w+c\right)(M\{w\})^{-1},
$$

where

$$
M\{w\}:=-\gamma q_{0}(w)+{ }^{t} d w+\delta
$$

(cf. [Bü96],[Kr96]). In fact all biholomorphic automorphisms of \mathcal{H}^{S} have this form, and they either induce an automorphism of \mathcal{H}_{S} (and $-\mathcal{H}_{S}$) or they permute the two connected components \mathcal{H}_{S} and $-\mathcal{H}_{S}$ of \mathcal{H}^{S}. A matrix $M \in \mathrm{O}\left(S_{1} ; \mathbb{R}\right)$ acts trivially on \mathcal{H}^{S} if and only if M lies in the center $\operatorname{Cent}\left(\mathrm{O}\left(S_{1} ; \mathbb{R}\right)\right)=\{ \pm I\}$ of $\mathrm{O}\left(S_{1} ; \mathbb{R}\right)$. Thus the group of biholomorphic automorphisms of \mathcal{H}^{S}, denoted by $\operatorname{Bihol}\left(\mathcal{H}^{S}\right)$, is isomorphic to $\mathrm{PO}\left(S_{1} ; \mathbb{R}\right):=\mathrm{O}\left(S_{1} ; \mathbb{R}\right) /\{ \pm I\}$.

Definition 1.11 We define

$$
\mathrm{O}^{+}\left(S_{1} ; \mathbb{R}\right):=\left\{M \in \mathrm{O}\left(S_{1} ; \mathbb{R}\right) ; M\left\langle\mathcal{H}_{S}\right\rangle=\mathcal{H}_{S}\right\}
$$

as the subgroup of $\mathrm{O}\left(S_{1} ; \mathbb{R}\right)$ stabilizing \mathcal{H}_{S}.
Remark 1.12 $\mathrm{O}^{+}\left(S_{1} ; \mathbb{R}\right)$ acts transitively on \mathcal{H}_{S} as a group of biholomorphic automorphisms (cf. [Bü96, Satz 2.17]) and we have

$$
\operatorname{Bihol}\left(\mathcal{H}_{S}\right) \cong \mathrm{PO}^{+}\left(S_{1} ; \mathbb{R}\right):=\mathrm{O}^{+}\left(S_{1} ; \mathbb{R}\right) /\{ \pm I\}
$$

Proposition 1.13 Let $M=(\stackrel{*}{C} \stackrel{*}{*} \underset{D}{*}) \in \mathrm{O}\left(S_{1} ; \mathbb{R}\right), C, D \in \operatorname{Mat}(2 ; \mathbb{R})$. Then

$$
M \in \mathrm{O}^{+}\left(S_{1} ; \mathbb{R}\right) \text { if and only if } \operatorname{det}\left(C\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)+D\right)>0
$$

Proof For all $M \in \mathrm{O}\left(S_{1} ; \mathbb{R}\right)$ we have either $M\left\langle\mathcal{H}_{S}\right\rangle=\mathcal{H}_{S}$ or $M\left\langle\mathcal{H}_{S}\right\rangle=-\mathcal{H}_{S}$. Thus $M \in \mathrm{O}^{+}\left(S_{1} ; \mathbb{R}\right)$ holds if and only if $M\langle i e\rangle \in \mathcal{H}_{S}$ where $i \mathrm{e}={ }^{t}(i, 0, \ldots, 0, i) \in \mathcal{H}_{S}$. For details confer [Bü96, Satz 2.15].

1.3. The orthogonal modular group

Let $\Lambda=\mathbb{Z}^{l}, \Lambda_{0}=\mathbb{Z} \times \Lambda \times \mathbb{Z}$ and $\Lambda_{1}=\mathbb{Z} \times \Lambda_{0} \times \mathbb{Z} . \Lambda, \Lambda_{0}$ and Λ_{1} are even lattices with respect to S, S_{0} and S_{1}, respectively. The corresponding dual lattices are $\Lambda^{\sharp}=S^{-1} \mathbb{Z}^{l}$,
$\Lambda_{0}^{\sharp}=\mathbb{Z} \times \Lambda^{\sharp} \times \mathbb{Z}$ and $\Lambda_{1}^{\sharp}=\mathbb{Z} \times \Lambda_{0}^{\sharp} \times \mathbb{Z}=\mathbb{Z} \times \mathbb{Z} \times \Lambda^{\sharp} \times \mathbb{Z} \times \mathbb{Z}$, respectively. Thus we obviously have $\operatorname{Dis}(\Lambda) \cong \operatorname{Dis}\left(\Lambda_{0}\right) \cong \operatorname{Dis}\left(\Lambda_{1}\right)$ where the isomorphisms are given by

$$
\begin{aligned}
\operatorname{Dis}(\Lambda) & \rightarrow \operatorname{Dis}\left(\Lambda_{0}\right), \lambda+\Lambda \mapsto(0, \lambda, 0)+\Lambda_{0} \\
\operatorname{Dis}\left(\Lambda_{0}\right) & \rightarrow \operatorname{Dis}\left(\Lambda_{1}\right), \lambda_{0}+\Lambda \mapsto\left(0, \lambda_{0}, 0\right)+\Lambda_{1}
\end{aligned}
$$

Moreover, note that

$$
\bar{q}(\lambda+\Lambda)=\bar{q}_{0}\left((0, \lambda, 0)+\Lambda_{0}\right)=\bar{q}_{1}\left((0,0, \lambda, 0,0)+\Lambda_{1}\right) \quad \text { for all } \lambda \in \Lambda^{\sharp} .
$$

Because of this we will often use the three discriminant groups interchangeably, and, by abuse of notation, we will often simply write λ instead of $(0, \lambda, 0)$ or $(0,0, \lambda, 0,0)$.

Definition 1.14 The orthogonal modular group Γ_{S} with respect to S is defined by

$$
\Gamma_{S}:=\mathrm{O}\left(\Lambda_{1}\right) \cap \mathrm{O}^{+}\left(S_{1} ; \mathbb{R}\right)
$$

In Section 1.1 we already saw that $\mathrm{O}\left(\Lambda_{1}\right)$ acts on the discriminant group $\operatorname{Dis}\left(\Lambda_{1}\right)$. Thus Γ_{S} also acts on $\operatorname{Dis}\left(\Lambda_{1}\right)$. We can say even more about this action.

Proposition 1.15 Γ_{S} acts on the sets of elements of $\operatorname{Dis}\left(\Lambda_{1}\right)$ with the same value of \bar{q}_{1}. For

$$
M=\left(\begin{array}{ccc}
* & * & * \\
* & A & * \\
* & * & *
\end{array}\right) \in \Gamma_{S},
$$

where $A \in \operatorname{Mat}(l ; \mathbb{Z})$, both, the action of Γ_{S} on $\operatorname{Dis}\left(\Lambda_{1}\right)$ and the action of Γ_{S} on the sets of elements of $\operatorname{Dis}\left(\Lambda_{1}\right)$ with the same value of \bar{q}_{1}, only depend on A.

Proof For all $M \in \Gamma_{S}$ we have

$$
\bar{q}_{1}\left(M\left(\mu+\Lambda_{1}\right)\right)=\bar{q}_{1}\left(M \mu+\Lambda_{1}\right)=q_{1}(M \mu)+\mathbb{Z}=q_{1}(\mu)+\mathbb{Z}=\bar{q}_{1}\left(\mu+\Lambda_{1}\right) .
$$

Since $\operatorname{Dis}\left(\Lambda_{1}\right)=\{0+\mathbb{Z}\} \times\{0+\mathbb{Z}\} \times \operatorname{Dis}(\Lambda) \times\{0+\mathbb{Z}\} \times\{0+\mathbb{Z}\}$ it is clear that both actions only depend on A.

Proposition 1.16 The following matrices belong to Γ_{S} :
(1) $\pm I_{l+4}$,
(2) $J=\left(\begin{array}{ccc}0 & 0 & -1 \\ 0 & \tilde{J} & 0 \\ -1 & 0 & 0\end{array}\right)$, where $\tilde{J}=\left(\begin{array}{ccc}0 & 0 & -1 \\ 0 & I_{l} & 0 \\ -1 & 0 & 0\end{array}\right)$,
(3) $T_{g}=\left(\begin{array}{ccc}1 & -{ }^{t} g S_{0} & -q_{0}(g) \\ 0 & I_{l+2} & g \\ 0 & 0 & 1\end{array}\right), g \in \Lambda_{0}$,
(4) $U_{\lambda}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & \widetilde{U}_{\lambda} & 0 \\ 0 & 0 & 1\end{array}\right)$, where $\widetilde{U}_{\lambda}=\left(\begin{array}{ccc}1 & t \\ 0 & q(\lambda) \\ 0 & I_{l} & \lambda \\ 0 & 0 & 1\end{array}\right), \lambda \in \Lambda$,
(5) ${ }_{\lambda} U=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & { }_{\lambda} \widetilde{U} & 0 \\ 0 & 0 & 1\end{array}\right)$, where ${ }_{\lambda} \widetilde{U}=\left(\begin{array}{ccc}1 & 0 & 0 \\ \lambda & I_{l} & 0 \\ q(\lambda) & { }_{\lambda} \lambda S & 1\end{array}\right), \lambda \in \Lambda$,
(6) $R_{g}=\left(\begin{array}{ccc}\varepsilon_{g} & 0 & 0 \\ 0 & \widetilde{R}_{g} & 0 \\ 0 & 0 & \varepsilon_{g}\end{array}\right)$, where $\widetilde{R}_{g}=\left(I_{l+2}-\varepsilon_{g} g^{t} g S_{0}\right) \tilde{J}$, if $g \in \Lambda_{0}$ such that $\varepsilon_{g}=$ $q_{0}(g)= \pm 1$,
(7) $M_{D}=\left(\begin{array}{ccc}\alpha & -\beta & 0 \\ -\gamma & 0 \\ 0 & I_{l} & 0 \\ 0 & 0 & \underset{\gamma}{\alpha} \beta \\ 0\end{array}\right), D=\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \operatorname{SL}(2 ; \mathbb{Z})$,
(8) $M_{D}^{*}:=\left(\begin{array}{ccc}\alpha & 0 & 0 \\ 0 & -\beta & 0 \\ 0 & \alpha_{0} \\ 0 & I_{l} & 0 \\ -\gamma & 0 \\ 0 & \gamma & 0\end{array} \begin{array}{c}0 \\ 0\end{array}\right), D=\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \operatorname{SL}(2 ; \mathbb{Z})$,
(9) $P=(1) \times \widetilde{P} \times(1)$, where $\widetilde{P}=\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & I_{l} & 0 \\ 1 & 0 & 0\end{array}\right)$,
(10) $R_{A}=\left(\begin{array}{ccc}I_{2} & 0 & 0 \\ 0 & A & 0 \\ 0 & 0 & I_{2}\end{array}\right), A \in \mathrm{O}(\Lambda)$.

Proof In [Bü96, Prop. 2.27] Bühler proved that matrices of the forms (1)-(7) belong to Γ_{S}. For the remaining matrices one easily verifies that they belong to $\mathrm{O}^{+}\left(S_{1} ; \mathbb{R}\right)$ by using the definition of $\mathrm{O}\left(S_{1} ; \mathbb{R}\right)$ and the characterisation of $\mathrm{O}^{+}\left(S_{1} ; \mathbb{R}\right)$ (Proposition 1.13). It remains to be proved that $M \Lambda_{1}=\Lambda_{1}$ for those matrices. According to the remark following Definition 1.14, this is equivalent to $M \in \mathrm{GL}(l+4 ; \mathbb{Z})$ which follows immediately from $\operatorname{det} M_{D}^{*}=\operatorname{det}\left(\binom{\alpha}{\gamma} \times\left(\begin{array}{cc}\alpha & -\beta \\ -\gamma & \delta\end{array}\right) \times I_{l}\right)=1$ for $D=\left(\begin{array}{c}\alpha \\ \gamma \\ \gamma\end{array}\right) \in \operatorname{SL}(2 ; \mathbb{Z})$, $\operatorname{det} P=-1$ and $\operatorname{det} R_{A}=\operatorname{det} A= \pm 1$ for $A \in \mathrm{O}(\Lambda) \subset \mathrm{GL}(l ; \mathbb{Z})$.

The above elements of Γ_{S} act as follows on $w=\left(\tau_{1}, z, \tau_{2}\right) \in \mathcal{H}_{S}$:

$$
\begin{aligned}
J\langle w\rangle & =-q_{0}(w)^{-1}\left(\tau_{2},-z, \tau_{1}\right), & & \\
T_{g}\langle w\rangle & =w+g, & & \text { for } g \in \Lambda_{0}, \\
U_{\lambda}\langle w\rangle & =\left(\tau_{1}+{ }^{t} \lambda S z+q(\lambda) \tau_{2}, z+\lambda \tau_{2}, \tau_{2}\right), & & \text { for } \lambda \in \Lambda, \\
R_{g}\langle w\rangle & =q_{0}(g) \widetilde{R}_{g} w, & & \text { for } g \in \Lambda_{0} \text { with } q_{0}(g)= \pm 1, \\
M_{D}\langle w\rangle & =\left(\tau_{1}-\frac{\gamma q(z)}{\gamma \tau_{2}+\delta}, \frac{z}{\gamma \tau_{2}+\delta}, \frac{\alpha \tau_{2}+\beta}{\gamma \tau_{2}+\delta}\right), & & \text { for } D=\left(\begin{array}{cc}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \in \operatorname{SL}(2 ; \mathbb{Z}), \\
M_{D}^{*}\langle w\rangle & =\left(\frac{\alpha \tau_{1}+\beta}{\gamma \tau_{1}+\delta}, \frac{z}{\gamma \tau_{1}+\delta}, \tau_{2}-\frac{\gamma q(z)}{\gamma \tau_{1}+\delta}\right), & & \text { for } D=\left(\begin{array}{ll}
\alpha & \beta \\
\gamma & \delta
\end{array}\right) \in \operatorname{SL}(2 ; \mathbb{Z}), \\
P\langle w\rangle & =\left(\tau_{2}, z, \tau_{1}\right), & & \\
R_{A}\langle w\rangle & =\left(\tau_{1}, A z, \tau_{2}\right), & & \text { for } A \in \mathrm{O}(\Lambda) .
\end{aligned}
$$

1.4. Generators of certain orthogonal modular groups

In this section we will show that for certain S the orthogonal modular group Γ_{S} is nicely generated. We will consider the following matrices:

$$
\begin{align*}
D_{4}= & \left(\begin{array}{llll}
2 & 0 & 0 & 1 \\
0 & 2 & 0 & 1 \\
0 & 0 & 2 & 1 \\
1 & 1 & 1 & 2
\end{array}\right), A_{1}^{(3)}=\left(\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right), A_{3}=\left(\begin{array}{lll}
2 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 2
\end{array}\right), \tag{1.2}\\
& A_{1}^{(2)}=\left(\begin{array}{ll}
2 & 0 \\
0 & 2
\end{array}\right), A_{2}=\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right), S_{2}=\left(\begin{array}{ll}
2 & 0 \\
0 & 4
\end{array}\right) .
\end{align*}
$$

The quadratic spaces associated to those matrices are isomorphic to subspaces of the Hamilton quaternions \mathbb{H}. Since we will later make use of this fact we now fix some concrete isomorphisms. We denote the canonical basis of \mathbb{H} by $1, \mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{i}_{3}$. Then for $z=z_{1}+z_{2} \mathrm{i}_{1}+$ $z_{3} \mathrm{i}_{2}+z_{4} \mathrm{i}_{3} \in \mathbb{H}$ with $z_{j} \in \mathbb{R}$ the conjugate of z is given by $\bar{z}=z_{1}-z_{2} \mathrm{i}_{1}-z_{3} \mathrm{i}_{2}-z_{4} \mathrm{i}_{3}$ and the norm of z is given by $N(z)=z \bar{z}=z_{1}^{2}+z_{2}^{2}+z_{3}^{2}+z_{4}^{2}$. The Hurwitz order is denoted by

$$
\mathcal{O}=\mathbb{Z}+\mathbb{Z i}_{1}+\mathbb{Z i}_{2}+\mathbb{Z} \omega, \quad \omega=\frac{1}{2}\left(1+\mathrm{i}_{1}+\mathrm{i}_{2}+\mathrm{i}_{3}\right) .
$$

Proposition 1.17 Let S be one of the matrices listed in (1.2), and let l be the rank of S. Then the quadratic space $\left(\mathbb{R}^{l}, q_{S}\right)$ with lattice $\Lambda=\mathbb{Z}^{l}$ is isomorphic to the quadratic space $\left(\mathbb{H}_{S}, N_{S}\right)$ with lattice \mathcal{O}_{S} where \mathbb{H}_{S} is a subspace of the Hamilton quaternions \mathbb{H}, N_{S} is the restriction of the norm N to \mathbb{H}_{S}, and $\mathcal{O}_{S}=\mathcal{O} \cap \mathbb{H}_{S}$ is the sublattice of the Hurwitz order \mathcal{O} in \mathbb{H}_{S}. The following list contains the subspaces \mathbb{H}_{S}, the corresponding lattices \mathcal{O}_{S}, one possible isomorphism $\iota_{S}: \mathbb{R}^{l} \rightarrow \mathbb{H}_{S}$ and the quadratic forms $q_{S}=N_{S} \circ \iota_{S}$.
a) $\mathbb{H}_{D_{4}}=\mathbb{H}, \mathcal{O}_{D_{4}}=\mathcal{O}$,
$\iota_{D_{4}}: \mathbb{R}^{4} \rightarrow \mathbb{H},\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto x_{1}+x_{2} \mathrm{i}_{1}+x_{3} \mathrm{i}_{2}+x_{4} \omega$,
$q_{D_{4}}(x)=x_{1}^{2}+x_{1} x_{4}+x_{2}^{2}+x_{2} x_{4}+x_{3}^{2}+x_{3} x_{4}+x_{4}^{2}$,
$\operatorname{Dis}(\Lambda)=\left\langle\left(\frac{1}{2}, \frac{1}{2}, 0,0\right)+\Lambda,\left(\frac{1}{2}, 0, \frac{1}{2}, 0\right)+\Lambda\right\rangle \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
b) $\mathbb{H}_{A_{1}^{(3)}}=\left\{x \in \mathbb{H} ; x_{4}=0\right\}, \mathcal{O}_{A_{1}^{(3)}}=\mathbb{Z}+\mathbb{Z i}_{1}+\mathbb{Z} \mathrm{i}_{2}$,
${ }^{\iota_{A_{1}^{(3)}}}: \mathbb{R}^{3} \rightarrow \mathbb{H}_{A_{1}^{(3)}},\left(x_{1}, x_{2}, x_{3}\right) \mapsto x_{1}+x_{2} \mathrm{i}_{1}+x_{3} \mathrm{i}_{2}$,
$q_{A_{1}^{(3)}}(x)=x_{1}^{2}+x_{2}^{2}+x_{3}^{2}$,
$\operatorname{Dis}(\Lambda)=\left\langle\left(\frac{1}{2}, 0,0\right)+\Lambda,\left(0, \frac{1}{2}, 0\right)+\Lambda,\left(0,0, \frac{1}{2}\right)+\Lambda\right\rangle \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
c) $\mathbb{H}_{A_{3}}=\left\{x \in \mathbb{H} ; x_{3}=x_{4}\right\}, \mathcal{O}_{A_{3}}=\mathbb{Z}+\mathbb{Z} \omega+\mathbb{Z} \mathrm{i}_{1}$,
$\iota_{A_{3}}: \mathbb{R}^{3} \rightarrow \mathbb{H}_{A_{3}},\left(x_{1}, x_{2}, x_{3}\right) \mapsto x_{1}+x_{2} \omega+x_{3} \mathrm{i}_{1}$,
$q_{A_{3}}(x)=x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}+x_{2} x_{3}+x_{3}^{2}$,
$\operatorname{Dis}(\Lambda)=\left\langle\left(\frac{1}{4}, \frac{1}{2},-\frac{1}{4}\right)+\Lambda\right\rangle \cong \mathbb{Z}_{4}$.
d) $\mathbb{H}_{A_{1}^{(2)}}=\left\{x \in \mathbb{H} ; x_{3}=x_{4}=0\right\}, \mathcal{O}_{A_{1}^{(2)}}=\mathbb{Z}+\mathbb{Z} \mathbf{i}_{1}$,
${ }^{\iota_{A_{1}^{(2)}}}: \mathbb{R}^{2} \rightarrow \mathbb{H}_{A_{1}^{(2)}},\left(x_{1}, x_{2}\right) \mapsto x_{1}+x_{2} \mathrm{i}_{1}$,
$q_{A_{1}^{(2)}}(x)=x_{1}^{2}+x_{2}^{2}$,
$\operatorname{Dis}(\Lambda)=\left\langle\left(\frac{1}{2}, 0\right)+\Lambda, \quad\left(0, \frac{1}{2}\right)+\Lambda\right\rangle \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$.
e) $\mathbb{H}_{A_{2}}=\left\{x \in \mathbb{H} ; x_{2}=x_{3}=x_{4}\right\}, \mathcal{O}_{A_{2}}=\mathbb{Z}+\mathbb{Z} \omega$,
$\iota_{A_{2}}: \mathbb{R}^{2} \rightarrow \mathbb{H}_{A_{2}},\left(x_{1}, x_{2}\right) \mapsto x_{1}+x_{2} \omega$,
$q_{A_{2}}(x)=x_{1}^{2}+x_{1} x_{2}+x_{2}^{2}$,
$\operatorname{Dis}(\Lambda)=\left\langle\left(\frac{1}{3}, \frac{1}{3}\right)+\Lambda\right\rangle \cong \mathbb{Z}_{3}$.
f) $\mathbb{H}_{S_{2}}=\left\{x \in \mathbb{H} ; x_{2}=x_{3}, x_{4}=0\right\}, \mathcal{O}_{S_{2}}=\mathbb{Z}+\mathbb{Z}\left(\mathrm{i}_{1}+\mathrm{i}_{2}\right)$,
$\iota_{S_{2}}: \mathbb{R}^{2} \rightarrow \mathbb{H}_{S_{2}},\left(x_{1}, x_{2}\right) \mapsto x_{1}+x_{2}\left(\mathrm{i}_{1}+\mathrm{i}_{2}\right)$,
$q_{S_{2}}(x)=x_{1}^{2}+2 x_{2}^{2}$,
$\operatorname{Dis}(\Lambda)=\left\langle\left(\frac{1}{2}, 0\right)+\Lambda,\left(0, \frac{1}{4}\right)+\Lambda\right\rangle \cong \mathbb{Z}_{2} \times \mathbb{Z}_{4}$.

Proof Explicit calculations show that the quadratic forms are preserved under the isomorphisms, i.e., that $q_{S}=N_{S} \circ \iota_{S}$.

Next we will show in several steps that the orthogonal modular groups associated to the above matrices are nicely generated. We start by defining what we mean by "nicely generated".

Definition 1.18 The orthogonal modular group Γ_{S} is nicely generated if it is generated by the inversion J, the translations $T_{g}, g \in \Lambda_{0}$, and the rotations $R_{A}, A \in \mathrm{O}(\Lambda)$.

Remark Γ_{S} is nicely generated in the above sense if and only if the corresponding group in the terminology of [FHOO] is nicely generated in the sense of [FHOO, Def. 4.7] (cf. Appendix C).

In a first step, using results from [Bü96], we reduce the problem of determining generators of $\Gamma_{S} \subset \mathrm{O}\left(\Lambda_{1}\right)$ to the problem of determining generators of a certain subgroup of $\mathrm{O}\left(\Lambda_{0}\right)$.

Proposition 1.19 Γ_{S} is generated by

$$
J, T_{g}\left(g \in \Lambda_{0}\right) \text {, and }\left\{\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & A & 0 \\
0 & 0 & 1
\end{array}\right) ; A \in \mathrm{O}^{+}\left(\Lambda_{0}\right)\right\} \cap \Gamma_{S},
$$

where $\mathrm{O}^{+}\left(\Lambda_{0}\right):=\left\{A \in \mathrm{O}\left(\Lambda_{0}\right) ; A \cdot \mathcal{H}_{S}=\mathcal{H}_{S}\right\}$.
Proof According to [Bü96, Satz 2.31], Γ_{S} is generated by

$$
J \text { and } \Gamma_{S, 0}:=\left\{M \in \Gamma_{S} ; M=\left(\begin{array}{ccc}
1 & { }^{t} a & \beta \\
0 & A & c \\
0 & 0 & 1
\end{array}\right)\right\}
$$

So let $M=\left(\begin{array}{ccc}1 & t^{t} & \beta \\ 0 & A & c \\ 0 & 0 & 1\end{array}\right) \in \Gamma_{S, 0}$. Then by virtue of (1.1) we have $a=-{ }^{t} A S_{0} c, \beta=$ $-q_{0}(c)$ and $S_{0}[A]=S_{0}$, and thus, in particular, $A \in \mathrm{O}\left(S_{0} ; \mathbb{R}\right) \cap \mathrm{GL}(l+2 ; \mathbb{Z})=\mathrm{O}\left(\Lambda_{0}\right)$. By multiplication with $T_{c}^{-1}=T_{-c}$ we get

$$
T_{-c} M=\left(\begin{array}{ccc}
1 & { }^{t} c S_{0} & -q_{0}(c) \\
0 & I_{n+2} & -c \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & -{ }^{t} c S_{0} A & -q_{0}(c) \\
0 & A & c \\
0 & 0 & 1
\end{array}\right)=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & A & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Finally $(1) \times A \times(1) \in \mathrm{O}^{+}\left(S_{1} ; \mathbb{R}\right)$ yields $\mathcal{H}_{S}=((1) \times A \times(1))\left\langle\mathcal{H}_{S}\right\rangle=A \cdot \mathcal{H}_{S}$. Hence $A \in \mathrm{O}^{+}\left(\Lambda_{0}\right)$. This completes the proof.

Next we show that the lattices Λ associated to the above matrices are Euclidean. This will allow us to reduce the problem of determining generators of a subgroup of $\mathrm{O}\left(\Lambda_{0}\right)$ to the problem of determining generators of the finite groups $\mathrm{O}(\Lambda)$.

Proposition 1.20 a) Given $a \in \mathbb{H}_{A_{3}}$ there exists $g \in \mathcal{O}_{A_{3}}$ such that

$$
a-g=b_{1}+b_{2} \mathrm{i}_{1}+b_{3}\left(\mathrm{i}_{2}+\mathrm{i}_{3}\right) \quad \text { with } \quad\left|b_{j}\right| \leq \frac{1}{2}, 1 \leq j \leq 3, \quad \text { and } \quad \sum_{j=1}^{3}\left|b_{j}\right| \leq \frac{3}{4} .
$$

b) Given $a \in \mathbb{H}_{A_{3}}$ there exists $g \in \mathcal{O}_{A_{3}}$ such that

$$
N_{A_{3}}(a-g) \leq \frac{9}{16} .
$$

Proof a) Let $a=a_{1}+a_{2} \mathrm{i}_{1}+a_{3}\left(\mathrm{i}_{2}+\mathrm{i}_{3}\right) \in \mathbb{H}_{A_{3}}$. Because of $\mathbb{Z}+\mathbb{Z} \mathrm{i}_{1}+\mathbb{Z}\left(\mathrm{i}_{2}+\mathrm{i}_{3}\right) \subset \mathcal{O}_{A_{3}}$ we may assume $\left|a_{j}\right| \leq \frac{1}{2}$ for $1 \leq j \leq 3$. If $\sum_{j=1}^{3}\left|a_{j}\right|>\frac{3}{4}$ then we choose $g_{j}=\frac{1}{2} \operatorname{sign} a_{j}$ for $1 \leq j \leq 3$. Then $g=g_{1}+g_{2} \mathrm{i}_{1}+g_{3}\left(\mathrm{i}_{2}+\mathrm{i}_{3}\right) \in \mathcal{O}_{A_{3}}$ with $\left|a_{j}-g_{j}\right|=\frac{1}{2}-\left|a_{j}\right| \leq \frac{1}{2}$ for $1 \leq j \leq 3$ and $\sum_{j=1}^{3}\left|a_{j}-g_{j}\right|=\frac{3}{2}-\sum_{j=1}^{3}\left|a_{j}\right|<\frac{3}{4}$.
b) Because of a) it remains to be shown that

$$
\varphi\left(b_{1}, b_{2}, b_{3}\right):=N_{A_{3}}\left(b_{1}+b_{2} \mathrm{i}_{1}+b_{3}\left(\mathrm{i}_{2}+\mathrm{i}_{3}\right)\right)=b_{1}^{2}+b_{2}^{2}+2 b_{3}^{2} \leq \frac{9}{16}
$$

whenever $\left(b_{1}, b_{2}, b_{3}\right) \in A:=\left\{\left(b_{1}, b_{2}, b_{3}\right) \in \mathbb{R}^{3} ; 0 \leq b_{j} \leq \frac{1}{2}, \quad \sum_{j=1}^{3} b_{j} \leq \frac{3}{4}\right\}$. We choose $\left(b_{1}, b_{2}, b_{3}\right) \in A$ such that $\varphi\left(b_{1}, b_{2}, b_{3}\right)$ is maximal. Since we have $\varphi\left(b_{1}, b_{2}, b_{3}\right)=$ $\varphi\left(b_{2}, b_{1}, b_{3}\right)$ we may assume $b_{2} \geq b_{1}$. Furthermore, due to the choice of $\left(b_{1}, b_{2}, b_{3}\right)$ we have $0 \leq \varphi\left(b_{1}, b_{2}, b_{3}\right)-\varphi\left(b_{1}, b_{3}, b_{2}\right)=b_{3}^{2}-b_{2}^{2}$ which implies $b_{3} \geq b_{2}$. Thus $b_{2} \leq \frac{3}{8}$.
If $b_{1}>0$ then $b_{2}<\frac{3}{8}$ and there exists $\varepsilon>0$ such that $b_{1}-\varepsilon>0$ and $b_{2}+\varepsilon<\frac{1}{2}$. Then

$$
\varphi\left(b_{1}-\varepsilon, b_{2}+\varepsilon, b_{3}\right)-\varphi\left(b_{1}, b_{2}, b_{3}\right)=2 \varepsilon\left(b_{2}-b_{1}\right)+2 \varepsilon^{2}>0
$$

yields a contradiction to the choice of $\left(b_{1}, b_{2}, b_{3}\right)$. Hence $b_{1}=0$.
If $b_{2}>\frac{1}{4}$ then $b_{3}<\frac{1}{2}$ and there exists $\varepsilon>0$ such that $b_{2}-\varepsilon>0$ and $b_{3}+\varepsilon<\frac{1}{2}$. Then

$$
\varphi\left(b_{1}, b_{2}-\varepsilon, b_{3}+\varepsilon\right)-\varphi\left(b_{1}, b_{2}, b_{3}\right)=2 \varepsilon\left(2 b_{3}-b_{2}\right)+3 \varepsilon^{2}>0
$$

yields a contradiction to the choice of $\left(b_{1}, b_{2}, b_{3}\right)$. Hence $b_{2} \leq \frac{1}{4}$.
Therefore

$$
\max _{\left(b_{1}, b_{2}, b_{3}\right) \in A} \varphi\left(b_{1}, b_{2}, b_{3}\right) \leq 0+\frac{1}{16}+2 \cdot \frac{1}{4}=\frac{9}{16} .
$$

Proposition 1.21 Let S be one of the matrices listed in (1.2), and let Λ be the associated lattice. Then for all $x \in \mathbb{R}^{l}$ there exists $\lambda \in \Lambda$ such that

$$
q_{S}(x+\lambda) \leq c(S)
$$

where $c\left(D_{4}\right)=c\left(A_{1}^{(2)}\right)=\frac{1}{2}, c\left(A_{3}\right)=\frac{9}{16}$ and $c\left(A_{1}^{(3)}\right)=c\left(S_{2}\right)=c\left(A_{2}\right)=\frac{3}{4}$. In particular, Λ is Euclidean.

Proof Let $x={ }^{t}\left(x_{1}, \ldots, x_{l}\right) \in \mathbb{R}^{l}$. Because of $\Lambda=\mathbb{Z}^{l}$ we may assume $\left|x_{j}\right| \leq \frac{1}{2}$ for $1 \leq j \leq l$. Then for $S \in\left\{A_{1}^{(3)}, A_{1}^{(2)}, S_{2}, A_{2}\right\}$ the assertion is obvious. By virtue of Proposition 1.17, for $S=D_{4}$ the assertion follows from [Kr85, 1.7] and for $S=A_{3}$ it follows from Proposition 1.20.

Proposition 1.22 Let

$$
\widetilde{\Gamma}_{S}:=\left\{M \in \mathrm{O}^{+}\left(\Lambda_{0}\right) ;\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & M & 0 \\
0 & 0 & 1
\end{array}\right) \in \Gamma_{S}\right\} .
$$

a) We have

$$
\widetilde{\Gamma}_{S}=\left\{\left(\begin{array}{ccc}
\alpha & { }^{t} a & \beta \\
b & A & c \\
\gamma & { }^{t} d & \delta
\end{array}\right) \in \mathrm{O}\left(\Lambda_{0}\right) ; \gamma+\delta>0\right\} .
$$

In particular, the following matrices are elements of $\widetilde{\Gamma}_{S}$:

$$
\widetilde{P}, \widetilde{U}_{\lambda}(\lambda \in \Lambda) \text {, and }\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & A & 0 \\
0 & 0 & 1
\end{array}\right)(A \in \mathrm{O}(\Lambda)) \text {. }
$$

b) Suppose that Λ is Euclidean. Then given $\mu_{0} \in \Lambda_{0}^{\sharp}$ with $q_{0}\left(\mu_{0}\right)=0$ there exists $M \in$ $\left\langle\widetilde{P}, \widetilde{U}_{\lambda} ; \lambda \in \Lambda\right\rangle \leq \widetilde{\Gamma}_{S}$ such that $M \mu_{0}={ }^{t}(m, 0, \ldots, 0)$ for some $m \in \mathbb{Z}$.
c) Suppose that Λ is Euclidean. Then $\widetilde{\Gamma}_{S}$ is generated by

$$
\widetilde{P}, \widetilde{U}_{\lambda}(\lambda \in \Lambda), \text { and }\left\{\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & A & 0 \\
0 & 0 & 1
\end{array}\right) ; A \in \mathrm{O}(\Lambda)\right\}
$$

Proof a) Let $M=\left(\begin{array}{ccc}\alpha & { }^{t} a & \beta \\ b & A & c \\ \gamma & { }^{t} d & \delta\end{array}\right) \in \tilde{\Gamma}_{S}$. Then $\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & M & 0 \\ 0 & 0 & 1\end{array}\right) \in \Gamma_{S} \subset \mathrm{O}^{+}\left(S_{1} ; \mathbb{R}\right)$ yields

$$
\operatorname{det}\left(\left(\begin{array}{ll}
0 & \gamma \\
0 & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)+\left(\begin{array}{ll}
\delta & 0 \\
0 & 1
\end{array}\right)\right)=\gamma+\delta>0
$$

$\widetilde{P}, \widetilde{U}_{\lambda}$ for all $\lambda \in \Lambda$ and (1) $\times A \times(1)$ for all $A \in \mathrm{O}(\Lambda)$ obviously satisfy this condition and are thus elements of $\widetilde{\Gamma}_{S}$.
b) Let $\mu_{0}=(m, \mu, n) \in \Lambda_{0}^{\sharp}$, i.e., $m, n \in \mathbb{Z}$ and $\mu \in \Lambda^{\sharp}$. Without restriction we may assume that $|n| \leq|m|$ (otherwise we consider $\widetilde{P} \mu_{0}$). $q_{0}\left(\mu_{0}\right)=0$ implies $m n=q(\mu)$. So if $\mu=0$ then $n=0$ and thus $\mu_{0}={ }^{t}(m, 0, \ldots, 0)$. Otherwise, since Λ is Euclidean there exists $\lambda \in \Lambda$ such that $q(\mu+n \lambda)=n^{2} q\left(\frac{1}{n} \mu+\lambda\right)<n^{2}$. We consider

$$
\widetilde{U}_{\lambda} \mu_{0}=\left(\begin{array}{c}
m+{ }^{t} \lambda S \mu+n q(\lambda) \\
\mu+n \lambda \\
n
\end{array}\right)=\left(\begin{array}{c}
m^{\prime} \\
\mu^{\prime} \\
n
\end{array}\right) .
$$

Due to $\widetilde{U}_{\lambda} \in \mathrm{O}\left(\Lambda_{0}\right)$ we have $\widetilde{U}_{\lambda} \mu_{0} \in \Lambda_{0}^{\sharp}$ and $q_{0}\left(\widetilde{U}_{\lambda} \mu_{0}\right)=q_{0}\left(\mu_{0}\right)=0$. Thus $m^{\prime} \in \mathbb{Z}$ and
$m^{\prime} n=q(\mu+n \lambda)<n^{2}$. This yields $\left|m^{\prime}\right|<|n|$. Therefore, after finitely many steps we get the matrix $M \in \widetilde{\Gamma}_{S}$ we are looking for.
c) Let $M=\left(\begin{array}{lll}\alpha & { }^{t} & \beta \\ b & A & c \\ \gamma & { }^{t} d & \delta\end{array}\right) \in \widetilde{\Gamma}_{S}$. Then $S_{0}=S_{0}[M]$ yields $\alpha \gamma=q(b)$. Therefore, by virtue of b), there exists an $\widetilde{M} \in\left\langle\widetilde{P}, \widetilde{U}_{\lambda} ; \lambda \in \Lambda\right\rangle \leq \widetilde{\Gamma}_{S}$ such that

$$
M^{\prime}=\widetilde{M} M=\left(\begin{array}{ccc}
\alpha^{\prime} & * & * \\
0 & A^{\prime} & * \\
0 & { }^{t} d^{\prime} & \delta^{\prime}
\end{array}\right)
$$

Due to $M^{\prime} \in \mathrm{O}\left(\Lambda_{0}\right)$ we have $d^{\prime}=0$ and $A^{\prime} \in \mathrm{O}(\Lambda)$ (and thus also $A^{\prime-1} \in \mathrm{O}(\Lambda)$). Then

$$
M^{\prime \prime}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & A^{\prime-1} & 0 \\
0 & 0 & 1
\end{array}\right) M^{\prime}=\left(\begin{array}{ccc}
\alpha^{\prime} & * & * \\
0 & I & c^{\prime \prime} \\
0 & 0 & \delta^{\prime}
\end{array}\right) .
$$

Now $M^{\prime \prime} \in \mathrm{O}\left(\Lambda_{0}\right)$ yields $\alpha^{\prime} \delta^{\prime}=1$ with $\alpha^{\prime}, \delta^{\prime} \in \mathbb{Z}$ and a) yields $\delta^{\prime}>0$. Therefore $\alpha^{\prime}=\delta^{\prime}=1$. Multiplying with $\widetilde{U}_{-c^{\prime \prime}}$ we get

$$
M^{\prime \prime \prime}=\widetilde{U}_{-c^{\prime \prime}} M^{\prime \prime}=\left(\begin{array}{ccc}
1 & { }^{t} a^{\prime \prime} & \beta^{\prime \prime} \\
0 & I & 0 \\
0 & 0 & 1
\end{array}\right) .
$$

Finally $a^{\prime \prime}=0$ and $\beta^{\prime \prime}=0$ follow from $M^{\prime \prime \prime} \in \mathrm{O}\left(S_{0} ; \mathbb{R}\right)$.

Corollary 1.23 If S is one of the matrices listed in (1.2) then Γ_{S} is nicely generated.

Proof Due to Proposition $1.21 \Lambda=\Lambda_{S}$ is Euclidean. Therefore, Proposition 1.19 and Proposition 1.22 yield that Γ_{S} is generated by

$$
J, T_{g}\left(g \in \Lambda_{0}\right), P, U_{\lambda}(\lambda \in \Lambda), \text { and } R_{A}(A \in \mathrm{O}(\Lambda)) .
$$

According to [Kr96, p. 249f], U_{λ} and R_{g} can be written as product of J and T_{h} for certain $h \in \Lambda_{0}$. Furthermore, we have $P=-R_{(0,1,0, \ldots, 0)} M_{\text {tr }}=R_{(1,0, \ldots, 0,-1)} R_{\left(-I_{l}\right)} R_{(0,1,0, \ldots, 0)} M_{\text {tr }}$ with $M_{\mathrm{tr}}=M_{\mathrm{tr}}^{S}$ as defined below in (1.3). Thus only $J, T_{g}, g \in \Lambda_{0}$, and $R_{A}, A \in \mathrm{O}(\Lambda)$, are needed to generate Γ_{S}.

Finally we determine some properties of the finite orthogonal groups $O(\Lambda)$ associated to the matrices listed in (1.2).

Proposition 1.24 a) Let $S=D_{4}$. Then $\mathrm{O}(\Lambda)$ is generated by

$$
\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right),\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & -1 & -1 \\
0 & 0 & 2 & 1
\end{array}\right),\left(\begin{array}{cccc}
1 & 0 & -1 & 0 \\
0 & 0 & -1 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 2 & 1
\end{array}\right),\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 \\
-1 & -1 & -1 & -1
\end{array}\right) .
$$

$\mathrm{SO}(\Lambda)=\mathrm{O}(\Lambda) \cap \mathrm{SL}(4 ; \mathbb{Z})$ is generated by the last three matrices. The commutator subgroup $\mathrm{O}(\Lambda)^{\prime}$ is generated by the last two matrices. The commutator factor group $\mathrm{O}(\Lambda)^{\mathrm{ab}}$ is isomorphic to $C_{2} \times C_{2}$ where C_{2} denotes the cyclic group of order 2 . The first two matrices are representatives for the generators of $\mathrm{O}(\Lambda)^{\text {ab }}$. The discriminant kernel $\mathrm{O}_{\mathrm{d}}(\Lambda)$ is generated by the first, the square of the second and the last matrix, and the factor group $\mathrm{O}(\Lambda) / \mathrm{O}_{\mathrm{d}}(\Lambda)$ is isomorphic to $S(3)$, the symmetric group of degree 3 .
b) Let $S=A_{1}^{(3)}$. Then $\mathrm{O}(\Lambda)$ is generated by

$$
-I_{3}, \quad\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right), \quad\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right) .
$$

$\mathrm{SO}(\Lambda)$ is generated by the last four matrices and is isomorphic to $S(4)$. The commutator subgroup $\mathrm{O}(\Lambda)^{\prime}$ is generated by the last three matrices and is isomorphic to $A(4)$, the alternating group of degree 4. The commutator factor group $\mathrm{O}(\Lambda)^{\mathrm{ab}}$ is isomorphic to $C_{2} \times C_{2}$. The first two matrices are representatives for the generators of $\mathrm{O}(\Lambda)^{\mathrm{ab}}$. The discriminant kernel $\mathrm{O}_{\mathrm{d}}(\Lambda)$ is generated by the three diagonal matrices, and the factor group $\mathrm{O}(\Lambda) / \mathrm{O}_{\mathrm{d}}(\Lambda)$ is isomorphic to $S(3)$.
c) Let $S=A_{3}$. Then $\mathrm{O}(\Lambda)$ is generated by

$$
\left(\begin{array}{ccc}
-1 & -1 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right), \quad\left(\begin{array}{ccc}
-1 & -1 & 0 \\
0 & 1 & 0 \\
0 & -1 & -1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{ccc}
0 & 0 & -1 \\
-1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right)
$$

$\mathrm{SO}(\Lambda)$ is generated by the last three matrices and is isomorphic to $S(4)$. The commutator subgroup $\mathrm{O}(\Lambda)^{\prime}$ is generated by the last two matrices and is isomorphic to $A(4)$. The commutator factor group $\mathrm{O}(\Lambda)^{\text {ab }}$ is isomorphic to $C_{2} \times C_{2}$. The first two matrices are representatives for the generators of $\mathrm{O}(\Lambda)^{\text {ab }}$. The discriminant kernel $\mathrm{O}_{\mathrm{d}}(\Lambda)$ is generated by the first and the last two matrices, and the factor group $\mathrm{O}(\Lambda) / \mathrm{O}_{\mathrm{d}}(\Lambda)$ is isomorphic to C_{2}.
d) Let $S=A_{1}^{(2)}$. Then $\mathrm{O}(\Lambda)$ is generated by

$$
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)
$$

and is isomorphic to D_{8}, the dihedral group of order $8 . \mathrm{SO}(\Lambda)$ is generated by the second matrix and is isomorphic to C_{4}. The commutator subgroup $\mathrm{O}(\Lambda)^{\prime}$ is generated
by $-I_{2}$ and is isomorphic to C_{2}. The commutator factor group $\mathrm{O}(\Lambda)^{\text {ab }}$ is isomorphic to $C_{2} \times C_{2}$. The two matrices are representatives for the generators of $\mathrm{O}(\Lambda)^{\text {ab }}$. The discriminant kernel $\mathrm{O}_{\mathrm{d}}(\Lambda)$ is generated by $-I_{2}$ and the first matrix, and the factor group $\mathrm{O}(\Lambda) / \mathrm{O}_{\mathrm{d}}(\Lambda)$ is isomorphic to C_{2}.
e) Let $S=A_{2}$. Then $\mathrm{O}(\Lambda)$ is generated by

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad \text { and } \quad\left(\begin{array}{cc}
1 & 1 \\
-1 & 0
\end{array}\right)
$$

and is isomorphic to $D_{12} . \mathrm{SO}(\Lambda)$ is generated by the second matrix and is isomorphic to C_{6}. The commutator subgroup $\mathrm{O}(\Lambda)^{\prime}$ is generated by the square of the second matrix (i.e., by $\left(\begin{array}{cc}0 & 1 \\ -1 & -1\end{array}\right)$) and is isomorphic to C_{3}. The commutator factor group $\mathrm{O}(\Lambda)^{\mathrm{ab}}$ is isomorphic to $C_{2} \times C_{2}$. The two matrices are representatives for the generators of $\mathrm{O}(\Lambda)^{\mathrm{ab}}$. The discriminant kernel $\mathrm{O}_{\mathrm{d}}(\Lambda)$ is generated by the first and the square of the second matrix, and the factor group $\mathrm{O}(\Lambda) / \mathrm{O}_{\mathrm{d}}(\Lambda)$ is isomorphic to C_{2}.
f) Let $S=S_{2}$. Then $\mathrm{O}(\Lambda)$ is generated by

$$
\left(\begin{array}{cc}
-1 & 0 \\
0 & 1
\end{array}\right) \quad \text { and } \quad-I_{2}
$$

and is isomorphic to $C_{2} \times C_{2} . \mathrm{SO}(\Lambda)$ is generated by $-I_{2}$ and is isomorphic to C_{2}. The commutator subgroup $\mathrm{O}(\Lambda)^{\prime}$ is the trivial group. The commutator factor group $\mathrm{O}(\Lambda)^{\mathrm{ab}}$ is isomorphic to $C_{2} \times C_{2}$. The two matrices are representatives for the generators of $\mathrm{O}(\Lambda)^{\mathrm{ab}}$. The discriminant kernel $\mathrm{O}_{\mathrm{d}}(\Lambda)$ is generated by the first matrix, and the factor group $\mathrm{O}(\Lambda) / \mathrm{O}_{\mathrm{d}}(\Lambda)$ is isomorphic to C_{2}.

Proof The generators were explicitly calculated. The rest of the assertions was verified with GAP ([GAP05]).

All of the above groups $\mathrm{O}(\Lambda)$ contain an element which corresponds to the conjugation on the corresponding subspaces \mathbb{H}_{S} of \mathbb{H} (cf. Proposition 1.17), i.e., for all matrices S listed in (1.2) there is an $A_{S} \in \mathrm{O}(\Lambda)$ such that $\iota_{S}\left(A_{S} \iota_{S}^{-1}(z)\right)=\bar{z}$ for all $z \in \mathbb{H}_{S}$. We denote the corresponding rotations $R_{A_{S}}$ by M_{tr}^{S} or, if it is clear which S is meant, simply by M_{tr}. We have

$$
\begin{gather*}
M_{\mathrm{tr}}^{D_{4}}=R\left(\begin{array}{cccc}
1 & 0 & 0 & 1 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right), \quad M_{\mathrm{tr}}^{A_{1}^{(3)}}=R_{\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right),}, \quad M_{\mathrm{tr}}^{A_{3}}=R\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right), \tag{1.3}\\
M_{\mathrm{tr}}^{A_{1}^{(2)}}=R_{\left(\begin{array}{ll}
1 & 0 \\
0 & -1
\end{array}\right),}, \quad M_{\mathrm{tr}}^{A_{2}}=R_{\left(\begin{array}{cc}
1 & 1 \\
0 & -1
\end{array}\right),}, \quad M_{\mathrm{tr}}^{S_{2}}=R_{\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)} .
\end{gather*}
$$

1.5. The commutator subgroups of certain orthogonal modular groups

In this section we proof an estimation for the index of the commutator subgroup Γ_{S}^{\prime} in Γ_{S} for the matrices S listed in (1.2). In the next section we show that the inequalities are in fact equalities.

Proposition 1.25 a) If $S \in\left\{A_{1}^{(3)}, A_{1}^{(2)}, S_{2}\right\}$ then $\left[\Gamma_{S}: \Gamma_{S}^{\prime}\right] \leq 8$.
b) If $S \in\left\{D_{4}, A_{3}, A_{2}\right\}$ then $\left[\Gamma_{S}: \Gamma_{S}^{\prime}\right] \leq 4$.

Proof a) First we will show that $\left[\Gamma_{S}: \Gamma_{S}^{\prime}\right] \leq 8$ for all of the matrices S listed in (1.2). So let S be one of those matrices. We start by calculating a few commutators. For $\lambda \in \Lambda$ and $g=\left(g_{0}, \widetilde{g}, g_{l+1}\right) \in \Lambda_{0}$ we get

$$
\left[U_{\lambda}, T_{g}\right]=T_{\left({ }^{\lambda} \Lambda \widetilde{g}+q(\lambda) g_{l+1}, \lambda g_{l+1}, 0\right)} .
$$

Thus for the standard basis $\left(e_{1}, \ldots, e_{l}\right)$ of Λ we get

$$
\left[U_{e_{j}}, T_{(0, \ldots, 0,1)}\right]=T_{\left(q\left(e_{j}\right), e_{j}, 0\right)}= \begin{cases}T_{(2,0,1,0)} & \text { if } S=S_{2} \text { and } j=2, \\ T_{\left(1, e_{j}, 0\right)} & \text { otherwise },\end{cases}
$$

and

$$
\left[U_{e_{1}}, T_{\left(0, e_{1}, 0\right)}\right]=T_{\left(2 q\left(e_{1}\right), 0, \ldots, 0\right)}=T_{(2,0, \ldots, 0)} .
$$

Furthermore,

$$
\left[R_{\left(0, e_{1}, 0\right)}, T_{(0, \ldots, 0,1)}\right]=T_{(1,0, \ldots, 0,-1)}
$$

Because of $T_{g} T_{h}=T_{g+h}$ for all $g, h \in \Lambda_{0}$ this yields

$$
T_{g} \in \Gamma_{S}^{\prime} \text { for all } g={ }^{t}\left(g_{0}, \ldots, g_{l+1}\right) \in \Lambda_{0} \text { with } g_{0}+g_{l+1}+\sum_{j=1}^{l} \frac{s_{j}}{2} g_{j} \equiv 0 \quad(\bmod 2),
$$

where $s_{j} \in 2 \mathbb{Z}, 1 \leq j \leq l$, are the diagonal entries of S. So modulo Γ_{S}^{\prime} all matrices T_{g} with $g \in \Lambda_{0}$ are equivalent either to I_{l+4} or to $T_{(1,0, \ldots, 0)}$. Moreover, $\left(J T_{(1,0, \ldots, 0,1)}\right)^{3}=1$ yields $J=J^{3} \in \Gamma_{S}^{\prime}$, and, due to $R_{A} R_{B}=R_{A B}$ and $R_{A}^{-1}=R_{A^{-1}}$ for all $A, B \in \mathrm{O}(\Lambda)$, we have $R_{A} \in \Gamma_{S}^{\prime}$ for all $A \in \mathrm{O}(\Lambda)^{\prime}$.
According to Corollary 1.23, each element of Γ_{S} can be written as a product of J, T_{g}, $g \in \Lambda_{0}$, and $R_{A}, A \in \mathrm{O}(\Lambda)$. Since, by virtue of Proposition 1.24, $\mathrm{O}(\Lambda)^{\mathrm{ab}} \cong C_{2} \times C_{2}$ for all S we are considering we have $\left[\Gamma_{S}: \Gamma_{S}^{\prime}\right] \leq 8$.
b) If $S \in\left\{D_{4}, A_{3}, A_{2}\right\}$ then

$$
\left[R_{\left(0, e_{j}, 0\right)}, T_{\left(0, e_{1}, 0\right)}\right]=T_{\left(0,-2 e_{1}+e_{j}, 0\right)},
$$

where e_{j} is the vector which is mapped to ω under the isomorphisms in Proposition
1.17, i.e., $j=4$ if $S=D_{4}$ and $j=2$ if $S \in\left\{A_{3}, A_{2}\right\}$. Therefore, $T_{g} \in \Gamma_{S}^{\prime}$ for all $g \in \Lambda_{0}$, and thus $\left[\Gamma_{S}: \Gamma_{S}^{\prime}\right] \leq 4$.

1.6. Abelian characters of the orthogonal modular groups

The Abelian characters of the orthogonal modular group Γ_{S} are in one-to-one correspondence to the elements of the corresponding commutator factor group $\Gamma_{S}^{\text {ab }}$. Because of this correspondence we denote the group of Abelian characters of Γ_{S} also by $\Gamma_{S}^{a b}$. According to Proposition 1.25, for all S listed in (1.2) the commutator factor groups are finite (Abelian) groups of order 4 or 8, and thus at most three different characters (and their products) occur.

1.6.1. The determinant

The determinant occurs in all cases as character of the orthogonal modular groups Γ_{S}. The determinant is -1 for R_{A} if A is the first generator of $\mathrm{O}(\Lambda)$ given in Proposition 1.24, and it is 1 for $J, T_{g}, g \in \Lambda_{0}$, and $R_{A}, A \in \operatorname{SO}(\Lambda)$.

1.6.2. The orthogonal character(s)

According to Proposition 1.15, Γ_{S} acts on the sets of elements of $\operatorname{Dis}\left(\Lambda_{1}\right)$ with the same value of \bar{q}_{1}, and for

$$
M=\left(\begin{array}{ccc}
* & * & * \\
* & A & * \\
* & * & *
\end{array}\right) \in \Gamma_{S}
$$

the action only depends on $A \in \operatorname{Mat}(l ; \mathbb{Z})$. The signs of the permutations of non-trivial sets of elements of $\operatorname{Dis}\left(\Lambda_{1}\right)$ with the same value of \bar{q}_{1} are Abelian characters of Γ_{S}. In all cases we are considering exactly one such character occurs. We denote this character by ν_{π}. It is -1 for R_{A} if A is the second generator of $\mathrm{O}(\Lambda)$ given in Proposition 1.24, and it is 1 for $J, T_{g}, g \in \Lambda_{0}$, and R_{A} if A is one of the other generators of $\mathrm{O}(\Lambda)$ given in Proposition 1.24 .

1.6.3. The Siegel character

Let $S \in\left\{A_{1}^{(3)}, A_{1}^{(2)}, S_{2}\right\}$. Then $S \equiv 0(\bmod 2)$. In this case another character occurs. It corresponds to the non-trivial character of the Siegel modular group of degree 2.
Proposition 1.26 If $S \equiv 0(\bmod 2)$ then the map
$\varphi: \Gamma_{S} \rightarrow \operatorname{Sp}\left(2 ; \mathbb{F}_{2}\right),\left(\begin{array}{ccc}\alpha & * & \beta \\ * & * & * \\ \gamma & * & \delta\end{array}\right) \mapsto\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right)\left[\begin{array}{cc}H & 0 \\ 0 & I_{2}\end{array}\right] \bmod 2=\left(\begin{array}{cc}H \alpha H & H \beta \\ \gamma H & \delta\end{array}\right) \bmod 2$,
where $\alpha, \beta, \gamma, \delta \in \operatorname{Mat}(2 ; \mathbb{Z}), H=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)$ and $\operatorname{Sp}\left(2 ; \mathbb{F}_{2}\right)$ is the symplectic group of degree 2 over the field \mathbb{F}_{2} of two elements, is a surjective homomorphism of groups.
Proof Let $S \equiv 0(\bmod 2)$ and

$$
M_{j}=\left(\begin{array}{ccc}
\alpha_{j} & a_{j} & \beta_{j} \\
b_{j} & A_{j} & c_{j} \\
\gamma_{j} & d_{j} & \delta_{j}
\end{array}\right) \in \Gamma_{S}
$$

where $\alpha_{j}, \beta_{j}, \gamma_{j}, \delta_{j} \in \operatorname{Mat}(2 ; \mathbb{Z}), a_{j}, d_{j} \in \operatorname{Mat}(2, l ; \mathbb{Z}), b_{j}, c_{j} \in \operatorname{Mat}(l, 2 ; \mathbb{Z}), A_{j} \in$ $\operatorname{Mat}(l ; \mathbb{Z})$ for $j \in\{1,2\}$. If $a_{1} \equiv a_{2} \equiv d_{1} \equiv d_{2} \equiv 0(\bmod 2)$ then

$$
M_{1} M_{2} \equiv\left(\begin{array}{ccc}
\alpha_{1} \alpha_{2}+\beta_{1} \gamma_{2} & 0 & \alpha_{1} \beta_{2}+\beta_{1} \delta_{2} \\
* & A_{1} A_{2} & * \\
\gamma_{1} \alpha_{2}+\delta_{1} \gamma_{2} & 0 & \gamma_{1} \beta_{2}+\delta_{1} \delta_{2}
\end{array}\right) \quad(\bmod 2) .
$$

Since the assumption is true for the generators $J, T_{g}, g \in \Lambda_{0}$, and $R_{A}, A \in \mathrm{O}(\Lambda)$, of Γ_{S} we find $a_{j} \equiv d_{j} \equiv 0(\bmod 2)$ for all $M_{j} \in \Gamma_{S}$. An easy calculation shows that the images of the generators of Γ_{S} under φ are in $\operatorname{Sp}\left(2 ; \mathbb{F}_{2}\right)$. Together with

$$
\begin{aligned}
\varphi\left(M_{1} M_{2}\right) & =\left(\begin{array}{cc}
H \alpha_{1} \alpha_{2} H+H \beta_{1} \gamma_{2} H & H \alpha_{1} \beta_{2}+H \beta_{1} \delta_{2} \\
\gamma_{1} \alpha_{2} H+\delta_{1} \gamma_{2} H & \gamma_{1} \beta_{2}+\delta_{1} \delta_{2}
\end{array}\right) \bmod 2 \\
& =\left(\begin{array}{cc}
H \alpha_{1} H & H \beta_{1} \\
\gamma_{1} H & \delta_{1}
\end{array}\right)\left(\begin{array}{cc}
H \alpha_{2} H & H \beta_{2} \\
\gamma_{2} H & \delta_{2}
\end{array}\right) \bmod 2 \\
& =\varphi\left(M_{1}\right) \varphi\left(M_{2}\right)
\end{aligned}
$$

for all $M_{1}, M_{2} \in \Gamma_{S}$ this yields that φ is a homomorphism of groups. Finally, the surjectivity of this homomorphism follows from the fact that $\operatorname{Sp}\left(2 ; \mathbb{F}_{2}\right)$ is generated by the following four matrices

$$
\varphi(J)=\left(\begin{array}{cc}
0 & I_{2} \\
I_{2} & 0
\end{array}\right), \varphi\left(T_{e_{1}}\right)=\left(\begin{array}{cc}
I_{2} & 0 \\
1 & 1 \\
0 & I_{2}
\end{array}\right), \varphi\left(T_{e_{2}}\right)=\left(\begin{array}{ccc}
I_{2} & 0 & 0 \\
0 & 1 \\
0 & I_{2}
\end{array}\right), \varphi\left(U_{e_{1}}\right)=\left(\begin{array}{cc}
I_{2} & 1 \\
0 & 0 \\
0 & I_{2}
\end{array}\right)
$$

(cf. [Fr83, A 5.4]).
According to O'Meara [O'M78, 3.1.5] $\mathrm{Sp}\left(2 ; \mathbb{F}_{2}\right)$ is isomorphic to the symmetric group $S(6)$. By Igusa [Ig64, p. 398] we can explicitly describe the isomorphism of $\operatorname{Sp}\left(2 ; \mathbb{F}_{2}\right)$ and $S(6)$ in the following way: Let

$$
\mathcal{C}_{4}:=\left\{\binom{a}{b} ; a, b \in \mathbb{F}_{2}^{2}, \quad{ }^{t} a b \equiv 1 \quad(\bmod 2)\right\}
$$

be the set of odd theta characteristics $\bmod 2 . \operatorname{Sp}\left(2 ; \mathbb{F}_{2}\right)$ acts on this set via

$$
\left(M,\binom{a}{b}\right) \mapsto M\left\{\begin{array}{l}
a \\
b
\end{array}\right\}:=\left(\begin{array}{ll}
D & C \\
B & A
\end{array}\right)\binom{a}{b}+\binom{\operatorname{diag}\left(C^{t} D\right)}{\operatorname{diag}\left(A^{t} B\right)}
$$

for $M=\left(\begin{array}{ll}A & B \\ C & B\end{array}\right) \in \operatorname{Sp}\left(2 ; \mathbb{F}_{2}\right)$, where $\operatorname{diag}(T)$ is the column vector consisting of the diagonal entries of a matrix T. Since \mathcal{C}_{4} contains exactly 6 elements the mapping

$$
M \mapsto\left(\mathcal{C}_{4} \rightarrow \mathcal{C}_{4},\binom{a}{b} \mapsto M\left\{\begin{array}{l}
a \\
b
\end{array}\right\}\right)
$$

defines a homomorphism $\pi: \operatorname{Sp}\left(2 ; \mathbb{F}_{2}\right) \rightarrow S(6)$ (which is an isomorphism according to Igusa). The non-trivial character of $\operatorname{Sp}\left(2 ; \mathbb{F}_{2}\right)$ is then given by the sign of the permutation $\pi(M)$ for $M \in \operatorname{Sp}\left(2 ; \mathbb{F}_{2}\right)$.

By combining the epimorphism $\varphi: \Gamma_{S} \rightarrow \operatorname{Sp}\left(2 ; \mathbb{F}_{2}\right)$ from Proposition 1.26, the isomorphism $\operatorname{Sp}\left(2 ; \mathbb{F}_{2}\right) \rightarrow S(6)$ and the sign map, i.e., by

$$
\Gamma_{S} \xrightarrow{\varphi} \mathrm{Sp}\left(2 ; \mathbb{F}_{2}\right) \xrightarrow{\pi} S(6) \xrightarrow{\text { sign }}\{ \pm 1\},
$$

we get an explicit description for the Siegel character of the orthogonal modular group Γ_{S} if $S \equiv 0(\bmod 2)$. We denote this character by ν_{2}. Obviously, all $R_{A}, A \in \mathrm{O}(\Lambda)$, lie in the kernel of φ and therefore also in the kernel of ν_{2}. Moreover, the kernel contains of course the commutator subgroup Γ_{S}^{\prime} and thus, in particular, J. According to the proof of Proposition 1.25, all matrices T_{g} with $g=^{t}\left(g_{0}, \ldots, g_{l+1}\right) \in \Lambda_{0}$ are modulo Γ_{S}^{\prime} equivalent to I_{l+4} whenever $g_{0}+g_{l+1}+\sum_{j=1}^{l} s_{j} g_{j} / 2 \equiv 0(\bmod 2)$ where the $s_{j}, 1 \leq j \leq l$, are the diagonal entries of $S \in\left\{A_{1}^{(3)}, A_{1}^{(2)}, S_{2}\right\}$. Otherwise T_{g} is equivalent to $T_{e_{1}}$ modulo Γ_{S}^{\prime}. An easy calculation shows that $\nu_{2}\left(T_{e_{1}}\right)=-1$, and so we have

$$
\nu_{2}\left(T_{g}\right)=(-1)^{g_{0}+g_{l+1}+\sum_{j=1}^{l} s_{j} g_{j} / 2}= \begin{cases}(-1)^{\sum_{j=0}^{l+1} g_{j}} & \text { if } S \in\left\{A_{1}^{(3)}, A_{1}^{(2)}\right\} \tag{1.4}\\ (-1)^{g_{0}+g_{1}+g_{3}} & \text { if } S=S_{2}\end{cases}
$$

By applying the above description directly to T_{g} for arbitrary $g=\left(g_{0}, \widetilde{g}, g_{l+1}\right) \in \Lambda_{0}$ we get a nicer and more general formula, namely

$$
\begin{equation*}
\nu_{2}\left(T_{\left(g_{0}, \tilde{g}, g_{l+1}\right)}\right)=(-1)^{g_{0}+g_{l+1}+q(\tilde{g})} . \tag{1.5}
\end{equation*}
$$

The value of $\nu_{2}\left(M_{D}\right), D \in \mathrm{SL}(2 ; \mathbb{Z})$, can also be explicitly calculated using the above description. We get

$$
\nu_{2}\left(M_{D}\right)=(-1)^{\alpha+\beta+\gamma+\delta+\beta \gamma} \text { for all } D=\left(\begin{array}{ll}
\alpha & \beta \tag{1.6}\\
\gamma & \delta
\end{array}\right) \in \mathrm{SL}(2 ; \mathbb{Z})
$$

Using representations in terms of the above matrices we can now easily determine the value of $\nu_{2}(M)$ for some of the other matrices M from Proposition 1.16. For the vectors $g={ }^{t}\left(g_{0}, \ldots, g_{l+1}\right) \in \Lambda_{0}$ with $q_{0}(g)= \pm 1$ we define

$$
g^{*}:=-J\langle g\rangle=q_{0}(g)^{-1 t}\left(g_{l+1},-g_{1}, \ldots,-g_{l}, g_{0}\right) \in \Lambda_{0}
$$

According to [Kr96, p. 249f], $R_{g}=T_{g} J T_{g^{*}} J T_{g} J$ for every $g \in \Lambda_{0}$ with $q_{0}(g)= \pm 1$, and thus

$$
\nu_{2}\left(R_{g}\right)=\nu_{2}\left(T_{g} J T_{g^{*}} J T_{g} J\right)=\nu_{2}\left(T_{g^{*}}\right)=\nu_{2}\left(T_{g}\right)
$$

Moreover, for all $\lambda \in \Lambda$ we have

$$
U_{\lambda}=M_{D} T_{(0, \lambda, 0)} M_{D^{*}},
$$

where $D=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and $D^{*}=\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)$. Since $\nu_{2}\left(M_{D}\right)=\nu_{2}\left(M_{D^{*}}\right)$ we get

$$
\begin{equation*}
\nu_{2}\left(U_{\lambda}\right)=\nu_{2}\left(T_{(0, \lambda, 0)}\right)=(-1)^{q(\lambda)} \tag{1.7}
\end{equation*}
$$

Using the estimation for the index of the commutator subgroup Γ_{S}^{\prime} in Γ_{S} (Proposition 1.25) and the explicit knowledge of the characters of Γ_{S} we can now derive the structure of Γ_{S}^{ab}.

Proposition 1.27 a) If $S \in\left\{A_{1}^{(3)}, A_{1}^{(2)}, S_{2}\right\}$ then $\Gamma_{S}^{\text {ab }}=\left\langle\operatorname{det}, \nu_{\pi}, \nu_{2}\right\rangle \cong C_{2} \times C_{2} \times C_{2}$. b) If $S \in\left\{D_{4}, A_{3}, A_{2}\right\}$ then $\Gamma_{S}^{\mathrm{ab}}=\left\langle\operatorname{det}, \nu_{\pi}\right\rangle \cong C_{2} \times C_{2}$.

Moreover, using the explicit knowledge about the generators of $\mathrm{O}(\Lambda)$ we can determine which rotations $R_{A}, A \in \mathrm{O}(\Lambda)$, are necessary to generate the commutator subgroup Γ_{S}^{\prime}, the discriminant kernel $\mathrm{O}_{\mathrm{d}}\left(\Lambda_{1}\right) \cap \Gamma_{S}$ and the full modular group Γ_{S}.

Corollary 1.28 a) If $S \in\left\{A_{1}^{(2)}, A_{2}, S_{2}, A_{3}\right\}$ then Γ_{S}^{\prime} is a subgroup of $\left\langle J, T_{g} ; g \in \Lambda_{0}\right\rangle$. If $S=A_{1}^{(3)}$ then Γ_{S}^{\prime} is generated by $J, T_{g}, g \in \operatorname{ker} \nu_{2}$, and the rotation $R_{A}, A=\left(\begin{array}{ccc}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$. If $S=D_{4}$ then Γ_{S}^{\prime} is generated by $J, T_{g}, g \in \Lambda_{0}$, and the rotation $R_{A}, A=\left(\begin{array}{ccc}1 & 0 & -1 \\ 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2\end{array}\right)$.
b) The discriminant kernel $\mathrm{O}_{\mathrm{d}}\left(\Lambda_{1}\right) \cap \Gamma_{S}$ is generated by $J, T_{g}, g \in \Lambda_{0}$, and $-M_{\mathrm{tr}}$.
c) Γ_{S} is generated by $J, T_{g}, g \in \Lambda_{0}$, the rotations R_{B}, where B runs over the representatives of the generators of $\mathrm{O}(\Lambda)^{\mathrm{ab}}$, and, in case of $S=A_{1}^{(3)}$ or $S=D_{4}$, additionally by the rotation R_{A} from a).

Proof a) We use GAP ([GAP05]) to calculate the subgroup H of $G=\left\langle R_{A} ; A \in \mathrm{O}(\Lambda)^{\prime}\right\rangle$ which is generated by all $R_{g_{1}} \cdot R_{g_{2}}$ with $g_{j}=\left(0, \lambda_{j}, 0\right) \in \Lambda_{0}$ such that $q_{0}\left(g_{j}\right)=-1$, $j=1,2$. In case of $S \in\left\{A_{1}^{(2)}, A_{2}, S_{2}, A_{3}\right\}$ we get $H=G$ which implies our claim. If $S=A_{1}^{(3)}$ or $S=D_{4}$ then H is a subgroup of index 3 of G and $G=\left\langle H, R_{A}\right\rangle$. Since J and $T_{g}, g \in \Lambda_{0}$, act trivially on $\operatorname{Dis}\left(\Lambda_{1}\right)$ while R_{A} does not we obviously have $R_{A} \notin\left\langle J, T_{g} ; g \in \Lambda_{0}\right\rangle$. This completes the proof.
b) It is easy to check that additionally to J and $T_{g}, g \in \Lambda_{0}$, the matrix $-M_{\text {tr }}$ also acts trivially on $\operatorname{Dis}\left(\Lambda_{1}\right)$. Note that $-M_{\mathrm{tr}}$ is not contained in $\left\langle J, T_{g} ; g \in \Lambda_{0}\right\rangle$ because of $\operatorname{det}\left(-M_{\mathrm{tr}}\right)=-1$. It remains to be verified that the given matrices generate $\mathrm{O}_{\mathrm{d}}\left(\Lambda_{1}\right) \cap \Gamma_{S}$. This can be done similarly to the proof of part a) since by Proposition 1.24 we explicitly know $\mathrm{O}_{\mathrm{d}}(\Lambda)$.
c) This follows from part a) and the fact that J and $T_{g}, g \in \Lambda_{0}$, act trivially on $\operatorname{Dis}\left(\Lambda_{1}\right)$ and have determinant 1 .

1.7. Parabolic subgroups

An important subgroup of $\mathrm{O}^{+}\left(S_{1} ; \mathbb{R}\right)$ is the parabolic subgroup

$$
P_{S}(\mathbb{R}):=\left\{\left(\begin{array}{ccc}
D^{*} & * & * \\
0 & * & * \\
0 & 0 & D
\end{array}\right) \in \mathrm{O}^{+}\left(S_{1} ; \mathbb{R}\right) ; D \in \mathrm{SL}(2 ; \mathbb{R})\right\}
$$

where $D^{*}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)^{t} D^{-1}\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)=\left(\begin{array}{cc}\alpha & -\beta \\ -\gamma & \delta\end{array}\right)$ for $D=\left(\begin{array}{c}\alpha \\ \gamma\end{array} \delta \delta\right) \in \operatorname{SL}(2 ; \mathbb{R})$. It plays an important role in the theory of Jacobi forms (cf. Section 2.3). According to [Bü96, Prop. 2.5] $P_{S}(\mathbb{R})$ is generated by the matrices $M_{D}, D \in \mathrm{SL}(2 ; \mathbb{R}), R_{A}, A \in \mathrm{O}(S ; \mathbb{R}), U_{\lambda}, \lambda \in \mathbb{R}^{l}$, and $T_{(0, \mu, 0)}, \mu \in \mathbb{R}^{l}$. In fact we have the following

Proposition 1.29 Each element M of the parabolic subgroup $P_{S}(\mathbb{R})$ can be written in the form

$$
M=M_{D} R_{A} U_{\lambda} T_{(\kappa, \mu, 0)}
$$

with $A \in \mathrm{O}(S ; \mathbb{R}), D \in \mathrm{SL}(2 ; \mathbb{R}), \lambda, \mu \in \mathbb{R}^{l}$ and $\kappa \in \mathbb{R}$. This representation is unique.
Proof Let $M=\left(\begin{array}{ccc}D^{*} & * & * \\ 0 & A & * \\ 0 & 0 & D\end{array}\right) \in P_{S}(\mathbb{R})$. By virtue of [Bü96, Prop. 2.4], we have $A \in \mathrm{O}(S ; \mathbb{R})$ and get

$$
M^{\prime}=R_{A^{-1}} M_{D^{-1}} M=\left(\begin{array}{cccc}
I_{2} & { }_{\mu}{ }_{\mu} S & -\kappa & q(\mu) \\
0 & I_{l} & q(\lambda) & \kappa+{ }^{t} \lambda S \mu \\
0 & 0 & \lambda \mu \\
0 & I_{2}
\end{array}\right), \lambda, \mu \in \mathbb{R}^{l}, \kappa \in \mathbb{R} .
$$

Now

$$
U_{-\lambda} M^{\prime}=\left(\begin{array}{ccc}
I_{2} & { }_{\mu} S & -\kappa q(\mu) \\
0 & I_{l} & 0 \\
0 & 0 \\
0 & 0 & I_{2}
\end{array}\right)=T_{(\kappa, \mu, 0)} .
$$

The uniqueness of the representation is obvious.

The subgroup $H=\left\{U_{\lambda} T_{(\kappa, \mu, 0)} ; \lambda, \mu \in \mathbb{R}^{l}, \kappa \in \mathbb{R}\right\}$ of $P_{S}(\mathbb{R})$ is normal in $P_{S}(\mathbb{R})$ and the center of $P_{S}(\mathbb{R})$ as well as the center of H are both given by the subgroup $\left\{T_{(\kappa, 0,0)} ; \kappa \in \mathbb{R}\right\}$. Due to the preceding proposition, we have

$$
P_{S}(\mathbb{R}) / H \cong \mathrm{SL}(2 ; \mathbb{R}) \times \mathrm{O}(S ; \mathbb{R})
$$

and thus

$$
P_{S}(\mathbb{R}) \cong(\mathrm{SL}(2 ; \mathbb{R}) \times \mathrm{O}(S ; \mathbb{R})) \ltimes H
$$

The structure of $P_{S}(\mathbb{R})$ and the above unique representation of elements of $P_{S}(\mathbb{R})$ inspire the representation of $P_{S}(\mathbb{R})$ in a different form. Let

$$
J_{S}(\mathbb{R}):=\left\{[D, A,(\lambda, \mu), \kappa] ; D \in \mathrm{SL}(2 ; \mathbb{R}), A \in \mathrm{O}(S ; \mathbb{R}), \lambda, \mu \in \mathbb{R}^{l}, \kappa \in \mathbb{R}\right\}
$$

Then, by virtue of the preceding proposition the map

$$
\begin{equation*}
J_{S}(\mathbb{R}) \rightarrow P_{S}(\mathbb{R}),[D, A,(\lambda, \mu), \kappa] \mapsto M_{D} R_{A} U_{\lambda} T_{\left(\kappa / 2-t_{\lambda} S \mu, \mu, 0\right)}, \tag{1.8}
\end{equation*}
$$

is bijective. If we define the composition law on $J_{S}(\mathbb{R})$ by

$$
g_{1} g_{2}=\left[D_{1} D_{2}, A_{1} A_{2},\left(\widetilde{\lambda}_{1}, \widetilde{\mu}_{1}\right)+\left(\lambda_{2}, \mu_{2}\right), \kappa_{1}+\kappa_{2}-{ }^{t} \lambda_{1} S \mu_{1}+{ }^{\widetilde{\lambda_{1}}} S \widetilde{\mu}_{1}+2^{\widetilde{{ }_{\lambda}^{1}}} 1 S \mu_{2}\right]
$$

for $g_{j}=\left[D_{j}, A_{j},\left(\lambda_{j}, \mu_{j}\right), \kappa_{j}\right] \in J_{S}(\mathbb{R})$ where $\left(\widetilde{\lambda}_{1}, \widetilde{\mu}_{1}\right)=A_{2}^{-1}\left(\lambda_{1}, \mu_{1}\right) D_{2}$ then $J_{S}(\mathbb{R})$ becomes a group and the above map $J_{S}(\mathbb{R}) \rightarrow P_{S}(\mathbb{R})$ becomes an isomorphism of groups. We call $J_{S}(\mathbb{R})$ the Jacobi group. The Heisenberg group

$$
H_{S}(\mathbb{R}):=\left\{[(\lambda, \mu), \kappa] ; \lambda, \mu \in \mathbb{R}^{l}, \kappa \in \mathbb{R}\right\}
$$

with composition law

$$
\left[\left(\lambda_{1}, \mu_{1}\right), \kappa_{1}\right]\left[\left(\lambda_{2}, \mu_{2}\right), \kappa_{2}\right]=\left[\left(\lambda_{1}, \mu_{1}\right)+\left(\lambda_{2}, \mu_{2}\right), \kappa_{1}+\kappa_{2}+2^{t} \lambda_{1} S \mu_{2}\right]
$$

for $\left[\left(\lambda_{j}, \mu_{j}\right), \kappa_{j}\right] \in H_{S}(\mathbb{R})$ is obviously a subgroup of $J_{S}(\mathbb{R})$. It is isomorphic to the subgroup H of $P_{S}(\mathbb{R})$ and thus we have

$$
J_{S}(\mathbb{R}) \cong(\mathrm{SL}(2 ; \mathbb{R}) \times \mathrm{O}(S ; \mathbb{R})) \ltimes H_{S}(\mathbb{R})
$$

Since we can canonically identify any element D of $\operatorname{SL}(2 ; \mathbb{R}), A$ of $\mathrm{O}(S ; \mathbb{R}),(\lambda, \mu)$ of $\mathbb{R}^{l} \times \mathbb{R}^{l}$ and κ of \mathbb{R} with the elements $\left[D, I_{l},(0,0), 0\right],\left[I_{2}, A,(0,0), 0\right],\left[I_{2}, I_{l},(\lambda, \mu), 0\right]$ and $\left[I_{2}, I_{l},(0,0), \kappa\right]$ of $J_{S}(\mathbb{R})$, respectively, we will often simply write $[D],[A],[\lambda, \mu]$ or $[\kappa]$ instead of the corresponding element of $J_{S}(\mathbb{R})$.

For dealing with Jacobi forms we introduce another Jacobi group, namely the one defined by Arakawa in [Ar92]. It is given by

$$
G^{J}:=\left\{(D,(\lambda, \mu), \rho) ; D \in \operatorname{SL}(2 ; \mathbb{R}), \lambda, \mu \in \mathbb{R}^{l}, \rho \in \operatorname{Sym}(l ; \mathbb{R})\right\}
$$

with the composition law

$$
g_{1} g_{2}=\left(D_{1} D_{2},\left(\lambda_{1}, \mu_{1}\right) D_{2}+\left(\lambda_{2}, \mu_{2}\right), \rho_{1}+\rho_{2}-\mu_{1}{ }^{t} \lambda_{1}+\widetilde{\mu}_{1} \widetilde{\lambda}_{1}+\widetilde{\lambda}_{1}{ }^{t} \mu_{2}+\mu_{2} \widetilde{\lambda}_{1}\right)
$$

for $g_{j}=\left(D_{j},\left(\lambda_{j}, \mu_{j}\right), \rho_{j}\right) \in G^{J}$ where $\left(\widetilde{\lambda}_{1}, \widetilde{\mu}_{1}\right)=\left(\lambda_{1}, \mu_{1}\right) D_{2}$. The map

$$
\begin{equation*}
G^{J} \rightarrow J_{S}(\mathbb{R}),(D,(\lambda, \mu), \rho) \mapsto\left[D, I_{l},(\lambda, \mu), \operatorname{trace}(S \rho)\right] \tag{1.9}
\end{equation*}
$$

is obviously a homomorphism of groups. By abuse of notation we will also often write $[D]$ and $[\lambda, \mu]$ instead of the corresponding elements of G^{J}.

Next we consider the parabolic subgroup of Γ_{S}. Let

$$
P_{S}(\mathbb{Z}):=P_{S}(\mathbb{R}) \cap \Gamma_{S}=P_{S}(\mathbb{R}) \cap \operatorname{Mat}(l+4 ; \mathbb{Z})
$$

Then the corresponding Jacobi group $J_{S}(\mathbb{Z})$, defined as preimage of $P_{S}(\mathbb{Z})$ under the isomorphism 1.8 , is given by

$$
J_{S}(\mathbb{Z})=\{[D, A,(\lambda, \mu), \kappa] ; D \in \mathrm{SL}(2 ; \mathbb{Z}), A \in \mathrm{O}(\Lambda), \lambda, \mu \in \Lambda, \kappa \in 2 \mathbb{Z}\}
$$

and Arakawa's discrete Jacobi group is given by

$$
\Gamma^{J}=\left\{(D,(\lambda, \mu), \rho) ; D \in \operatorname{SL}(2 ; \mathbb{Z}), \lambda, \mu \in \mathbb{Z}^{l}, \rho \in \operatorname{Sym}(l ; \mathbb{Z})\right\}
$$

Note that the image of Γ^{J} under the above homomorphism $G^{J} \rightarrow J_{S}(\mathbb{R})$ lies in $J_{S}(\mathbb{Z})$.
Finally we take a look at the action of the paramodular subgroup on \mathcal{H}_{S}. Let $w=$ $\left(\tau_{1}, z, \tau_{2}\right) \in \mathcal{H}_{S}$ and $M=M_{D} R_{A} U_{\lambda} T_{\left(\kappa / 2-t_{\lambda} S \mu, \mu, 0\right)} \in P_{S}(\mathbb{R}), D=\left(\begin{array}{cc}\alpha & \beta \\ \gamma & \delta\end{array}\right) \in \operatorname{SL}(2 ; \mathbb{R})$, $A \in \mathrm{O}(S ; \mathbb{R}), \lambda, \mu \in \mathbb{R}^{l}, \kappa \in \mathbb{R}$. Then

$$
\begin{equation*}
M\langle w\rangle=\left(\tau_{1}+{ }^{t} \lambda S z+q(\lambda) \tau_{2}+\kappa / 2-\frac{\gamma q\left(z+\lambda \tau_{2}+\mu\right)}{\gamma \tau_{2}+\delta}, A \frac{z+\lambda \tau_{2}+\mu}{\gamma \tau_{2}+\delta}, D\left\langle\tau_{2}\right\rangle\right) \tag{1.10}
\end{equation*}
$$

where $D\left\langle\tau_{2}\right\rangle=\frac{\alpha \tau_{2}+\beta}{\gamma \tau_{2}+\delta}$ is the usual action of $\operatorname{SL}(2 ; \mathbb{R})$ on the upper half plane \mathcal{H}. Since the second and third component of $M\langle w\rangle$ only depend on the second and third component of $w=\left(*, z, \tau_{2}\right)$ the action of $P_{S}(\mathbb{R})$ on \mathcal{H}_{S} induces an action of $J_{S}(\mathbb{R})$ on $\mathcal{H} \times \mathbb{C}^{l}$ which is given by

$$
\begin{equation*}
[D, A,(\lambda, \mu), \kappa](\tau, z)=\left(D\langle\tau\rangle, A \frac{z+\lambda \tau+\mu}{\gamma \tau+\delta}\right) . \tag{1.11}
\end{equation*}
$$

This action is compatible with the action of Arakawa's Jacobi group G^{J} on $\mathcal{H} \times \mathbb{C}^{l}$ ([Ar92, (3.2)]) via the homomorphism (1.9).

2. Modular Forms

2.1. Orthogonal modular forms

Let S be an even positive definite matrix of degree l. Note that

$$
j: \mathrm{O}^{+}\left(S_{1} ; \mathbb{R}\right) \times \mathcal{H}_{S} \rightarrow \mathbb{C}^{\times}, \quad(M, w) \mapsto M\{w\}
$$

is a factor of automorphy (cf. [Bü96, La. 2.10]), i.e., $j(M, \cdot)$ is holomorphic for all $M \in$ $\mathrm{O}^{+}\left(S_{1} ; \mathbb{R}\right)$, and j satisfies the cocycle condition

$$
\begin{equation*}
j\left(M_{1} M_{2}, w\right)=j\left(M_{1}, M_{2}\langle w\rangle\right) j\left(M_{2}, w\right) \quad \text { for all } M_{1}, M_{2} \in \mathrm{O}^{+}\left(S_{1} ; \mathbb{R}\right) \tag{2.1}
\end{equation*}
$$

Given $f: \mathcal{H}_{S} \rightarrow \mathbb{C}, M \in \mathrm{O}^{+}\left(S_{1} ; \mathbb{R}\right)$ and $k \in \mathbb{Z}$ we define a function $\left.f\right|_{k} M: \mathcal{H}_{S} \rightarrow \mathbb{C}$ by

$$
\left(\left.f\right|_{k} M\right)(w):=j(M, w)^{-k} f(M\langle w\rangle) \quad \text { for all } w \in \mathcal{H}_{S}
$$

Then $\left.f\right|_{k} M$ is holomorphic whenever f is holomorphic, and, moreover,

$$
\left.\left(\left.f\right|_{k} M_{1}\right)\right|_{k} M_{2}=\left.f\right|_{k}\left(M_{1} M_{2}\right) \quad \text { for all } M_{1}, M_{2} \in \mathrm{O}^{+}\left(S_{1} ; \mathbb{R}\right)
$$

Thus $\left.(M, f) \mapsto f\right|_{k} M$ defines an action of $\mathrm{O}^{+}\left(S_{1} ; \mathbb{R}\right)$ on the set of holomorphic functions on \mathcal{H}_{S}.

Definition 2.1 Let $k \in \mathbb{Z}$, Γ a subgroup of Γ_{S} of finite index and $\nu \in \Gamma^{\mathrm{ab}}$ an Abelian character of Γ of finite order. A holomorphic function $f: \mathcal{H}_{S} \rightarrow \mathbb{C}$ is called an (orthogonal) modular form of weight k (on \mathcal{H}_{S}) with respect to Γ and ν if it satisfies

$$
\begin{equation*}
\left.f\right|_{k} M=\nu(M) f \quad \text { for all } M \in \Gamma . \tag{2.2}
\end{equation*}
$$

We denote the vector space of (orthogonal) modular forms of weight k with respect to Γ and ν by $[\Gamma, k, \nu]$. If $\nu=1$ then we sometimes simply write $[\Gamma, k]$. Moreover, we write $\left[\Gamma^{\prime}, k, 1\right]$ or $\left[\Gamma^{\prime}, k\right]$ for the vector space of all modular forms of weight k with respect to Γ, i.e.,

$$
\left[\Gamma^{\prime}, k\right]=\left[\Gamma^{\prime}, k, 1\right]=\bigoplus_{\nu \in \Gamma^{\mathrm{ab}}}[\Gamma, k, \nu],
$$

where Γ^{ab} is the group of Abelian characters of Γ.
The constant functions are obviously modular forms of weight 0 with respect to the trivial
character. Moreover, given two modular forms $f \in[\Gamma, k, \nu]$ and $g \in\left[\Gamma, k^{\prime}, \nu^{\prime}\right]$ we have

$$
f g \in\left[\Gamma, k+k^{\prime}, \nu \nu^{\prime}\right] .
$$

Thus the modular forms with respect to the trivial character and some subgroup Γ of Γ_{S} of finite index form a graded ring (which is graded by the weight). We denote this graded ring by

$$
\mathcal{A}(\Gamma)=\bigoplus_{k \in \mathbb{Z}}[\Gamma, k, 1] .
$$

If $-I \in \Gamma$ then we get a first necessary condition for the existence of non-trivial modular forms.

Proposition 2.2 If $-I \in \Gamma$ and $\nu(-I) \neq(-1)^{k}$ then $[\Gamma, k, \nu]=\{0\}$.
Proof This follows immediately from $\left.f\right|_{k}(-I)=(-1)^{k} f$ and (2.2).
This result allows us to derive some conditions on the weight and/or the characters for the existence of non-trivial modular forms in the cases we are mainly interested in.

Corollary 2.3 Let $k, l, m, n \in \mathbb{Z}$.
a) If $S \in\left\{D_{4}, A_{1}^{(2)}\right\}$ and k is odd then $\left[\Gamma_{S}, k, \nu\right]=\{0\}$ for all Abelian characters $\nu \in \Gamma_{S}^{\mathrm{ab}}$.
b) $\left[\Gamma_{A_{1}^{(3)}}, k, \operatorname{det}^{l} \nu_{\pi}^{m} \nu_{2}^{n}\right]=\{0\}$ if $k+l \equiv 1(\bmod 2)$.
c) $\left[\Gamma_{A_{3}}, k, \operatorname{det}^{l} \nu_{\pi}^{m}\right]=\{0\}$ if $k+l+m \equiv 1(\bmod 2)$.
d) $\left[\Gamma_{A_{2}}, k, \operatorname{det}^{l} \nu_{\pi}^{m}\right]=\{0\}$ if $k+m \equiv 1(\bmod 2)$.
e) $\left[\Gamma_{S_{2}}, k, \operatorname{det}^{l} \nu_{\pi}^{m} \nu_{2}^{n}\right]=\{0\}$ if $k+m \equiv 1(\bmod 2)$.

Since our modular forms with respect to the full modular group Γ_{S} and the trivial character are also modular forms in the sense of [Kr96] we can apply some of Krieg's results.

Theorem 2.4 Let $\nu \in \Gamma_{S}^{\mathrm{ab}}$ be an Abelian character of Γ_{S} of order h, and let $k \in \mathbb{Z}$. Then

$$
\left[\Gamma_{S}, 0, \nu\right]= \begin{cases}\mathbb{C}, & \text { if } \nu=1, \\ \{0\}, & \text { if } \nu \neq 1,\end{cases}
$$

and

$$
\left[\Gamma_{S}, k, \nu\right]=\{0\}, \quad \text { if } k<\frac{l}{2 h}, k \neq 0
$$

where l is the rank of S.
Proof If $f \in\left[\Gamma_{S}, 0,1\right]$ then f is a modular form of weight 0 in the sense of Krieg, and thus a constant function by virtue of $\left[\mathrm{Kr} 96\right.$, Cor. 4]. If $\nu \in \Gamma_{S}^{\mathrm{ab}}$ is of order $h>1$ and $f \in\left[\Gamma_{S}, 0, \nu\right]$ then $f^{h} \in\left[\Gamma_{S}, 0,1\right]=\mathbb{C}$ and hence also $f \in \mathbb{C}$. Due to $\nu \neq 1$ there is an $M \in \Gamma_{S}$ such that $\nu(M) \neq 1$. Then $f=\left.f\right|_{0} M=\nu(M) f$ yields $f=0$.

Now let $k \in \mathbb{Z}, k<l /(2 h), k \neq 0$, and let $f \in\left[\Gamma_{S}, k, \nu\right]$. In case of the trivial character $f=0$ follows immediately from [Kr96, Cor. 4]. Otherwise, we again have to consider $f^{h} \in\left[\Gamma_{S}, h k, 1\right]=\{0\}$.

Lemma 2.5 Let $k \in \mathbb{Z}$, Γ a subgroup of Γ_{S} of finite index and $\nu \in \Gamma^{\mathrm{ab}}$ an Abelian character of Γ of finite order. Then each $f \in[\Gamma, k, \nu]$ possesses an absolutely convergent Fourier expansion of the form

$$
f(w)=\sum_{\mu \in \Lambda_{0}^{\sharp}} \alpha_{f}(\mu) e^{2 \pi i^{{ }^{t}} \mu S_{0} w / h} \quad \text { for all } w \in \mathcal{H}_{S}
$$

for some $h \in \mathbb{N}$ which depends on Γ and the order of ν.
If $\widetilde{M} \in \mathrm{O}^{+}\left(\Lambda_{0}\right)$ such that $M=(1) \times \widetilde{M} \times(1) \in \Gamma$ then we have

$$
\alpha_{f}(\widetilde{M} \mu)=\nu(M) \alpha_{f}(\mu) \quad \text { for all } \mu \in \Lambda_{0}^{\sharp} .
$$

Proof Since Γ is of finite index in Γ_{S} and ν is of finite order there is a $h \in \mathbb{N}$ such that $T_{g}^{h}=T_{h g} \in \Gamma$ and $\nu\left(T_{g}^{h}\right)=\nu\left(T_{g}\right)^{h}=1$ for all $g \in \Lambda_{0}$. Then

$$
f(w)=\left(\left.f\right|_{k} T_{h g}\right)(w)=f(w+h g) \quad \text { for all } g \in \Lambda_{0}
$$

yields the existence of an absolutely convergent Fourier expansion of the form

$$
f(w)=\sum_{\mu \in \Lambda_{0}^{\sharp}} \alpha_{f}(\mu) e^{2 \pi i i^{t} \mu S_{0} w / h} \quad \text { for all } w \in \mathcal{H}_{S} .
$$

The property of the Fourier coefficients follows from $f(M w)=\left(\left.f\right|_{k} M\right)(w)=\nu(M) f(w)$ and the uniqueness of the Fourier expansion.

Definition 2.6 For $a \in \mathbb{R}^{l+2}$ we write $a>0$, if a belongs to \mathcal{P}_{S}, and we write $a \geq 0$, if a belongs to the closure

$$
\overline{\mathcal{P}_{S}}=\left\{v=\left(v_{0}, \ldots, v_{l+1}\right) \in \mathbb{R}^{l+2} ; q_{0}(v) \geq 0, v_{0} \geq 0\right\}
$$

of \mathcal{P}_{S}. Moreover, given $a, b \in \mathbb{R}^{l+2}$ we define as usual

$$
\begin{aligned}
& a>b \quad \Longleftrightarrow \quad a-b>0 \\
& a \geq b \quad \Longleftrightarrow \quad a-b \geq 0 .
\end{aligned}
$$

A few properties of positive and semi-positive elements of \mathbb{R}^{l+2} are given in the following
Proposition 2.7 Let $u, v \in \mathbb{R}^{l+2}$ with $u \geq 0$ and $v>0$.
a) There exists $M \in \mathrm{O}^{+}\left(S_{0} ; \mathbb{R}\right)$ such that $M v={ }^{t}\left(v_{0}^{\prime}, 0, v_{l+1}^{\prime}\right)$ with $v_{0}^{\prime}, v_{l+1}^{\prime}>0$.
b) There exists $M \in \mathrm{O}^{+}\left(S_{0} ; \mathbb{R}\right)$ such that $M u={ }^{t}\left(u_{0}^{\prime}, 0, u_{l+1}^{\prime}\right)$ with $u_{0}^{\prime}, u_{l+1}^{\prime} \geq 0$.
c) If $u \neq 0$ then we have ${ }^{t} u S_{0} v>0$.

PROOF Let $u=\left(u_{0}, \widetilde{u}, u_{l+1}\right) \geq 0$ and $v=\left(v_{0}, \widetilde{v}, v_{l+1}\right)>0$.
a) Due to $v>0$ we have $v_{l+1}>0$. Therefore, with $M=\widetilde{U}_{-\widetilde{v} / v_{l+1}} \in \mathrm{O}^{+}\left(S_{0} ; \mathbb{R}\right)$ we get $M v={ }^{t}\left(v_{0}^{\prime}, 0, v_{l+1}^{\prime}\right)>0$ which, in particular, implies $v_{0}^{\prime}, v_{l+1}^{\prime}>0$.
b) If $u_{0}=0$ or $u_{l+1}=0$ then $\widetilde{u}=0$. So we only have to consider the case $u_{0}, u_{l+1}>0$. In this case we can just as in a) choose $M=\widetilde{U}_{-\widetilde{u} / u_{l+1}} \in \mathrm{O}^{+}\left(S_{0} ; \mathbb{R}\right)$.
c) By virtue of b) we can find $M \in \mathrm{O}^{+}\left(S_{0} ; \mathbb{R}\right)$ such that $M u={ }^{t}\left(u_{0}^{\prime}, 0, u_{l+1}^{\prime}\right)=: u^{\prime}$. Then

$$
{ }^{t} u S_{0} v={ }^{t} u t M S_{0} M v={ }^{t} u^{\prime} S_{0}(M v)=u_{0}^{\prime} v_{l+1}^{\prime}+u_{l+1}^{\prime} v_{0}^{\prime}
$$

where $M v=\left(v_{0}^{\prime}, *, v_{l+1}^{\prime}\right)>0$. Now $u \neq 0$ implies $u_{0}^{\prime}>0$ or $u_{l+1}^{\prime}>0$. This yields the assertion.

Theorem 2.8 (Koecher's principle) Let $k \in \mathbb{Z}, \nu \in \Gamma_{S}^{\mathrm{ab}}$ an Abelian character of Γ_{S} of order $h \in \mathbb{N}$ and $f \in\left[\Gamma_{S}, k, \nu\right]$ a modular form with Fourier expansion

$$
f(w)=\sum_{\mu \in \Lambda_{0}^{\sharp}} \alpha_{f}(\mu) e^{2 \pi i^{t}{ }_{\mu} S_{0} w / h} \quad \text { for all } w \in \mathcal{H}_{S} .
$$

Then $\alpha_{f}(\mu)=0$ unless $\mu \geq 0$. Furthermore, given $\beta>0$ then f is bounded in the domain $\left\{w \in \mathcal{H}_{S} ; \operatorname{Im}(w) \geq \beta \mathrm{e}\right\}$, where $\mathrm{e}={ }^{t}(1,0, \ldots, 0,1)$, and its Fourier series converges uniformly in this domain.

Proof Bühler proved this for $\nu=1$ in [Bü96, Satz 3.7]. The proof can easily be extended to the case of non-trivial characters. Let $\nu \in \Gamma_{S}^{\text {ab }}$ be a non-trivial character of order $h \in \mathbb{N}$. Then, due to Lemma 2.5, we have

$$
\alpha_{f}\left({ }_{h \lambda} \widetilde{U} \mu_{0}\right)=\nu\left({ }_{h \lambda} U\right) \alpha_{f}\left(\mu_{0}\right)=\nu\left({ }_{\lambda} U^{h}\right) \alpha_{f}\left(\mu_{0}\right)=\alpha_{f}\left(\mu_{0}\right) \quad \text { for all } \lambda \in \Lambda, \mu_{0} \in \Lambda_{0}^{\sharp} .
$$

If one now replaces ${ }_{\lambda} U$ by ${ }_{h \lambda} U$ in Bühler's proof then the assertion follows, i.e., we have

$$
f(w)=\sum_{\substack{\mu_{0} \in \Lambda_{0}^{\sharp} \\ \mu_{0} \geq 0}} \alpha_{f}\left(\mu_{0}\right) e^{2 \pi i i^{t} \mu_{0} S_{0} w / h} \quad \text { for all } w \in \mathcal{H}_{S} .
$$

Since the Fourier series converges in $w=i \frac{1}{2} \beta \mathrm{e} \in \mathcal{H}_{S}$ there exists $c>0$ such that

$$
\left|\alpha_{f}\left(\mu_{0}\right) e^{2 \pi i^{t} \mu_{0} S_{0} w / h}\right|=\left|\alpha_{f}\left(\mu_{0}\right)\right| e^{-\pi \beta(m+n) / h} \leq c
$$

for all $\mu_{0}=(m, \mu, n) \in \Lambda_{0}^{\sharp}, \mu_{0} \geq 0$. If $v \geq \beta \mathrm{e}$ and $\mu_{0} \geq 0$ then ${ }^{t} \mu_{0} S_{0} v \geq{ }^{t} \mu_{0} S_{0} \beta \mathrm{e}=$
$\beta(m+n)$. Thus for $w=u+i v \in \mathcal{H}_{S}$ with $v \geq \beta$ e we have

$$
\begin{aligned}
|f(w)| & \leq \sum_{\substack{\mu_{0} \in \Lambda_{0}^{\sharp} \\
\mu_{0} \geq 0}}\left|\alpha_{f}\left(\mu_{0}\right)\right| e^{-2 \pi^{t} \mu_{0} S_{0} v / h} \\
& \leq c \sum_{\substack{\mu_{0} \in \Lambda_{0}^{\sharp} \\
\mu_{0} \geq 0}} e^{-\pi \beta(m+n) / h} .
\end{aligned}
$$

In order to further estimate this sum we determine an upper bound for the number of vectors $\mu_{0}=(m, \mu, n) \in \Lambda_{0}^{\sharp}$ with $\mu_{0} \geq 0$ and $m+n=t \in \mathbb{N}_{0}$. Due to $S^{-1}>0$ there exists an $r>0$ such that $S^{-1}-r I_{l}>0$. If $\lambda \in \Lambda=\mathbb{Z}^{l}$ with $\|\lambda\|_{\infty}>t^{2} / r$ then for $\mu=S^{-1} \lambda$ we have $S[\mu]=S^{-1}[\lambda]>r^{t} \lambda \lambda>t^{2}$. But $\mu_{0}=(m, \mu, n) \geq 0$ yields $S[\mu] \leq 2 m n \leq$ $(m+n)^{2}=t^{2}$. Thus there are at most $\left(2\left\lfloor t^{2} / r\right\rfloor+1\right)^{l}$ vectors $\mu_{0}=(m, \mu, n) \in \Lambda_{0}^{\sharp}$ with $\mu_{0} \geq 0$ and $m+n=t$. The convergence of the series

$$
\sum_{t=0}^{\infty}\left(2\left\lfloor\frac{t^{2}}{r}\right\rfloor+1\right)^{l} e^{-\pi \beta t / h}
$$

completes the proof.

Definition 2.9 A modular form $f \in\left[\Gamma_{S}, k, \nu\right]$ with Fourier expansion

$$
f(w)=\sum_{\substack{\mu \in \Lambda_{0}^{\sharp} \\ \mu \geq 0}} \alpha_{f}(\mu) e^{2 \pi i{ }^{t}{ }_{\mu} S_{0} w / h} \quad \text { for all } w \in \mathcal{H}_{S}
$$

is called an (orthogonal) cusp form if $\alpha_{f}(\mu) \neq 0$ implies $\mu>0$. We denote the subspace of cusp forms in $\left[\Gamma_{S}, k, \nu\right]$ by $\left[\Gamma_{S}, k, \nu\right]_{0}$.

In the theory of symplectic modular forms the space of cusp forms is sometimes defined as kernel of a certain operator, namely Siegel's Φ-operator (cf. [Kr85]). We can define Siegel's Φ-operator also for orthogonal modular forms, and, if Λ is Euclidean, then just as in the symplectic theory the space of cusp forms turns out to be the kernel of this operator.

Proposition 2.10 Let $\nu \in \Gamma_{S}^{\mathrm{ab}}$ be an Abelian character of Γ_{S} such that $\nu\left(T_{g}\right)=1$ for all $g \in \Lambda_{0}$. Then for $k \in \mathbb{Z}$ the map

$$
\begin{gathered}
\Phi:\left[\Gamma_{S}, k, \nu\right] \rightarrow[\mathrm{SL}(2 ; \mathbb{Z}), k], f \mapsto f \mid \Phi \\
(f \mid \Phi)(\tau):=\lim _{y \rightarrow \infty} f(i y, 0, \tau) \quad \text { for } \tau \in \mathcal{H}
\end{gathered}
$$

where $[\mathrm{SL}(2 ; \mathbb{Z}), k]$ is the space of elliptic modular forms of weight k, is a homomorphism. We call this map Siegel's Φ-operator.

If Λ is Euclidean then we have

$$
\left[\Gamma_{S}, k, \nu\right]_{0}=\operatorname{ker} \Phi,
$$

i.e., $f \in\left[\Gamma_{S}, k, \nu\right]$ is a cusp form if and only if $f \mid \Phi=0$.

Proof Due to the condition on the character all $f \in\left[\Gamma_{S}, k, \nu\right]$ have a Fourier expansion of the form

$$
f(w)=\sum_{\substack{\mu_{0} \in \Lambda_{0}^{\sharp} \\ \mu_{0} \geq 0}} \alpha_{f}\left(\mu_{0}\right) e^{2 \pi i^{{ }^{t} \mu_{0} S_{0} w}} \quad \text { for all } w \in \mathcal{H}_{S} .
$$

Since the Fourier series is locally uniformly convergent we have

$$
\begin{aligned}
\lim _{y \rightarrow \infty} f(i y, 0, \tau) & =\sum_{\substack{\mu_{0}=(m, \mu, n) \in \Lambda_{0}^{\sharp} \\
\mu_{0} \geq 0}} \alpha_{f}\left(\mu_{0}\right) e^{2 \pi i m \tau} \lim _{y \rightarrow \infty} e^{-2 \pi n y} \\
& =\sum_{m \in \mathbb{N}_{0}} \alpha_{f}(m, 0,0) e^{2 \pi i m \tau} .
\end{aligned}
$$

Thus $f \mid \Phi$ is well-defined. The linearity of Φ is obvious, and $f \mid \Phi \in[\operatorname{SL}(2 ; \mathbb{Z}), k]$ follows from $\left.f\right|_{k} M_{D}=\nu\left(M_{D}\right) f=f$ for all $D \in \operatorname{SL}(2 ; \mathbb{Z})$. Note that $\nu\left(M_{D}\right)=1$ is a consequence of $\nu\left(T_{g}\right)=1$.

If f is a cusp form then $\alpha_{f}(m, 0,0)=0$ for all $m \in \mathbb{N}_{0}$ yields $f \mid \Phi=0$. Conversely, $f \mid \Phi=0$ implies $\alpha_{f}(m, 0,0)=0$ for all $m \in \mathbb{N}_{0}$. Now suppose that Λ is Euclidean. Then, by virtue of Proposition 1.22, for each $\mu_{0} \in \Lambda_{0}^{\sharp}$ with $q_{0}\left(\mu_{0}\right)=0$ there exists an $M \in \mathrm{O}^{+}\left(\Lambda_{0}\right)$ such that $(1) \times M \times(1) \in \Gamma_{S}$ and $M \mu_{0}={ }^{t}(m, 0, \ldots, 0)$. Due to $\left|\alpha_{f}\left(\mu_{0}\right)\right|=$ $\left|\alpha_{f}\left(M \mu_{0}\right)\right|=0$ we conclude that f is a cusp form.

Using the above characterization of cusp forms and common knowledge about elliptic modular forms we can show that the subspace of cusp forms often coincides with the space of modular forms.

Corollary 2.11 Suppose that S is one of the matrices listed in (1.2). Let $\nu \in \Gamma_{S}^{\mathrm{ab}}$ be an Abelian character of Γ_{S} such that $\nu\left(T_{g}\right)=1$ for all $g \in \Lambda_{0}$, and let $k \in \mathbb{N}_{0}$. If k is odd or $k=2$ or $\nu \neq 1$ then

$$
\left[\Gamma_{S}, k, \nu\right]=\left[\Gamma_{S}, k, \nu\right]_{0}
$$

Proof Let $f \in\left[\Gamma_{S}, k, \nu\right]$. If k is odd or $k=2$ then $f \mid \Phi \in[\mathrm{SL}(2 ; \mathbb{Z}), k]=\{0\}$, and thus f is a cusp form. If $\nu \neq 1$ then because of the condition on ν there exists $A \in \mathrm{O}(\Lambda)$ such that $\nu\left(R_{A}\right)=-1$. Then $\alpha_{f}\left(\mu_{0}\right)=\alpha_{f}\left(R_{A} \mu_{0}\right)=\nu\left(R_{A}\right) \alpha_{f}\left(\mu_{0}\right)=-\alpha_{f}\left(\mu_{0}\right)$ for all $\mu_{0}=(m, 0,0), m \in \mathbb{N}_{0}$, yields $f \mid \Phi=0$. Hence f is a cusp form.

2.2. Rankin-Cohen type differential operators

In this section we introduce a certain holomorphic differential operator for orthogonal modular forms. The interesting property of this differential operator is that it produces a new modular form from several given modular forms. In the case of Siegel modular forms differential operators with this property were studied by Ibukiyama in [Ib99a]. We restrict ourselves to considering the equivalent of the Rankin-Cohen type differential operator that was used by Aoki and Ibukiyama in [AI05].

Let S be an even positive definite matrix of degree l. We write $w \in \mathcal{H}_{S}$ either, as usual, in the form $w=\left(\tau_{1}, z, \tau_{2}\right), \tau_{1}, \tau_{2} \in \mathcal{H}, z=\left(z_{1}, \ldots, z_{l}\right) \in \mathbb{C}^{l}$, or simply in the form $w=\left(w_{0}, \ldots, w_{l+1}\right)$. First determine the Jacobian of the modular transformations. Recall that the Jacobian (determinant) of a function $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ is given by

$$
\operatorname{det}\left(\frac{\partial F}{\partial z}\right)=\operatorname{det}\left(\frac{\partial\left(F_{1}, \ldots, F_{n}\right)}{\partial\left(z_{1}, \ldots, z_{n}\right)}\right)=\operatorname{det}\left(\begin{array}{ccc}
\frac{\partial F_{1}}{\partial z_{1}} & \cdots & \frac{\partial F_{1}}{\partial z_{n}} \\
\vdots & \ddots & \vdots \\
\frac{\partial F_{n}}{\partial z_{1}} & \cdots & \frac{\partial F_{n}}{\partial z_{n}}
\end{array}\right) .
$$

Proposition 2.12 Let Γ_{S} be nicely generated. Then

$$
\operatorname{det}\left(\frac{\partial M\langle w\rangle}{\partial w}\right)=(\operatorname{det} M) \cdot j(M, w)^{-l-2}
$$

for all $M \in \Gamma_{S}$ and all $w \in \mathcal{H}_{S}$.

Proof Let $M_{1}, M_{2} \in \Gamma_{S}$. Due to the chain rule we have

$$
\operatorname{det}\left(\frac{\partial\left(M_{1} M_{2}\right)\langle w\rangle}{\partial w}\right)=\operatorname{det}\left(\frac{\partial M_{1}\left\langle M_{2}\langle w\rangle\right\rangle}{\partial M_{2}\langle w\rangle}\right) \operatorname{det}\left(\frac{\partial M_{2}\langle w\rangle}{\partial w}\right) .
$$

Moreover, j satisfies the cocycle condition (2.1). Therefore it suffices to prove the assertion for generators $J, T_{g}, g \in \Lambda_{0}$, and $R_{A}, A \in \mathrm{O}(\Lambda)$, of Γ_{S}. For the translations the assertion is trivial, and for the rotations $R_{A}, A \in \mathrm{O}(\Lambda)$, we have

$$
\operatorname{det}\left(\frac{\partial R_{A}\langle w\rangle}{\partial w}\right)=\operatorname{det}\left(\frac{\partial\left(\tau_{1}, A z, \tau_{2}\right)}{\partial\left(\tau_{1}, z_{1}, \ldots, z_{l}, \tau_{2}\right)}\right)=\operatorname{det} A=\left(\operatorname{det} R_{A}\right) \cdot j\left(R_{A}, w\right)^{-l-2}
$$

It remains to prove the assertion for $M=J$. Instead we show the assertion for $M_{\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)}$ and $M_{\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)}^{*}$. We have

$$
M_{\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)}\langle w\rangle=\left(\tau_{1}-\frac{q(z)}{\tau_{2}}, \frac{z}{\tau_{2}},-\frac{1}{\tau_{2}}\right) \quad \text { and } \quad M_{\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)}^{*}\langle w\rangle=\left(-\frac{1}{\tau_{1}}, \frac{z}{\tau_{1}}, \tau_{2}-\frac{q(z)}{\tau_{1}}\right) .
$$

Therefore
$\operatorname{det}\left(\frac{\partial M_{\left(\begin{array}{ll}0 & -1 \\ 1 & 0\end{array}\right)}{ }^{\langle } w^{2}}{\partial w}\right)=\operatorname{det}\left(\begin{array}{ccccc}1 & * & * & * & * \\ 0 & \tau_{2}^{-1} & 0 & 0 & * \\ 0 & 0 & \ddots & 0 & * \\ 0 & 0 & 0 & \tau_{2}^{-1} & * \\ 0 & 0 & 0 & 0 & \tau_{2}^{-2}\end{array}\right)=\tau_{2}^{-l-2}=j\left(M_{\left.\left(\begin{array}{ll}0 & -1 \\ 1 & 0\end{array}\right), w\right)^{-l-2}}\right.$
and analogously

$$
\operatorname{det}\left(\frac{\partial M_{\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)}^{\partial w\rangle}}{\partial w}\right)=\tau_{1}^{-l-2}=j\left(M_{\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)}^{*}, w\right)^{-l-2} .
$$

In view of $\operatorname{det} M_{\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)}=\operatorname{det} M_{\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)}^{*}=1$ and $J=M_{\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)} M_{\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right)}^{*}$ this completes the proof.

Now we define the differential operator.
Definition 2.13 Let Γ be a subgroup of Γ_{S} of finite index. Given $l+3$ orthogonal modular forms $f_{j} \in\left[\Gamma, k_{j}, \chi_{j}\right]$ of weight k_{j} with respect to an Abelian character $\chi_{j} \in \Gamma^{\mathrm{ab}}, 1 \leq j \leq$ $l+3$, and with respect to Γ, we define a function $\left\{f_{1}, \ldots, f_{l+3}\right\}: \mathcal{H}_{S} \rightarrow \mathbb{C}$ by

$$
\left\{f_{1}, \ldots, f_{l+3}\right\}=\operatorname{det}\left(\begin{array}{ccc}
k_{1} f_{1} & \cdots & k_{l+3} f_{l+3} \\
\frac{\partial f_{1}}{\partial w_{0}} & \cdots & \frac{\partial f_{l+3}}{\partial w_{0}} \\
\vdots & & \vdots \\
\frac{\partial f_{1}}{\partial w_{l+1}} & \cdots & \frac{\partial f_{l+3}}{\partial w_{l+1}}
\end{array}\right) .
$$

Under certain conditions this function turns out to be a modular form. We restrict our considerations to nicely generated modular groups.

Proposition 2.14 Let Γ_{S} be nicely generated. Given $f_{j} \in\left[\Gamma_{S}, k_{j}, \chi_{j}\right]$ with $k_{j} \in \mathbb{Z}$ and $\chi_{j} \in \Gamma_{S}^{\mathrm{ab}}, 1 \leq j \leq l+3$, the function $\left\{f_{1}, \ldots, f_{l+3}\right\}$ is a modular form of weight $k_{1}+$ $\ldots+k_{l+3}+l+2$ with respect to Γ_{S} and the Abelian character $\chi=\chi_{1} \chi_{2} \cdots \chi_{l+3}$ det. If f_{1}, \ldots, f_{l+3} are algebraically independent, then $\left\{f_{1}, \ldots, f_{l+3}\right\}$ does not vanish identically.

Proof We closely follows the proof of [AI05, Prop. 2.1]. For $2 \leq n \leq l+3$ we define functions F_{n} by $F_{n}:=f_{n}^{k_{1}} / f_{1}^{k_{n}}$. Let $M \in \Gamma_{S}$. Then

$$
\begin{aligned}
F_{n}(M\langle w\rangle) & =\frac{f_{n}^{k_{1}}(M\langle w\rangle)}{f_{1}^{k_{n}}(M\langle w\rangle)} \cdot \frac{\left(j(M, w)^{-k_{n}}\right)^{k_{1}}}{\left(j(M, w)^{-k_{1}}\right)^{k_{n}}}=\frac{\left(\left.f_{n}\right|_{k_{n}} M\right)^{k_{1}}(w)}{\left(\left.f_{1}\right|_{k_{1}} M\right)^{k_{n}}(w)} \\
& =\frac{\chi_{n}^{k_{1}}(M) f_{n}^{k_{1}}(w)}{\chi_{1}^{k_{n}}(M) f_{1}^{k_{n}}(w)}=\left(\chi_{n}^{k_{1}} \chi_{1}^{-k_{n}}\right)(M) F_{n}(w) .
\end{aligned}
$$

Hence the F_{n} are modular functions, that is meromorphic modular forms of weight 0 , with respect to the Abelian characters $\widetilde{\chi}_{n}:=\chi_{n}^{k_{1}} \chi_{1}^{-k_{n}}$. Next we consider the Jacobian of $\left(F_{2}, \ldots, F_{l+3}\right)$. We set

$$
F:=\operatorname{det}\left(\frac{\partial\left(F_{2}, \ldots, F_{l+3}\right)}{\partial\left(w_{0}, \ldots, w_{l+1}\right)}\right) .
$$

Then for $M \in \Gamma_{S}$ we have

$$
\begin{aligned}
& F(w)= \operatorname{det}\left(\frac{\partial\left(F_{2}(w), \ldots, F_{l+3}(w)\right)}{\partial\left(w_{0}, \ldots, w_{l+1}\right)}\right) \\
&= \operatorname{det}\left(\frac{\partial\left(\widetilde{\chi}_{2}^{-1}(M) F_{2}(M\langle w\rangle), \ldots, \widetilde{\chi}_{l+3}^{-1}(M) F_{l+3}(M\langle w\rangle)\right)}{\partial\left(w_{0}, \ldots, w_{l+1}\right)}\right) \\
&= \operatorname{det}\left(\frac{\partial\left(F_{2}(M\langle w\rangle), \ldots, F_{l+3}(M\langle w\rangle)\right)}{\partial\left((M\langle w\rangle)_{0}, \ldots,(M\langle w\rangle)_{l+1}\right)}\right) \times \\
& \quad \times \operatorname{det}\left(\frac{\partial\left((M\langle w\rangle)_{0}, \ldots,(M\langle w\rangle)_{l+1}\right)}{\partial\left(w_{0}, \ldots, w_{l+1}\right)}\right) \cdot \prod_{n=2}^{l+3} \widetilde{\chi}_{n}^{-1}(M) \\
&= F(M\langle w\rangle) \cdot(\operatorname{det} M) \cdot j(M, w)^{-l-2} \cdot\left(\widetilde{\chi}_{2} \widetilde{\chi}_{3} \cdots \widetilde{\chi}_{l+3}\right)^{-1}(M) .
\end{aligned}
$$

Thus F is a meromorphic modular form of weight $l+2$ with respect to Γ_{S} and the Abelian character $\widetilde{\chi}:=\widetilde{\chi}_{2} \widetilde{\chi}_{3} \cdots \widetilde{\chi}_{l+3}$ det. (Note that $\operatorname{det} M=\operatorname{det}^{-1} M$ for all $M \in \Gamma_{S}$). Moreover, we have

$$
\begin{aligned}
\frac{\partial F_{n}}{\partial w_{i}} & =\frac{\partial}{\partial w_{i}}\left(f_{n}^{k_{1}} f_{1}^{-k_{n}}\right)=k_{1}\left(f_{n}^{k_{1}-1} f_{1}^{-k_{n}}\right) \frac{\partial f_{n}}{\partial w_{i}}-k_{n}\left(f_{n}^{k_{1}} f_{1}^{-k_{n}-1}\right) \frac{\partial f_{1}}{\partial w_{i}} \\
& =\left(\frac{k_{1} f_{n}^{k_{1}-1}}{f_{1}^{k_{n}}}\right)\left(\frac{\partial f_{n}}{\partial w_{i}}-\frac{k_{n} f_{n}}{k_{1} f_{1}} \cdot \frac{\partial f_{1}}{\partial w_{i}}\right)
\end{aligned}
$$

This yields

$$
\begin{aligned}
\left\{f_{1}, \ldots, f_{l+3}\right\} & =\operatorname{det}\left(\begin{array}{cccc}
k_{1} f_{1} & 0 & \cdots & 0 \\
\frac{\partial f_{1}}{\partial w_{0}} & \frac{\partial F_{2}}{\partial w_{0}} & \cdots & \frac{\partial F_{l+3}}{\partial w_{0}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\partial f_{1}}{\partial w_{l+1}} & \frac{\partial F_{2}}{\partial w_{l+1}} & \cdots & \frac{\partial F_{l+3}}{\partial w_{l+1}}
\end{array}\right) \cdot \prod_{n=2}^{l+3} \frac{f_{1}^{k_{n}}}{k_{1} f_{n}^{k_{1}-1}} \\
& =k_{1} f_{1} \operatorname{det}\left(\frac{\partial\left(F_{2}, \ldots, F_{l+3}\right)}{\partial\left(w_{0}, \ldots, w_{l+1}\right)}\right) \cdot \prod_{n=2}^{l+3} \frac{f_{1}^{k_{n}}}{k_{1} f_{n}^{k_{1}-1}} \\
& =\frac{f_{1}^{k_{2}+\ldots+k_{l+3}+1}}{k_{1}^{l+1}\left(f_{2} \cdot \ldots \cdot f_{l+3}\right)^{k_{1}-1}} \cdot F .
\end{aligned}
$$

Inserting $M\langle w\rangle, M \in \Gamma_{S}$, in $\left\{f_{1}, \ldots, f_{l+3}\right\}$ we get

$$
\begin{aligned}
\left\{f_{1}, \ldots, f_{l+3}\right\}(M\langle w\rangle)= & \frac{\left(f_{1}(M\langle w\rangle)\right)^{k_{2}+\ldots+k_{l+3}+1}}{k_{1}^{l+1}\left(f_{2}(M\langle w\rangle) \cdot \ldots \cdot f_{l+3}(M\langle w\rangle)\right)^{k_{1}-1}} \cdot F(M\langle w\rangle) \\
= & \frac{\left(j(M, w)^{k_{1}}\right)^{k_{2}+\ldots+k_{l+3}+1}}{\left(j(M, w)^{k_{2}} \ldots \cdot j(M, w)^{k_{l+3}}\right)^{k_{1}-1}} \cdot j(M, w)^{l+2} \times \\
& \quad \times \frac{\chi_{1}^{k_{2}+\ldots+k_{l+3}+1}}{\left(\chi_{2} \chi_{3} \cdots \chi_{l+3}\right)^{k_{1}-1}}(M) \cdot \widetilde{\chi}(M) \cdot\left\{f_{1}, \ldots, f_{l+3}\right\}(w) \\
= & j(M, w)^{k_{1}+\ldots+k_{l+3}+l+2} \times \\
& \quad \times\left(\chi_{1} \chi_{2} \cdots \chi_{l+3} \operatorname{det}\right)(M) \cdot\left\{f_{1}, \ldots, f_{l+3}\right\}(w) .
\end{aligned}
$$

We conclude that $\left\{f_{1}, \ldots, f_{l+3}\right\}$ is a holomorphic modular form of weight $k_{1}+\ldots+k_{l+3}+$ $l+2$ with respect to Γ_{S} and the Abelian character $\chi=\chi_{1} \chi_{2} \cdots \chi_{l+3}$ det.

The second part of the assertion, that is $\left\{f_{1}, \ldots, f_{l+3}\right\} \neq 0$ if f_{1}, \ldots, f_{l+3} are algebraically independent, follows just as in the proof of [AI05, Prop. 2.1].

We will use this differential operator in order to give an alternative realization for some of the generators of the graded rings of modular forms.

2.3. Jacobi forms

Let S be an even positive definite matrix of degree l. As usual we will write $w \in \mathcal{H}_{S}$ in the form $w=\left(\tau_{1}, z, \tau_{2}\right), \tau_{1}, \tau_{2} \in \mathcal{H}, z \in \mathbb{C}^{l}$. According to [Kr96, Th. 2] each $f \in\left[\Gamma_{S}, k, 1\right]$, $k \in \mathbb{Z}$, possesses a Fourier-Jacobi expansion of the form

$$
\begin{equation*}
f(w)=\sum_{m=0}^{\infty} \varphi_{m}\left(\tau_{2}, z\right) e^{2 \pi i m \tau_{1}} \quad \text { for } w=\left(\tau_{1}, z, \tau_{2}\right) \in \mathcal{H}_{S} \tag{2.3}
\end{equation*}
$$

where

$$
\begin{equation*}
\varphi_{m}(\tau, z)=\sum_{n=0}^{\infty} \sum_{\substack{\mu \in \Lambda^{\sharp} \\ q(\mu) \leq m n}} \alpha_{f}(n, \mu, m) e^{2 \pi i\left(n \tau+{ }^{\dagger} \mu S z\right)} . \tag{2.4}
\end{equation*}
$$

This result can easily be generalized to orthogonal modular forms with respect to an Abelian character of finite order. We restrict our considerations to the cases we are mainly interested in. So for the rest of this section we assume that S is one of the matrices listed in (1.2).

Proposition 2.15 Let $k \in \mathbb{Z}, \nu \in \Gamma_{S}^{\mathrm{ab}}$ and $f \in\left[\Gamma_{S}, k, \nu\right]$. If $S \in\left\{A_{1}^{(3)}, A_{1}^{(2)}, S_{2}\right\}$ and
$\nu \in \nu_{2} \cdot\left\langle\nu_{\pi}\right.$, det \rangle then f possesses a Fourier-Jacobi expansion of the form

$$
f(w)=\sum_{m \in \frac{1}{2}+\mathbb{N}_{0}} \varphi_{m}\left(\tau_{2}, z\right) e^{2 \pi i m \tau_{1}} \quad \text { for } w=\left(\tau_{1}, z, \tau_{2}\right) \in \mathcal{H}_{S}
$$

where

$$
\begin{equation*}
\varphi_{m}(\tau, z)=\sum_{\substack{n \in \frac{1}{2}+\mathbb{N}_{0}}} \sum_{\substack{\mu \in \gamma+\Lambda^{\sharp} \\ q(\mu) \leq m n}} \alpha_{f}(n, \mu, m) e^{2 \pi i\left(n \tau+{ }^{+} \mu S z\right)} \tag{2.5}
\end{equation*}
$$

with $\gamma=S^{-1} \operatorname{diag}(S) / 4$ where $\operatorname{diag}(S)$ is the column vector consisting of the diagonal entries of S. Otherwise the Fourier-Jacobi expansion of f is of the form (2.3).

Proof If $\nu \in\left\langle\nu_{\pi}, \operatorname{det}\right\rangle$ then $f(w+g)=f(w)$ for all $g \in \Lambda_{0}$. Thus f has a Fourier expansion of the form

$$
f(w)=\sum_{\substack{\mu_{0} \in \Lambda_{0}^{\sharp} \\ \mu_{0} \geq 0}} \alpha_{f}\left(\mu_{0}\right) e^{2 \pi i^{t_{\mu}} \mu_{0} S_{0} w}
$$

and consequently a Fourier-Jacobi expansion of the form (2.3). On the other hand, if $S \in$ $\left\{A_{1}^{(3)}, A_{1}^{(2)}, S_{2}\right\}$ and $\nu \in \nu_{2} \cdot\left\langle\nu_{\pi}\right.$, det \rangle then $f(w+2 g)=f(w)$ for all $g \in \Lambda_{0}$. Hence f has a Fourier expansion of the form

$$
f(w)=\sum_{\substack{\mu_{0} \in \frac{1}{2} \Lambda_{0}^{\sharp} \\ \mu_{0} \geq 0}} \alpha_{f}\left(\mu_{0}\right) e^{2 \pi i^{t} \mu_{0} S_{0} w}
$$

Now $f(w+g)=\nu_{2}\left(T_{g}\right) f(w)$ for all $g \in \Lambda_{0}$ yields $\alpha_{f}\left(\mu_{0}\right)=0$ for $\mu_{0} \in \frac{1}{2} \Lambda_{0}^{\sharp}$ whenever $\nu_{2}\left(T_{g}\right) \neq e^{2 \pi i^{t} \mu_{0} S_{0} g}$ for some $g \in \Lambda_{0}$. In view of $2^{t} \mu_{0} S_{0} g=(m, \mu, n) S_{0} g=n g_{0}+$ $\left(g_{1}, \ldots, g_{l}\right) \lambda+m g_{l+1}$ for $2 \mu_{0}=(m, \mu, n)=S_{0}^{-1}(n, \lambda, m) \in \Lambda_{0}^{\sharp}=S_{0}^{-1} \Lambda_{0}$ and $g=$ $\left(g_{0}, \ldots, g_{l+1}\right) \in \Lambda_{0}$ the claim follows from (1.4).

Remark 2.16 Note that $\varphi_{0}(\tau, z)$ is independent of z. In fact we have

$$
\varphi_{0}(\tau, z)=\sum_{n=0}^{\infty} \alpha_{f}(n, 0,0) e^{2 \pi i n \tau}=(f \mid \Phi)(\tau) \quad \text { for } \tau \in \mathcal{H}, z \in \mathbb{C}^{l}
$$

So if $\nu \in \Gamma_{S}^{\mathrm{ab}}$ with $\nu\left(T_{g}\right)=1$ for all $g \in \Lambda_{0}$ and if additionally Λ is Euclidean then f is a cusp form if and only if the 0 -th Fourier-Jacobi coefficient vanishes.

The functions $\varphi_{m}: \mathcal{H} \times \mathbb{C}^{l} \rightarrow \mathbb{C}$ which occur in the Fourier-Jacobi expansion are so called Jacobi forms. We will give a formal definition a bit further down. First we show how the action of $\mathrm{O}^{+}\left(S_{1} ; \mathbb{R}\right)$ on the set of holomorphic functions on \mathcal{H}_{S} induces an action of the Jacobi group $J_{S}(\mathbb{R})$ on the set of holomorphic functions on $\mathcal{H} \times \mathbb{C}^{l}$.

Let $\varphi: \mathcal{H} \times \mathbb{C}^{l} \rightarrow \mathbb{C}$ be a holomorphic function. Then for each $m \in \mathbb{Q}, m>0$, we define the function $\varphi_{m}^{*}: \mathcal{H}_{S} \rightarrow \mathbb{C}$ by

$$
\varphi_{m}^{*}\left(\tau_{1}, z, \tau_{2}\right)=e^{2 \pi i m \tau_{1}} \varphi\left(\tau_{2}, z\right)
$$

and for each $k \in \mathbb{Z}, m \in \mathbb{Q}, m>0$, and $g \in J_{S}(\mathbb{R})$ we define the function $\left.\varphi\right|_{k, m, S} g$: $\mathcal{H} \times \mathbb{C}^{l} \rightarrow \mathbb{C}$ by

$$
\left(\left.\varphi\right|_{k, m, S} g\right)(\tau, z)=e^{-2 \pi i m \tau^{\prime}}\left(\left.\varphi_{m}^{*}\right|_{k} M_{g}\right)\left(\tau^{\prime}, z, \tau\right)
$$

where M_{g} is the element of $P_{S}(\mathbb{R})$ which corresponds to g and τ^{\prime} is an arbitrary element of \mathcal{H}. For $g=[D, A,(\lambda, \mu), \kappa] \in J_{S}(\mathbb{R}), D=\left(\begin{array}{c}\alpha \\ \gamma \\ \gamma\end{array}\right)$, we have $M_{g}=M_{D} R_{A} U_{\lambda} T_{\left(\kappa / 2-t_{\lambda} S \mu, \mu, 0\right)}$ and the above translates to

$$
\begin{aligned}
& \left(\left.\varphi\right|_{k, m, S} g\right)(\tau, z)=e^{-2 \pi i m \tau^{\prime}}(\gamma \tau+\delta)^{-k} \varphi_{m}^{*}\left(M_{g}\left\langle\left(\tau^{\prime}, z, \tau\right)\right\rangle\right) \\
& \quad=e^{-2 \pi i m \tau^{\prime}}(\gamma \tau+\delta)^{-k} \varphi_{m}^{*}\left(\tau^{\prime}+{ }^{t} \lambda S z+q(\lambda) \tau+\frac{\kappa}{2}-\frac{\gamma q(z+\lambda \tau+\mu)}{\gamma \tau+\delta}, A \frac{z+\lambda \tau+\mu}{\gamma \tau+\delta}, D\langle\tau\rangle\right) \\
& \quad=(\gamma \tau+\delta)^{-k} e^{2 \pi i m\left({ }^{t} \lambda S z+q(\lambda) \tau+\kappa / 2-\gamma q(z+\lambda \tau+\mu) /(\gamma \tau+\delta)\right)} \varphi\left(D\langle\tau\rangle, A \frac{z+\lambda \tau+\mu}{\gamma \tau+\delta}\right) .
\end{aligned}
$$

In particular, we see that the definition of $\left.\varphi\right|_{k, m, S} g$ is independent of the choice of $\tau^{\prime} \in \mathcal{H}$.
Moreover, due to the definition the map $\left.(\varphi, g) \mapsto \varphi\right|_{k, m, S} g$ obviously defines an action of $J_{S}(\mathbb{R})$ on the set of holomorphic functions on $\mathcal{H} \times \mathbb{C}^{l}$ and

$$
j_{k, m, S}(g,(\tau, z))=(\gamma \tau+\delta)^{k} e^{-2 \pi i m\left({ }^{\star} \lambda S z+q(\lambda) \tau+\kappa / 2-\gamma q(z+\lambda \tau+\mu) /(\gamma \tau+\delta)\right)}
$$

defines a factor of automorphy on $J_{S}(\mathbb{R}) \times\left(\mathcal{H} \times \mathbb{C}^{l}\right)$. Note that by virtue of (1.9), $j_{k, m, S}$ corresponds to the factor of automorphy $J_{k, \frac{1}{2} m S}$ on $G^{J} \times\left(\mathcal{H} \times \mathbb{C}^{l}\right)$ defined by Arakawa in [Ar92]. In view of (1.11), the action of $J_{S}(\mathbb{R})$ on a holomorphic function $\varphi: \mathcal{H} \times \mathbb{C}^{l} \rightarrow \mathbb{C}$ can also be written in the form

$$
\left(\left.\varphi\right|_{k, m, S} g\right)(\tau, z)=j_{k, m, S}(g,(\tau, z))^{-1} \varphi(g(\tau, z))
$$

Now we define Jacobi forms on $\mathcal{H} \times \mathbb{C}^{l}$.

Definition 2.17 Let $k \in \mathbb{Z}, m \in \mathbb{Q}, m>0$, and $\nu \in \Gamma_{S}^{\text {ab }}$ an Abelian character of Γ_{S}. A holomorphic function $\varphi: \mathcal{H} \times \mathbb{C}^{l} \rightarrow \mathbb{C}$ is called a Jacobi form of index (m, S) and weight k with respect to ν if it satisfies the following conditions:
(i) For all $g \in J_{S}(\mathbb{Z})$ we have

$$
\begin{equation*}
\left.\varphi\right|_{k, m, S} g=\nu(g) \varphi \tag{2.6}
\end{equation*}
$$

where ν is considered as character of $J_{S}(\mathbb{Z})$ via the correspondence of $J_{S}(\mathbb{Z})$ and $P_{S}(\mathbb{Z})$.
(ii) φ has a Fourier expansion of the form

$$
\begin{equation*}
\varphi(\tau, z)=\sum_{\substack{n \in \mathbb{Q} \\ n \geq 0}} \sum_{\substack{\mu \in \Lambda_{Q} \\ q(\mu) \leq m n}} \alpha_{\varphi}(n, \mu) e^{2 \pi i\left(n \tau+{ }^{t} \mu S z\right)} \tag{2.7}
\end{equation*}
$$

where $\Lambda_{\mathbb{Q}}=\Lambda \otimes_{\mathbb{Z}} \mathbb{Q}$.
If $\alpha_{\varphi}(n, \mu)=0$ whenever $q(\mu)=m n$ then we call φ a Jacobi cusp form.
We denote the space of Jacobi forms of index (m, S) and weight k with respect to ν by $J_{k}(m, S, \nu)$ and the corresponding space of Jacobi cusp forms by $J_{k}^{0}(m, S, \nu)$. If $\nu=1$ then we simply write $J_{k}(m, S)$ and $J_{k}^{0}(m, S)$.

As we already mentioned above the functions $\varphi_{m}, m>0$, appearing in the Fourier-Jacobi expansion of a modular form are Jacobi forms.

Proposition 2.18 Let $k \in \mathbb{Z}, \nu \in \Gamma_{S}^{\mathrm{ab}}$ and $f \in\left[\Gamma_{S}, k, \nu\right]$ with Fourier-Jacobi expansion

$$
f(w)=\sum_{m \in \mathbb{Q}} \varphi_{m}\left(\tau_{2}, z\right) e^{2 \pi i m \tau_{1}} \quad \text { for } w=\left(\tau_{1}, z, \tau_{2}\right) \in \mathcal{H}_{S}
$$

Then $\varphi_{m} \in J_{k}(m, S, \nu)$ for all $m \in \mathbb{Q}, m>0$.
Proof Let $g=[D, A,(\lambda, \mu), \kappa] \in J_{S}(\mathbb{Z}), D=\binom{\alpha \beta}{\gamma \delta}$. Then the corresponding element of $P_{S}(\mathbb{Z})$ is given by $M_{g}=M_{D} R_{A} U_{\lambda} T_{\left(\kappa / 2-t_{\lambda} S \mu, \mu, 0\right)}$ and we have

$$
\nu\left(M_{g}\right) f(w)=\left(\left.f\right|_{k} M_{g}\right)(w)=j\left(M_{g}, w\right)^{-k} f\left(M_{g}\langle w\rangle\right)=\left(\gamma \tau_{2}+\delta\right)^{-k} f\left(M_{g}\langle w\rangle\right)
$$

for $w=\left(\tau_{1}, z, \tau_{2}\right) \in \mathcal{H}_{S}$. Replacing f by its Fourier-Jacobi expansion, using (1.10) and taking into account the uniqueness of the Fourier expansion of f with respect to τ_{1}, we get

$$
\begin{aligned}
\nu\left(M_{g}\right) \varphi_{m}\left(\tau_{2}, z\right) & =\left(\gamma \tau_{2}+\delta\right)^{-k} e^{2 \pi i m\left({ }^{t} \lambda S z+q(\lambda) \tau_{2}+\kappa / 2-\frac{\gamma q\left(z+\lambda \tau_{2}+\mu\right)}{\gamma \tau_{2}+\delta}\right)} \varphi_{m}\left(D\left\langle\tau_{2}\right\rangle, A \frac{z+\lambda \tau_{2}+\mu}{\tau \tau_{2}+\delta}\right) \\
& =j_{k, m, S}\left(g,\left(\tau_{2}, z\right)\right)^{-1} \varphi_{m}\left(g\left(\tau_{2}, z\right)\right) \\
& =\left(\left.\varphi_{m}\right|_{k, m, S} g\right)\left(\tau_{2}, z\right)
\end{aligned}
$$

for $\left(\tau_{2}, z\right) \in \mathcal{H} \times \mathbb{C}^{l}$. Moreover, by virtue of Proposition 2.15, the φ_{m} have a Fourier expansion of the form (2.7). This completes the proof.

In view of the structure of $J_{S}(\mathbb{Z})$, a function $\varphi: \mathcal{H} \times \mathbb{C}^{l} \rightarrow \mathbb{C}$ satisfies (2.6) if and only if it satisfies the following conditions:
(i) $\nu([D]) \varphi(\tau, z)=(\gamma \tau+\delta)^{-k} e^{-2 \pi i m \frac{\gamma q(z)}{\gamma \tau+\delta}} \varphi\left(D\langle\tau\rangle, \frac{z}{\gamma \tau+\delta}\right)$ for all $D=\binom{\alpha \beta}{\gamma \delta} \in \operatorname{SL}(2 ; \mathbb{Z})$,
(ii) $\nu([A]) \varphi(\tau, z)=\varphi(\tau, A z)$ for all $A \in \mathrm{O}(\Lambda)$,
(iii) $\nu([\lambda, \mu]) \varphi(\tau, z)=e^{2 \pi i m\left({ }^{t}{ }_{\lambda} S z+q(\lambda) \tau\right)} \varphi(\tau, z+\lambda \tau+\mu)$ for all $\lambda, \mu \in \mathbb{Z}^{l}$,
(iv) $\nu([\kappa]) \varphi(\tau, z)=e^{\pi i m \kappa} \varphi(\tau, z)$ for all $\kappa \in 2 \mathbb{Z}$.

In particular, we see that in case of $\nu([2])=\nu\left(T_{e_{1}}\right)=1$ there are non-trivial Jacobi forms only if $m \in \mathbb{Z}$. Moreover, if $k \in \mathbb{N}, m \in \mathbb{N}$ and $\nu \in \Gamma_{S}^{\text {ab }}$ with $\nu(g)=1$ for all $g=\left[*, I_{l},(*, *), *\right] \in J_{S}(\mathbb{Z})$ then the elements of $J_{k}(m, S, \nu)$ are elements of the space $J_{k, \frac{1}{2} m S}^{\text {Arakaw }}(\mathrm{SL}(2 ; \mathbb{Z}))$ of Jacobi forms for $\operatorname{SL}(2 ; \mathbb{Z})$ of index $\frac{1}{2} m S$ and weight k in the sense of Arakawa ([Ar92]) and also elements of the space $J_{k}^{\text {Krieg }}\left(\mathbb{Z}^{l}, \sigma_{m S}\right)$ of Jacobi forms of weight k with respect to $\left(\mathbb{Z}^{l}, \sigma_{m S}\right)$ in the sense of $\mathrm{Krieg}([\mathrm{Kr} 96])$. Conversely, as we will later see, for $S \in\left\{A_{1}^{(2)}, A_{2}, S_{2}, A_{3}\right\}$ we have

$$
J_{k}^{\text {Krieg }}\left(\mathbb{Z}^{l}, \sigma_{S}\right)=J_{k, \frac{1}{2} S}^{\text {Arakawa }}(\mathrm{SL}(2 ; \mathbb{Z}))=\bigoplus_{\nu} J_{k}(1, S, \nu)
$$

where the sum runs over all Abelian characters $\nu \in\left\langle\nu_{\pi}, \operatorname{det}\right\rangle \leq \Gamma_{S}^{\mathrm{ab}}$. Thus we can apply Arakawa's results in order to determine the dimensions of certain spaces of Jacobi cusp forms.

Proposition 2.19 Let $S=A_{3}$. If $k \geq 4$ then

$$
\sum_{\nu \in \Gamma_{S}^{\text {ab }}} \operatorname{dim} J_{k}^{0}(1, S, \nu)= \begin{cases}\left\lfloor\frac{k}{4}\right\rfloor-1 & \text { if } k \text { is even }, \\ \left\lfloor\frac{k}{12}\right\rfloor & \text { if } k \text { is odd }, k \not \equiv 9 \quad(\bmod 12), \\ \left\lfloor\frac{k}{12}\right\rfloor+1 & \text { if } k \text { is odd }, k \equiv 9 \\ (\bmod 12)\end{cases}
$$

Proof Apply [Ar92, Thm. 5.2].

2.4. Maaß spaces

In this section we introduce the Maaß space which consists of modular forms with particularly nice Fourier expansion. Let S be an arbitrary even positive definite matrix of degree l.

Definition 2.20 Let $k \in \mathbb{Z}$ and $\nu \in \Gamma_{S}^{a b}$ an Abelian character of Γ_{S}. A modular form $f \in\left[\Gamma_{S}, k, \nu\right]$ is called a Maßß form of weight k with respect to ν if its Fourier expansion

$$
f(w)=\sum_{\substack{\mu_{0} \in \Lambda_{0}^{\sharp} \\ \mu_{0} \geq 0}} \alpha_{f}\left(\mu_{0}\right) e^{2 \pi i^{t} \mu_{0} S_{0} w}
$$

satisfies

$$
\begin{equation*}
\alpha_{f}\left(\mu_{0}\right)=\sum_{d \mid \operatorname{gcd}\left(S_{0} \mu_{0}\right)} d^{k-1} \alpha_{f}\left(m n / d^{2}, \mu / d, 1\right) \quad \text { for all } 0 \neq \mu_{0}=(m, \mu, n) \in \Lambda_{0}^{\sharp} . \tag{2.8}
\end{equation*}
$$

The subspace of $\left[\Gamma_{S}, k, \nu\right]$ consisting of Maaß forms is called the Maaß space. We denote it by $\mathcal{M}\left(\Gamma_{S}, k, \nu\right)$. If $\nu=1$ then we simply write $\mathcal{M}\left(\Gamma_{S}, k\right)$.

The Maaß space considered by Krieg in [Kr96] corresponds to the space $\mathcal{M}\left(\widetilde{\Gamma}_{S}, k\right)$ where $\widetilde{\Gamma}_{S}=\left\langle J, T_{g} ; g \in \Lambda_{0}\right\rangle$ is the subgroup of Γ_{S} which is generated by the inversion J and the translations $T_{g}, g \in \Lambda_{0}$. Note that for all S in (1.2) we have $\widetilde{\Gamma}_{S}=\Gamma_{S} \cap \mathrm{O}_{\mathrm{d}}\left(\Lambda_{1}\right) \cap \operatorname{SO}\left(\Lambda_{1}\right)$. If Γ_{S} is nicely generated and Γ_{S}^{\prime} is a subgroup of $\widetilde{\Gamma}_{S}$ then we can decompose the space $\mathcal{M}\left(\widetilde{\Gamma}_{S}, k\right)$ into a direct sum of certain spaces $\mathcal{M}\left(\Gamma_{S}, k, \nu\right)$. By virtue of Corollary 1.28 these conditions are fulfilled if $S \in\left\{A_{1}^{(2)}, A_{2}, S_{2}, A_{3}\right\}$.
Proposition 2.21 Suppose that Γ_{S} is nicely generated and that Γ_{S}^{\prime} is a subgroup of $\widetilde{\Gamma}_{S}=$ $\left\langle J, T_{g} ; g \in \Lambda_{0}\right\rangle$. Then

$$
\mathcal{M}\left(\widetilde{\Gamma}_{S}, k\right)=\bigoplus_{\nu} \mathcal{M}\left(\Gamma_{S}, k, \nu\right)
$$

for all $k \in \mathbb{Z}$ where the sum runs over all Abelian characters ν of Γ_{S} for which $\widetilde{\Gamma}_{S} \leq \operatorname{ker} \nu$.
Proof Let $G:=\left\{\nu \in \Gamma_{S}^{\text {ab }} ; \widetilde{\Gamma}_{S} \leq \operatorname{ker} \nu\right\}$. If $\nu \in G$ then we obviously have $\mathcal{M}\left(\Gamma_{S}, k, \nu\right) \subset$ $\mathcal{M}\left(\widetilde{\Gamma}_{S}, k\right)$. It remains to be shown that all $f \in \mathcal{M}\left(\widetilde{\Gamma}_{S}, k\right)$ can be written as a linear combination of functions $f_{\nu} \in \mathcal{M}\left(\Gamma_{S}, k, \nu\right), \nu \in G$.
G is an Abelian group. Therefore there exist $\nu_{j} \in G, 1 \leq j \leq r$, such that $G=$ $\prod_{j=1}^{r}\left\langle\nu_{j}\right\rangle$. Let s_{j} be the order of ν_{j} and let $\zeta_{j} \in \mathbb{C}$ be a primitive s_{j}-th root of unity for $1 \leq j \leq r$. Since Γ_{S} is generated by $\widetilde{\Gamma}_{S}$ and the rotations $R_{A}, A \in \mathrm{O}(\Lambda)$, and since $\widetilde{\Gamma}_{S} \leq \operatorname{ker} \nu_{j}, 1 \leq j \leq r$, we actually have $G \cong \mathrm{O}(\Lambda)^{\text {ab }}$. Therefore we find $A_{1}, \ldots, A_{r} \in$ $\mathrm{O}(\Lambda)$ such that $\nu_{j}\left(R_{A_{j}}\right)=\zeta_{j}$ and $\nu_{i}\left(R_{A_{j}}\right)=1$ for all $1 \leq i, j \leq r, i \neq j$. Note that $\Gamma_{S}=\left\langle\widetilde{\Gamma}_{S}, R_{A_{1}}, \ldots, R_{A_{r}}\right\rangle$.

Now let $f \in \mathcal{M}\left(\widetilde{\Gamma}_{S}, k\right)$ and $A \in \mathrm{O}(\Lambda)$. If f has Fourier coefficients $\alpha_{f}\left(\mu_{0}\right), \mu_{0} \in \Lambda_{0}^{\sharp}$, then $\left.f\right|_{k} R_{A}$ has Fourier coefficients $\alpha_{\left.f\right|_{k} R_{A}}(m, \mu, n)=\alpha_{f}(m, A \mu, n),(m, \mu, n) \in \Lambda_{0}^{\sharp}$. One easily checks that the Fourier coefficients of $\left.f\right|_{k} R_{A}$ satisfy the Maaß condition. Moreover, we have $\left.f\right|_{k} R_{A} \in\left[\widetilde{\Gamma}_{S}, k\right]$ because R_{A} commutes modulo Γ_{S}^{\prime} with all elements of $\widetilde{\Gamma}_{S}$ so that for all $M \in \widetilde{\Gamma}_{S}$ we have $\left.\left(\left.f\right|_{k} R_{A}\right)\right|_{k} M=\left.\left(\left.f\right|_{k} M^{\prime}\right)\right|_{k} R_{A}$ with some $M^{\prime} \in \widetilde{\Gamma}_{S}$ and thus $\left.\left(\left.f\right|_{k} R_{A}\right)\right|_{k} M=\left.f\right|_{k} R_{A}$ for all $M \in \widetilde{\Gamma}_{S}$. So for all $A \in \mathrm{O}(\Lambda)$ we have $\left.f\right|_{k} R_{A} \in \mathcal{M}\left(\widetilde{\Gamma}_{S}, k\right)$, and, in particular, $\left.f\right|_{k} R_{A_{j}} \in \mathcal{M}\left(\widetilde{\Gamma}_{S}, k\right), 1 \leq j \leq r$.

We define functions $g_{i}, 0 \leq i \leq s_{1}-1$, by

$$
\left(\begin{array}{c}
g_{0} \\
g_{1} \\
\vdots \\
g_{s_{1}-1}
\end{array}\right)=\left(\begin{array}{cccc}
1 & 1 & \cdots & 1 \\
x_{0} & x_{1} & \cdots & x_{s_{1}-1} \\
\vdots & \vdots & \ddots & \vdots \\
x_{0}^{s_{1}-1} & x_{1}^{s_{1}-1} & \cdots & x_{s_{1}-1}^{s_{1}-1}
\end{array}\right)\left(\begin{array}{c}
f \\
\left.f\right|_{k} R_{A_{1}} \\
\vdots \\
\left.f\right|_{k} R_{A_{1}}^{s_{1}-1}
\end{array}\right)
$$

where $x_{i}=\zeta_{1}^{i}, 0 \leq i \leq s_{1}-1$. Obviously, we have $g_{i} \in \mathcal{M}\left(\widetilde{\Gamma}_{S}, k\right)$ for all $1 \leq i \leq s_{1}-1$. Furthermore, those functions satisfy

$$
\left.g_{i}\right|_{k} R_{A_{1}}=\left.\sum_{s=0}^{s_{1}-1}\left(\zeta_{1}^{s}\right)^{i} f\right|_{k} R_{A_{1}}^{s+1}=\zeta_{1}^{\left(s_{1}-1\right) i} f+\left.\sum_{s=1}^{s_{1}-1} \zeta_{1}^{(s-1) i} f\right|_{k} R_{A_{1}}^{s}=\zeta_{1}^{-i} g_{i}=\nu_{1}^{-i}\left(R_{A_{1}}\right) g_{i}
$$

so that we actually have $g_{i} \in \mathcal{M}\left(\left\langle\widetilde{\Gamma}_{S}, R_{A_{1}}\right\rangle, k, \nu_{1}^{-i}\right), 0 \leq i \leq s_{1}-1$. Note that f is recoverable as linear combination of the g_{i} since the transformation matrix is a Vandermonde matrix and thus invertible.

In the second step we use the functions g_{i} instead of f as input and get functions

$$
h_{j}^{(i)}=\left.\sum_{s=0}^{s_{2}-1}\left(\zeta_{2}^{s}\right)^{j} g_{i}\right|_{k} R_{A_{2}}^{s} \in \mathcal{M}\left(\left\langle\widetilde{\Gamma}_{S}, R_{A_{1}}, R_{A_{2}}\right\rangle, k, \nu_{1}^{-i} \nu_{2}^{-j}\right),
$$

for $0 \leq i \leq s_{1}-1,0 \leq j \leq s_{2}-1$. After r iterations we finally get functions $f_{\nu} \in$ $\mathcal{M}\left(\Gamma_{S}, k, \nu\right), \nu \in G$. Due to the construction we have $f \in \operatorname{span}\left\{f_{\nu} ; \nu \in G\right\}$. This completes the proof.

We can now prove that certain spaces of Maaß forms are isomorphic to certain spaces of Jacobi forms.
Corollary 2.22 Suppose that Γ_{S} is nicely generated and that $\Gamma_{S}^{\prime} \leq \widetilde{\Gamma}_{S}=\left\langle J, T_{g} ; g \in \Lambda_{0}\right\rangle$. Given $k \in \mathbb{N}$ and an Abelian character ν of Γ_{S} with $\widetilde{\Gamma}_{S} \leq \operatorname{ker} \nu$ the map

$$
\mathcal{M}\left(\Gamma_{S}, k, \nu\right) \rightarrow J_{k}(1, S, \nu), \quad f \mapsto \varphi_{1}(f)
$$

where $\varphi_{1}(f)$ is the first Fourier-Jacobi coefficient of f, is an isomorphism of vector spaces.
Proof We consider the following commutative diagram:

The right map and the upper map are isomorphisms of vector spaces according to [Kr 96 , Thm. 3] and Proposition 2.21, respectively. Consequently, the lower map has to be surjective. Since the lower map is the canonical injection it is also injective and thus an isomorphism. Therefore the left map also has to be an isomorphism. This completes the proof.
Note that the above isomorphism obviously maps cusp forms to cusp forms. Moreover, by considering the Fourier-Jacobi expansion of Maaß forms we can show that the dimension of the Maaß space is at most one greater than the dimension of the space of Maaß cusp forms. This will allow us to calculate the exact dimension of certain Maaß spaces using Arakawa's formulas for the dimension of spaces of Jacobi cusp forms.
Corollary 2.23 Suppose that $S \in\left\{A_{1}^{(2)}, A_{2}, S_{2}, A_{3}\right\}$. Given $k \in \mathbb{N}$ and an Abelian character ν of Γ_{S} with $\nu\left(T_{g}\right)=1$ for all $g \in \Lambda_{0}$ we have

$$
\operatorname{dim} \mathcal{M}\left(\Gamma_{S}, k, \nu\right)= \begin{cases}\operatorname{dim} J_{k}^{0}(1, S, \nu) & \text { if } k \text { is odd or } k=2 \text { or } \nu \neq 1 \\ \operatorname{dim} J_{k}^{0}(1, S, \nu)+1 & \text { if } k>2 \text { is } \text { even and } \nu=1\end{cases}
$$

Proof If k is odd or $k=2$ or $\nu \neq 1$ then according to Corollary 2.11 all Maaß forms are cusp forms, and therefore $\mathcal{M}\left(\Gamma_{S}, k, \nu\right) \cong J_{k}^{0}(1, S, \nu)$. Now suppose that $k>2$ is even and that $\nu=1$. Assume we have two non-cusp forms $f, g \in \mathcal{M}\left(\Gamma_{S}, k, 1\right)$. Let $\varphi_{0}(f)$ and $\varphi_{0}(g)$ be the 0 -th Fourier-Jacobi coefficient of f and g, respectively. According to the proof of [Kr96, Thm. 3] we have $\varphi_{0}(f)=\frac{1}{\gamma_{k}} \alpha_{f}\left(e_{1}\right) G_{k}$ and $\varphi_{0}(g)=\frac{1}{\gamma_{k}} \alpha_{g}\left(e_{1}\right) G_{k}$ where

$$
G_{k}(\tau)=1-\frac{2 k}{B_{k}} \sum_{n=1}^{\infty} \sigma_{k-1}(n) e^{2 \pi i n \tau}
$$

is the normalized elliptic Eisenstein series in $[\mathrm{SL}(2 ; \mathbb{Z}), k]$ for $k>2$ even. Now $\alpha_{g}\left(e_{1}\right) f-$ $\alpha_{f}\left(e_{1}\right) g \in\left[\Gamma_{S}, k, 1\right]_{0}$ implies

$$
\operatorname{dim} \mathcal{M}\left(\Gamma_{S}, k, 1\right) \leq \operatorname{dim} J_{k}^{0}(1, S, 1)+1
$$

For $S \in\left\{A_{1}^{(2)}, A_{2}, S_{2}\right\}$ the existence of a non-cusp form $f \in \mathcal{M}\left(\Gamma_{S}, k, 1\right)$ for $k \geq 4$ even follows from [DK03, Thm. 1] (cf. Section 2.6). For $S=A_{3}$ non-cusp forms are given by the Eisenstein series $E_{k}^{A_{3}} \in \mathcal{M}\left(\Gamma_{A_{3}}, k, 1\right), k \geq 4$ even, which will be defined in Section 2.5.

Since the preceding result is applicable in case of $S=A_{3}$ we get
Corollary 2.24 Let $S=A_{3}$. If $k \geq 4$ then

$$
\operatorname{dim} \mathcal{M}\left(\Gamma_{S}^{\prime}, k\right)=\sum_{\nu \in \Gamma_{S}^{\text {ab }}} \operatorname{dim} \mathcal{M}\left(\Gamma_{S}, k, \nu\right)= \begin{cases}\left\lfloor\frac{k}{4}\right\rfloor & \text { if } k \text { is even }, \\ \left\lfloor\frac{k}{12}\right\rfloor & \text { if } k \text { is odd }, k \not \equiv 9 \quad(\bmod 12), \\ \left\lfloor\frac{k}{12}\right\rfloor+1 & \text { if } k \text { is odd }, k \equiv 9 \quad(\bmod 12)\end{cases}
$$

Proof Apply Proposition 2.19 and Corollary 2.23.

2.5. Restrictions of modular forms to submanifolds

In this section we examine the restrictions of orthogonal modular forms living on \mathcal{H}_{S} to submanifolds of \mathcal{H}_{S}.

2.5.1. The general case

Let $\Lambda=\mathbb{Z}^{l}$ with bilinear form $(\cdot, \cdot)_{S}$ be the lattice associated to an even positive definite matrix S of rank $l \geq 2$. Suppose that $\Lambda_{T}=\mathbb{Z}^{l^{\prime}}$ with bilinear form $(\cdot, \cdot)_{T}$ is the lattice associated to an even positive definite matrix T of rank $l^{\prime}<l$ which can be considered as sublattice of Λ via an isometric embedding

$$
\iota_{T}^{S}: \Lambda_{T} \rightarrow \Lambda, \lambda_{T} \mapsto M_{T}^{S} \lambda_{T},
$$

with $M_{T}^{S} \in \operatorname{Mat}\left(l, l^{\prime} ; \mathbb{Z}\right)$ satisfying $(a, b)_{T}=\left(\iota_{T}^{S}(a), \iota_{T}^{S}(b)\right)_{S}$ for all $a, b \in \Lambda_{T}$ (and by \mathbb{C}-linearity also for all $a, b \in \mathbb{C}^{l^{\prime}}$). This embedding obviously induces an embedding of $\Lambda_{T_{1}}=\mathbb{Z}^{l^{\prime}+4}$ with bilinear form $(\cdot, \cdot)_{T_{1}}$ in $\Lambda_{1}=\mathbb{Z}^{l+4}$ with bilinear form $(\cdot, \cdot)_{1}$. Analogously, the corresponding half-space \mathcal{H}_{T} can be embedded in \mathcal{H}_{S} as submanifold. (Actually those embeddings are induced by the embedding of $\Lambda_{T_{1}}$ in Λ_{1}; cf. Section 4.2.) By abuse of notation we denote those induced embeddings of $\Lambda_{T_{1}}$ in Λ_{1} and of \mathcal{H}_{T} in \mathcal{H}_{S} also by ι_{T}^{S}. Now those elements of Γ_{S} which stabilize the embedded lattice $\iota_{T}^{S}\left(\Lambda_{T_{1}}\right)$ can be viewed as elements of Γ_{T}. This yields a homomorphism

$$
\varphi_{T}: \operatorname{Stab}_{\Gamma_{S}}\left(\iota_{T}^{S}\left(\Lambda_{T_{1}}\right)\right) \rightarrow \Gamma_{T}
$$

A priori, it is not clear whether this homomorphism is surjective, but if Γ_{S} and Γ_{T} are both nicely generated then we only have to check whether

$$
\operatorname{Stab}_{\mathrm{O}(\Lambda)}\left(l_{T}^{S}\left(\Lambda_{T}\right)\right) \rightarrow \mathrm{O}\left(\Lambda_{T}\right)
$$

is surjective (cf. also [FH00, Sec. 4]). This can be easily verified (at least for the cases we are interested in). In some cases φ_{T} is not injective. In those cases $\varphi_{T}^{-1}\left(I_{l^{\prime}}\right)$ contains nontrivial elements of Γ_{S} of the form $R_{A}, A \in \mathrm{O}(\Lambda)$. Those non-trivial elements can be used to show that certain modular forms on \mathcal{H}_{S} vanish on the submanifold \mathcal{H}_{T}. Moreover, we will see that in those cases not all Abelian characters of Γ_{S} are the continuation of Abelian characters of Γ_{T}.

Now we consider the restriction of modular forms.

Theorem 2.25 Let S and T be two even positive definite matrices of rank $l \geq 2$ and rank $l^{\prime}<l$, respectively, such that an isometric embedding $\iota_{T}^{S}: \Lambda_{T} \rightarrow \Lambda, \lambda_{T} \mapsto B \lambda_{T}$, of $\Lambda_{T}=\mathbb{Z}^{l^{\prime}}$ with bilinear form $(\cdot, \cdot)_{T}$ in $\Lambda=\mathbb{Z}^{l}$ with bilinear form $(\cdot, \cdot)_{S}$ exists. Moreover, suppose that Γ_{S} and Γ_{T} are both nicely generated and that φ_{T} is surjective.
Let $k \in \mathbb{Z}$. If $\chi \in \Gamma_{S}^{\mathrm{ab}}$ is the continuation of an Abelian character of Γ_{T} and $f \in$ $\left[\Gamma_{S}, k, \chi\right]$ then

$$
f \mid \mathcal{H}_{T} \in\left[\Gamma_{T}, k, \chi \mid \Gamma_{T}\right] .
$$

If f has Fourier expansion

$$
f(w)=\sum_{m, n \in \mathbb{N}_{0}} \sum_{\substack{\mu \in \Lambda^{\sharp} \\ q_{S}(\mu) \leq m n}} \alpha_{f}(m, \mu, n) e^{2 \pi i\left(n \tau_{1}+m \tau_{2}-(\mu, z)_{S}\right)}
$$

for $w=\left(\tau_{1}, z, \tau_{2}\right) \in \mathcal{H}_{S}$ then the Fourier expansion of $f \mid \mathcal{H}_{T}$ is given by

$$
\left(f \mid \mathcal{H}_{T}\right)\left(w_{T}\right)=\sum_{m, n \in \mathbb{N}_{0}} \sum_{\substack{\mu_{T} \in \Lambda_{T}^{\sharp} \\ q_{T}\left(\mu_{T}\right) \leq m n}} \beta_{f}\left(m, \mu_{T}, n\right) e^{2 \pi i\left(n \tau_{1}+m \tau_{2}-\left(\mu_{T}, z_{T}\right)_{T}\right)}
$$

for $w_{T}=\left(\tau_{1}, z_{T}, \tau_{2}\right) \in \mathcal{H}_{T}$ where

$$
\beta_{f}\left(m, \mu_{T}, n\right)=\sum_{\substack{\mu \in \wedge^{\sharp}, q_{S}(\mu) \leq m n \\ T^{-1} t_{B S}+\mu=\mu_{T}}} \alpha_{f}(m, \mu, n)
$$

for $m, n \in \mathbb{N}_{0}$ and $\mu_{T} \in \Lambda_{T}^{\sharp}$ with $q_{T}\left(\mu_{T}\right) \leq m n$.

Proof Let $f \in\left[\Gamma_{S}, k, \chi\right]$. We have to show that $f \mid \mathcal{H}_{T}$ transforms like a modular form for Γ_{T}. Since we only consider characters of Γ_{S} for which the restriction to Γ_{T} exists we only have to check that

$$
\begin{equation*}
j\left(M^{(S)}, \iota_{T}^{S}(w)\right)=j(M, w) \tag{2.9}
\end{equation*}
$$

for all $w \in \mathcal{H}_{T}$ and all $M \in \Gamma_{T}$ where $M^{(S)} \in \varphi_{T}^{-1}(M)$ is an element of Γ_{S} which corresponds to M. Since $\varphi_{T}^{-1}\left(I_{l^{\prime}+4}\right)$ only contains elements of Γ_{S} of the form $R_{A}, A \in$ $\mathrm{O}(\Lambda)$, we note that $j\left(M^{(S)}, \iota_{T}^{S}(w)\right)$ is independent of the choice of the preimage $M^{(S)}$ of M. Moreover, φ_{T} is a homomorphism, and thus it suffices to verify (2.9) for the generators of Γ_{T}. For $T_{g}, g \in \Lambda_{T_{0}}$, and $R_{A}, A \in \mathrm{O}\left(\Lambda_{T}\right)$, this is trivial, and for $M=J$ the fact that ι_{T}^{S} is an isometric embedding implies

$$
j\left(J^{(S)}, \iota_{T}^{S}(w)\right)=q_{S_{0}}\left(\iota_{T}^{S}(w)\right)=q_{T_{0}}(w)=j(J, w)
$$

for all $w \in \mathcal{H}_{T}$. So for all $M \in \Gamma_{T}$ and all $w \in \mathcal{H}_{T}$ we have

$$
\begin{aligned}
\left(\left.\left(f \mid \mathcal{H}_{T}\right)\right|_{k} M\right)(w) & =j(M, w)^{-k}\left(f \mid \mathcal{H}_{T}\right)(M\langle w\rangle) \\
& =j\left(M^{(S)}, \iota_{T}^{S}(w)\right)^{-k} f\left(M^{(S)}\left\langle\iota_{T}^{S}(w)\right\rangle\right) \\
& =\left(\left.f\right|_{k} M^{(S)}\right)\left(\iota_{T}^{S}(w)\right) \\
& =\chi\left(M^{(S)}\right) f\left(\iota_{T}^{S}(w)\right) \\
& =\left(\chi \mid \Gamma_{T}\right)(M)\left(f \mid \mathcal{H}_{T}\right)(w)
\end{aligned}
$$

where $M^{(S)}$ is an arbitrary preimage of M in Γ_{S}. Hence $f \mid \mathcal{H}_{T} \in\left[\Gamma_{T}, k, \chi \mid \Gamma_{T}\right]$.
Since ι_{T}^{S} is an isometric embedding we have $T={ }^{t} B S B$. Given $\mu \in \Lambda^{\sharp}$ we observe that $\left(\mu, \iota_{T}^{S}\left(z_{T}\right)\right)_{S}=\left(T^{-1 t} B S \mu, z_{T}\right)_{T}$ for all $z_{T} \in \mathbb{C}^{l^{\prime}}$. Moreover, if $\mu \in \Lambda^{\sharp}$ then $(\mu, \lambda)_{S} \in \mathbb{Z}$ for all $\lambda \in \Lambda$. So, in particular, $\left(\mu, \iota_{T}^{S}\left(\lambda_{T}\right)\right)_{S}=\left(T^{-1 t} B S \mu, \lambda_{T}\right)_{T} \in \mathbb{Z}$ for all $\lambda_{T} \in \Lambda_{T}$ which implies $\mu_{T}=T^{-1 t} B S \mu \in \Lambda_{T}^{\sharp}$. It remains to be shown that $q_{T}\left(\mu_{T}\right) \leq m n$ whenever $q_{S}(\mu) \leq m n$. Obviously, it suffices to show

$$
q_{S}(\mu)-q_{T}\left(\mu_{T}\right)={ }^{t} \mu\left(S-S B T^{-1 t} B S\right) \mu \geq 0 \quad \text { for all } \mu \in \Lambda^{\sharp} .
$$

Let $\mu \in \Lambda^{\sharp}$. There exist $x \in \Lambda_{T} \otimes \mathbb{R}$ and $y \in \iota_{T}^{S}\left(\Lambda_{T}\right)^{\perp}$ (the orthogonal complement of $\iota_{T}^{S}\left(\Lambda_{T}\right)$ in $\left.\Lambda_{S} \otimes \mathbb{R}\right)$ such that

$$
\mu=\iota_{T}^{S}(x)+y=B x+y .
$$

Then

$$
\begin{aligned}
& { }^{t} \mu\left(S-S B T^{-1}{ }^{t} B S\right) \mu \\
& ={ }^{t}(B x+y)\left(S-S B T^{-1 t} B S\right)(B x+y) \\
& ={ }^{t} x(\underbrace{{ }^{t} B S B-{ }^{t} B S B T^{-1} B S B}_{=T-T T^{-1} T=0}) x+2(\underbrace{{ }^{t}(B x) S y}_{=0}-\underbrace{{ }^{t}(B x) S B T^{-1}{ }^{t} B S y}_{={ }^{t}(B x) S y=0}) \\
& +{ }^{t} y S y-\underbrace{{ }^{t} y S B}_{=0} T^{-1} \underbrace{t B S y}_{=0} \\
& ={ }^{t} y S y \geq 0
\end{aligned}
$$

because due to the choice of y we have ${ }^{t}(B x) S y=0$ for all $x \in \Lambda_{T} \otimes \mathbb{R}$ and thus ${ }^{t} B S y=0$. This completes the proof.

Since we explicitly know how the Fourier expansion of the restriction of a modular form arises from the Fourier expansion of the restricted modular form we can easily show that restrictions of Maaß forms are Maaß forms.

Corollary 2.26 Let S, T, ι_{T}^{S}, B and χ be given as in the preceding theorem. Moreover, let $k \in \mathbb{N}$. If $f \in \mathcal{M}\left(\Gamma_{S}, k, \chi\right)$ then $f \mid \mathcal{H}_{T} \in \mathcal{M}\left(\Gamma_{T}, k, \chi \mid \Gamma_{T}\right)$.

Proof Let $f \in \mathcal{M}\left(\Gamma_{S}, k, \chi\right)$. In view of Theorem 2.25 it remains to be shown that the Fourier coefficients of $f \mid \mathcal{H}_{T}$ satisfy the Maaß condition (2.8). Let $0 \neq\left(m, \mu_{T}, n\right) \in \Lambda_{T_{0}}^{\sharp}$ with $m, n \in \mathbb{N}_{0}$ and $\mu_{T} \in \Lambda_{T}^{\sharp}$ such that $q_{T}\left(\mu_{T}\right) \leq m n$. We set $g=\operatorname{gcd}\left(m, T \mu_{T}, n\right)$. Note that $\operatorname{gcd}(m, S \mu, n)$ divides g whenever ${ }^{t} B S \mu=T \mu_{T}$ because $d \mid S \mu$ implies $\left.d\right|^{t} B S \mu$ due to $B \in \operatorname{Mat}\left(l, l^{\prime} ; \mathbb{Z}\right)$. Thus we have

$$
\begin{aligned}
& \beta_{f}\left(m, \mu_{T}, n\right)=\sum_{\substack{\mu \in \Lambda^{\sharp}, q_{S}(\mu) \leq m n \\
T^{-1}+B S \mu=\mu_{T}}} \alpha_{f}(m, \mu, n) \\
& =\sum_{t \mid g} \sum_{\substack{\mu \in \Lambda^{\sharp}, q_{S}(\mu) \leq m n \\
T^{-1 t}+S \\
\operatorname{gcd}\left(t, \mu_{T} \\
\operatorname{cd}(m, S \mu, n)=t\right.}} \alpha_{f}(m, \mu, n) \\
& =\sum_{t \mid g} \sum_{\substack{\mu \in \Lambda^{\sharp}, q_{S}(\mu) \leq m n \\
T^{-1} t_{B S} S \mu=\mu_{T} \\
\operatorname{gcd}\left(m, S \mu, \mu_{T}\right)=t}} \sum_{d \mid t} d^{k-1} \alpha_{f}\left(m n / d^{2}, \mu / d, 1\right) \\
& =\sum_{d \mid g} d^{k-1} \sum_{\substack{\mu \in \Lambda^{\sharp}, q_{S}(\mu) \leq m n \\
T^{-1+t_{B S}} \\
d \mid \operatorname{scd}\left(m, \mu_{T} \\
d \mid c, S \mu, n\right)}} \alpha_{f}\left(m n / d^{2}, \mu / d, 1\right) \\
& =\sum_{d \mid g} d^{k-1} \beta_{f}\left(m n / d^{2}, \mu_{T} / d, 1\right) .
\end{aligned}
$$

Hence $f \mid \mathcal{H}_{T} \in \mathcal{M}\left(\Gamma_{T}, k, \chi \mid \Gamma_{T}\right)$.

2.5.2. Restrictions of modular forms living on $\mathcal{H}_{D_{4}}$

We consider restrictions of modular forms living on $\mathcal{H}_{D_{4}}$ to the submanifolds $\mathcal{H}_{A_{3}}$ and $\mathcal{H}_{A_{1}^{(3)}}$. For $T \in\left\{A_{3}, A_{1}^{(3)}\right\}$ the lattices $\Lambda_{T}=\mathbb{Z}^{3}$ with bilinear form $(\cdot, \cdot)_{T}$ can be viewed as sublattices of $\Lambda=\mathbb{Z}^{4}$ with bilinear form $(\cdot, \cdot)_{D_{4}}$ via the isometric embeddings

$$
\begin{aligned}
& \iota_{A_{3}}^{D_{4}}: \Lambda_{A_{3}} \rightarrow \Lambda, \quad\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1}, x_{3}, 0, x_{2}\right), \\
& \underset{A_{1}^{(3)}}{D_{4}}: \Lambda_{A_{1}^{(3)}} \rightarrow \Lambda, \quad\left(x_{1}, x_{2}, x_{3}\right) \mapsto\left(x_{1}, x_{2}, x_{3}, 0\right) .
\end{aligned}
$$

Correspondingly, the half-spaces $\mathcal{H}_{A_{3}}$ and $\mathcal{H}_{A_{1}^{(3)}}$ can be considered as submanifolds of $\mathcal{H}_{D_{4}}$ via the embeddings

$$
\begin{aligned}
& \iota_{A_{3}}^{D_{4}}: \mathcal{H}_{A_{3}} \rightarrow \mathcal{H}_{D_{4}},\left(\tau_{1}, z_{1}, z_{2}, z_{3}, \tau_{2}\right) \mapsto\left(\tau_{1}, z_{1}, z_{3}, 0, z_{2}, \tau_{2}\right), \\
& \iota_{A_{1}^{(3)}}^{D_{4}}: \mathcal{H}_{A_{1}^{(3)}} \rightarrow \mathcal{H}_{D_{4}}, \quad\left(\tau_{1}, z_{1}, z_{2}, z_{3}, \tau_{2}\right) \mapsto\left(\tau_{1}, z_{1}, z_{2}, z_{3}, 0, \tau_{2}\right) .
\end{aligned}
$$

First we consider restrictions to $\mathcal{H}_{A_{3}}$.
Proposition 2.27 Let $k \in 2 \mathbb{Z}$.
a) If $f \in\left[\Gamma_{D_{4}}, k, \chi\right]$ with $\chi \in\left\{\nu_{\pi}, \operatorname{det}\right\}$ then f vanishes on $\mathcal{H}_{A_{3}}$.
b) If $f \in\left[\Gamma_{D_{4}}, k,\left(\nu_{\pi} \operatorname{det}\right)^{m}\right], m \in\{0,1\}$, then $f \mid \mathcal{H}_{A_{3}} \in\left[\Gamma_{A_{3}}, k,\left(\nu_{\pi} \operatorname{det}\right)^{m}\right]$.
c) If $f \in \mathcal{M}\left(\Gamma_{D_{4}}, k, 1\right)$ then $f \mid \mathcal{H}_{A_{3}} \in \mathcal{M}\left(\Gamma_{A_{3}}, k, 1\right)$.

Proof Let $M=R\left(\begin{array}{cccc}1 & 0 & -1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 1 & 1\end{array}\right) \in \Gamma_{D_{4}}$. For all $w \in \iota_{A_{3}}^{D_{4}}\left(\mathcal{H}_{A_{3}}\right)$ we have $w=M\langle w\rangle$.
a) Let $f \in\left[\Gamma_{D_{4}}, k, \chi\right], \chi \in\left\{\nu_{\pi}, \operatorname{det}\right\}$. Due to $\chi(M)=-1$ we have $f(w)=\left(\left.f\right|_{k} M\right)(w)=$ $\chi(M) f(w)=-f(w)$ for all $w \in \iota_{A_{3}}^{D_{4}}\left(\mathcal{H}_{A_{3}}\right)$. Thus f vanishes on $\mathcal{H}_{A_{3}}$.
b) Let $\chi=\left(\nu_{\pi} \operatorname{det}\right)^{m} \in \Gamma_{D_{4}}^{\mathrm{ab}}, m \in\{0,1\}$. We have to show that $\chi \mid \Gamma_{A_{3}}=\left(\nu_{\pi} \operatorname{det}\right)^{m} \in \Gamma_{A_{3}}^{\mathrm{ab}}$. It is easy to check that the above matrix M is the only non-trivial element of $\Gamma_{D_{4}}$ acting trivially on $\iota_{A_{3}}^{D_{4}}\left(\mathcal{H}_{A_{3}}\right)$. Due to $\chi(M)=1$ the restriction of χ to $\Gamma_{A_{3}}$ is well defined. By explicit calculation of some character values we can verify that $\chi \mid \Gamma_{A_{3}}=\left(\nu_{\pi} \operatorname{det}\right)^{m}$ holds.Thus we can apply Theorem 2.25 which proves the assertion.
c) Apply Corollary 2.26.

Next we show similar results for restrictions of modular forms to $\mathcal{H}_{A_{1}^{(3)}}$.
Proposition 2.28 Let $k \in 2 \mathbb{Z}$.
a) If $f \in\left[\Gamma_{D_{4}}, k, \nu_{\pi}^{m} \mathrm{det}\right], m \in\{0,1\}$, then f vanishes on $\mathcal{H}_{A_{1}^{(3)}}$.
b) If $f \in\left[\Gamma_{D_{4}}, k, \nu_{\pi}^{m}\right], m \in\{0,1\}$, then $f \mid \mathcal{H}_{A_{1}^{(3)}} \in\left[\Gamma_{A_{1}^{(3)}}, k, \nu_{\pi}^{m}\right]$.
c) If $f \in \mathcal{M}\left(\Gamma_{D_{4}}, k, 1\right)$ then $f \mid \mathcal{H}_{A_{1}^{(3)}} \in \mathcal{M}\left(\Gamma_{A_{1}^{(3)}}, k, 1\right)$.

Proof Note that $R\left(\begin{array}{cccc}1 & 0 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & -1\end{array}\right) \in \Gamma_{D_{4}}$ acts trivially on $\iota_{A_{1}^{(3)}}^{D_{4}}\left(\mathcal{H}_{A_{1}^{(3)}}\right)$. Now the assertions can be proved analogously to Proposition 2.27.

2.5.3. Restrictions of modular forms living on $\mathcal{H}_{A_{3}}$

Now we look at restrictions of modular forms living on $\mathcal{H}_{A_{3}}$ to the submanifolds \mathcal{H}_{T}, $T \in\left\{A_{1}^{(2)}, A_{2}, S_{2}\right\}$. The lattices $\Lambda_{T}=\mathbb{Z}^{2}$ with bilinear form $(\cdot, \cdot)_{T}$ can be considered as sublattice of $\Lambda=\mathbb{Z}^{3}$ with bilinear form $(\cdot, \cdot)_{A_{3}}$ via the isometric embeddings

$$
\begin{aligned}
\iota_{A_{1}^{(2)}}^{A_{3}}: \Lambda_{A_{1}^{(2)}}^{(2)} \rightarrow \Lambda, & \left(x_{1}, x_{2}\right) \mapsto\left(x_{1}, 0, x_{2}\right), \\
\iota_{A_{2}}^{A_{3}}: \Lambda_{A_{2}} \rightarrow \Lambda, & \left(x_{1}, x_{2}\right) \mapsto\left(x_{1}, x_{2}, 0\right), \\
\iota_{S_{2}}^{A_{3}}: \Lambda_{S_{2}} \rightarrow \Lambda, & \left(x_{1}, x_{2}\right) \mapsto\left(x_{1}-x_{2}, 2 x_{2},-x_{2}\right) .
\end{aligned}
$$

The corresponding embeddings of the half-spaces \mathcal{H}_{T} in $\mathcal{H}_{A_{3}}$ are given by

$$
\begin{aligned}
\iota_{A_{1}^{(2)}}^{A_{3}}: \mathcal{H}_{A_{1}^{(2)}} \rightarrow \mathcal{H}_{A_{3}}, & \left(\tau_{1}, z_{1}, z_{2}, \tau_{2}\right) \mapsto\left(\tau_{1}, z_{1}, 0, z_{2}, \tau_{2}\right), \\
\iota_{A_{2}}^{A_{3}}: \mathcal{H}_{A_{2}} \rightarrow \mathcal{H}_{A_{3}}, & \left(\tau_{1}, z_{1}, z_{2}, \tau_{2}\right) \mapsto\left(\tau_{1}, z_{1}, z_{2}, 0, \tau_{2}\right), \\
\iota_{S_{2}}^{A_{3}}: \mathcal{H}_{S_{2}} \rightarrow \mathcal{H}_{A_{3}}, & \left(\tau_{1}, z_{1}, z_{2}, \tau_{2}\right) \mapsto\left(\tau_{1}, z_{1}-z_{2}, 2 z_{2},-z_{2}, \tau_{2}\right) .
\end{aligned}
$$

For $T \in\left\{A_{1}^{(2)}, S_{2}\right\}$ each element of Γ_{T} is restriction of two elements of $\Gamma_{A_{3}}$ while in case of $T=A_{2}$ each element of Γ_{T} is restriction of exactly one element of $\Gamma_{A_{3}}$, i.e., the homomorphism $\varphi_{A_{2}}$ is injective. This allows us to derive a first

Proposition 2.29 Let $k \in \mathbb{Z}$.
a) If k is odd and $f \in\left[\Gamma_{A_{3}}^{\prime}, k, 1\right]$ then f vanishes on $\mathcal{H}_{A_{1}^{(2)}}$.
b) If k is odd and $f \in\left[\Gamma_{A_{3}}, k, \operatorname{det}\right]$ or k is even and $f \in\left[\Gamma_{A_{3}}, k, \nu_{\pi} \operatorname{det}\right]$ then f vanishes on $\mathcal{H}_{S_{2}}$.

Proof a) Let $f \in\left[\Gamma_{A_{3}}^{\prime}, k, 1\right], k$ odd. Then $f=f_{\nu_{\pi}}+f_{\text {det }}$ for some $f_{\chi} \in\left[\Gamma_{A_{3}}, k, \chi\right]$ since $\left[\Gamma_{A_{3}}^{\prime}, k, 1\right]=\left[\Gamma_{A_{3}}, k, \nu_{\pi}\right] \oplus\left[\Gamma_{A_{3}}, k, \operatorname{det}\right]$ according to Corollary 2.3. For all $w \in$ $\iota_{A_{1}^{(2)}}^{A_{3}}\left(\mathcal{H}_{A_{1}^{(2)}}\right)$ we have

$$
w=M\langle w\rangle \quad \text { for } M=R_{\left(\begin{array}{ccc}
1 & 1 & 0 \\
0 & -1 & 0 \\
0 & 1 & 1
\end{array}\right)},
$$

and thus for $\chi \in\left\{\nu_{\pi}, \operatorname{det}\right\}$

$$
f_{\chi}(w)=\left(\left.f_{\chi}\right|_{k} M\right)(w)=\chi(M) f_{\chi}(w)=-f_{\chi}(w) \quad \text { for all } w \in \iota_{A_{1}^{(2)}}^{A_{3}}\left(\mathcal{H}_{A_{1}^{(2)}}\right) .
$$

b) Let $f \in\left[\Gamma_{A_{3}}, k, \chi\right], \chi=\nu_{\pi}^{k+1}$ det. Then for all $w \in \iota_{S_{2}}^{A_{3}}\left(\mathcal{H}_{S_{2}}\right)$ we have

$$
w=M\langle w\rangle \quad \text { for } M=R\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & -1
\end{array}\right),
$$

and thus

$$
f(w)=\left(\left.f\right|_{k} M\right)(w)=\chi(M) f(w)=-f(w) \quad \text { for all } w \in \iota_{S_{2}}^{A_{3}}\left(\mathcal{H}_{S_{2}}\right) .
$$

Now we examine how the Abelian characters of $\Gamma_{A_{3}}$ and Γ_{T} are related to each other since this is important to identify the characters of the restrictions of the orthogonal modular forms.

Proposition 2.30 The following table shows for $T \in\left\{A_{1}^{(2)}, A_{2}, S_{2}\right\}$ which Abelian characters of Γ_{T} the nontrivial Abelian characters of $\Gamma_{A_{3}}$ correspond to. Those Abelian characters of Γ_{T} which do not occur in this table do not possess a continuation on $\Gamma_{A_{3}}$.

$\chi \in \Gamma_{A_{3}}^{\mathrm{ab}}$	$\chi \mid \Gamma_{A_{1}^{(2)}}$	$\chi \mid \Gamma_{A_{2}}$	$\chi \mid \Gamma_{S_{2}}$
ν_{π}	-	ν_{π}	ν_{π}
det	-	$\nu_{\pi} \operatorname{det}$	-
$\nu_{\pi} \operatorname{det}$	$\nu_{\pi} \operatorname{det}$	det	-

Proof This can be verified by explicit calculation. In particular, note that the restriction of χ to Γ_{T} does not exist if the value of χ is not independent of the choice of the preimage of $M \in \Gamma_{T}$ in $\Gamma_{A_{3}}$.

Finally we take a look at the restrictions of orthogonal modular forms.
Theorem 2.31 Let $k \in \mathbb{Z}$ and $m \in\{0,1\}$.
a) If k is even and $f \in\left[\Gamma_{A_{3}}, k, \nu_{\pi}^{m} \operatorname{det}^{m}\right]$ then $f \mid \mathcal{H}_{A_{1}^{(2)}} \in\left[\Gamma_{A_{1}^{(2)}}, k, \nu_{\pi}^{m} \operatorname{det}^{m}\right]$.
b) If $f \in\left[\Gamma_{A_{3}}, k, \nu_{\pi}^{m} \operatorname{det}^{m+k}\right]$ then $f \mid \mathcal{H}_{A_{2}} \in\left[\Gamma_{A_{2}}, k, \nu_{\pi}^{k} \operatorname{det}^{m+k}\right]$.
c) If $f \in\left[\Gamma_{A_{3}}, k, \nu_{\pi}^{k}\right]$ then $f \mid \mathcal{H}_{S_{2}} \in\left[\Gamma_{S_{2}}, k, \nu_{\pi}^{k}\right]$.

Proof Apply Theorem 2.25 and Proposition 2.30.

2.5.4. Restrictions of modular forms living on $\mathcal{H}_{A_{1}^{(3)}}$

Finally we look at the restrictions of modular forms living on $\mathcal{H}_{A_{1}^{(3)}}$ to the submanifolds $\mathcal{H}_{T}, T \in\left\{A_{1}^{(2)}, S_{2}\right\}$. The lattices $\Lambda_{T}=\mathbb{Z}^{2}$ with bilinear form $(\cdot, \cdot)_{T}$ can be considered as sublattice of $\Lambda=\mathbb{Z}^{3}$ with bilinear form $(\cdot, \cdot)_{A_{1}^{(3)}}$ via the isometric embeddings

$$
\begin{array}{ll}
\iota_{A_{1}^{(2)}}^{A_{3}}: \Lambda_{A_{1}^{(2)}} \rightarrow \Lambda, & \left(x_{1}, x_{2}\right) \mapsto\left(x_{1}, x_{2}, 0\right) \\
\iota_{S_{2}}^{A_{3}}: \Lambda_{S_{2}} \rightarrow \Lambda, & \left(x_{1}, x_{2}\right) \mapsto\left(x_{1}, x_{2}, x_{2}\right) .
\end{array}
$$

The corresponding embeddings of the half-spaces \mathcal{H}_{T} in $\mathcal{H}_{A_{3}}$ are given by

$$
\begin{gathered}
\iota_{A_{1}^{(2)}}^{A_{3}}: \mathcal{H}_{A_{1}^{(2)}} \rightarrow \mathcal{H}_{A_{3}}, \quad\left(\tau_{1}, z_{1}, z_{2}, \tau_{2}\right) \mapsto\left(\tau_{1}, z_{1}, z_{2}, 0, \tau_{2}\right), \\
\iota_{S_{2}}^{A_{3}}: \mathcal{H}_{S_{2}} \rightarrow \mathcal{H}_{A_{3}}, \quad\left(\tau_{1}, z_{1}, z_{2}, \tau_{2}\right) \mapsto\left(\tau_{1}, z_{1}, z_{2}, z_{2}, \tau_{2}\right) .
\end{gathered}
$$

Each element of Γ_{T} is restriction of two elements of $\Gamma_{A_{1}^{(3)}}$. Therefore we get
Proposition 2.32 Let $k \in \mathbb{Z}$ and $m \in\{0,1\}$.
a) If k is odd and $f \in\left[\Gamma_{A_{1}^{(3)}}^{\prime}, k, 1\right]$ then f vanishes on $\mathcal{H}_{A_{1}^{(2)}}$.
b) If k is odd and $f \in\left[\Gamma_{A_{1}^{(3)}}, k, \nu_{2}^{m} \operatorname{det}\right]$ or k is even and $f \in\left[\Gamma_{A_{1}^{(3)}}, k, \nu_{2}^{m} \nu_{\pi}\right]$ then f vanishes on $\mathcal{H}_{S_{2}}$.

PROOF a) Let $f \in\left[\Gamma_{A_{1}^{(3)}}, k, \chi\right], k$ odd, $\chi \in \Gamma_{A_{1}^{(3)}}^{\mathrm{ab}}$. For all $w \in \iota_{A_{1}^{(2)}}^{A_{1}^{(3)}}\left(\mathcal{H}_{A_{1}^{(2)}}\right)$ we have

$$
w=M\langle w\rangle \quad \text { for } M=R_{\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & -1
\end{array}\right)},
$$

and thus

$$
f(w)=\left(\left.f\right|_{k} M\right)(w)=\chi(M) f(w)=-f(w) \quad \text { for all } w \in \iota_{A_{1}^{(2)}}^{A_{1}^{(3)}}\left(\mathcal{H}_{A_{1}^{(2)}}\right)
$$

whenever $\chi \cdot \operatorname{det} \in\left\langle\nu_{2}, \nu_{\pi}\right\rangle$. On the other hand, if $\chi \cdot \operatorname{det} \notin\left\langle\nu_{2}, \nu_{\pi}\right\rangle$ then, according to Corollary 2.3, f vanishes identically on $\mathcal{H}_{A_{1}^{(3)}}$. Hence f vanishes on $\mathcal{H}_{A_{1}^{(2)}}$.
Now let $f \in\left[\Gamma_{A_{1}^{(3)}}^{\prime}, k, 1\right]$. Then there exist $f_{\chi} \in\left[\Gamma_{A_{1}^{(3)}}, k, \chi\right], \chi \in \Gamma_{A_{1}^{(3)}}^{a b}$, such that $f=\sum_{\chi} f_{\chi}$. Due to the above all f_{χ} vanish on $\mathcal{H}_{A_{1}^{(2)}}$, and consequently f also vanishes.
b) Let $f \in\left[\Gamma_{A_{1}^{(3)}}, k, \chi\right], \chi=\nu_{2}^{m} \nu_{\pi}^{k+1} \operatorname{det}^{k}, m \in\{0,1\}$. For all $w \in \iota_{S_{2}}^{A_{1}^{(2)}}\left(\mathcal{H}_{S_{2}}\right)$ we have

$$
w=M\langle w\rangle \quad \text { for } M=R\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right),
$$

and thus

$$
f(w)=\left(\left.f\right|_{k} M\right)(w)=\chi(M) f(w)=-f(w) \quad \text { for all } w \in \iota_{S_{2}}^{A_{1}^{(3)}}\left(\mathcal{H}_{S_{2}}\right) .
$$

Hence f vanishes on $\mathcal{H}_{S_{2}}$.
Next we examine how the Abelian characters of $\Gamma_{A_{1}^{(3)}}$ and Γ_{T} are related to each other.
Proposition 2.33 The following table shows for $T \in\left\{A_{1}^{(2)}, S_{2}\right\}$ which Abelian characters of Γ_{T} the Abelian characters of $\Gamma_{A_{1}^{(3)}}$ correspond to (ν_{2}^{*} stands for an arbitrary power of ν_{2}). Those Abelian characters of Γ_{T} which do not occur in this table do not possess a continuation on $\Gamma_{A_{1}^{(3)}}$.

$\chi \in \Gamma_{A_{1}^{(3)}}^{\mathrm{ab}}$	$\chi \mid \Gamma_{A_{1}^{(2)}}$	$\chi \mid \Gamma_{S_{2}}$
ν_{2}^{*}	ν_{2}^{*}	ν_{2}^{*}
$\nu_{2}^{*} \nu_{\pi}$	$\nu_{2}^{*} \nu_{\pi}$	-
ν_{2}^{*} det	-	-
$\nu_{2}^{*} \nu_{\pi} \operatorname{det}$	-	$\nu_{2}^{*} \nu_{\pi}$

Proof This can be proved analogously to Proposition 2.30.

Finally we again take a look at the restrictions of orthogonal modular forms.
Theorem 2.34 Let $k \in \mathbb{Z}$ and $m, n \in\{0,1\}$.
a) If k is even and $f \in\left[\Gamma_{A_{1}^{(3)}}, k, \nu_{2}^{m} \nu_{\pi}^{n}\right]$ then $f \mid \mathcal{H}_{A_{1}^{(2)}} \in\left[\Gamma_{A_{1}^{(2)}}, k, \nu_{2}^{m} \nu_{\pi}^{n}\right]$.
b) If $f \in\left[\Gamma_{A_{1}^{(3)}}, k, \nu_{2}^{m} \nu_{\pi}^{k} \operatorname{det}^{k}\right]$ then $f \mid \mathcal{H}_{S_{2}} \in\left[\Gamma_{S_{2}}, k, \nu_{2}^{m} \nu_{\pi}^{k}\right]$.

Proof Apply Theorem 2.25 and Proposition 2.33.

2.6. Hermitian modular forms of degree 2

The orthogonal modular forms which live on $\mathcal{H}_{S}, S \in\left\{A_{1}^{(2)}, A_{2}, S_{2}\right\}$, can also be considered as Hermitian modular forms. Since we will later need results about graded rings of orthogonal modular forms for the aforementioned S in order to derive our results about the graded rings of orthogonal modular forms for $\mathrm{O}(2,5)$ we briefly show how the results about graded rings of Hermitian modular forms of degree 2 stated in [De01], [DK03] and [DK04] can be translated to our setting. For details confer [De01].

The Hermitian half-space $H(2 ; \mathbb{C})$ of degree 2 is given by

$$
H(2 ; \mathbb{C})=\left\{Z=\left(\begin{array}{cc}
\tau_{1} & z_{1} \\
z_{2} & \tau_{2}
\end{array}\right) \in \operatorname{Mat}(2 ; \mathbb{C}) ; \frac{1}{2 i}\left(Z-{ }^{\tau} \bar{Z}\right)>0\right\}
$$

Let $\mathbb{K}=\mathbb{Q}\left(\sqrt{-\Delta_{\mathbb{K}}}\right)$ be an imaginary quadratic number field with discriminant $-\Delta_{\mathbb{K}}$ and class number $h\left(-\Delta_{\mathbb{K}}\right)=1$, and let

$$
\mathfrak{o}_{\mathbb{K}}=\mathbb{Z}+\mathbb{Z} \omega_{\mathbb{K}}, \omega_{\mathbb{K}}= \begin{cases}i \sqrt{\Delta_{\mathbb{K}}} / 2 & \text { if } \Delta_{\mathbb{K}} \equiv 0 \\ \left(1+i \sqrt{\Delta_{\mathbb{K}}}\right) / 2 & \text { if } \Delta_{\mathbb{K}} \equiv 3 \\ (\bmod 4), \\ (\bmod 4),\end{cases}
$$

be its ring of integers. The unitary group of degree 2 over \mathbb{K} is defined by $\mathrm{U}(2 ; \mathbb{K})=$ $\left\{M \in \operatorname{Mat}(4 ; \mathbb{K}) ;{ }^{t} M J_{\mathrm{Her}} M=J_{\mathrm{Her}}\right\}$ where $J_{\mathrm{Her}}=\left(\begin{array}{cc}0 & -I_{2} \\ I_{2} & 0\end{array}\right)$, the special unitary group is defined by $\mathrm{SU}(2 ; \mathbb{K})=\mathrm{U}(2 ; \mathbb{K}) \cap \mathrm{SL}(4 ; \mathbb{K})$, and the Hermitian modular group is defined by $\Gamma(2 ; \mathbb{K})=\mathrm{U}\left(2 ; \mathfrak{o}_{\mathbb{K}}\right)=\mathrm{U}(2 ; \mathbb{K}) \cap \operatorname{Mat}\left(4 ; \mathfrak{o}_{\mathbb{K}}\right)$. The unitary group acts on $H(2 ; \mathbb{C})$ as group of biholomorphic automorphisms via

$$
(M, Z) \mapsto M\langle Z\rangle=(A Z+B)(C Z+D)^{-1}, \quad M=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right)
$$

Obviously, scalar matrices act trivially on $H(2 ; \mathbb{C})$. The group of all biholomorphic automorphisms $\operatorname{Bihol}(H(2 ; \mathbb{C}))$ is generated by $\mathrm{SU}(2 ; \mathbb{C})$ and the additional biholomorphic automorphism

$$
I_{\mathrm{tr}}: H(2 ; \mathbb{C}) \rightarrow H(2 ; \mathbb{C}), Z \mapsto{ }^{t} Z
$$

To be precise, we have

$$
\operatorname{Bihol}(H(2 ; \mathbb{C})) \cong \operatorname{PSU}(2 ; \mathbb{C}) \rtimes\left\langle I_{\mathrm{tr}}\right\rangle
$$

where $\operatorname{PSU}(2 ; \mathbb{C})=\mathrm{U}(2 ; \mathbb{C}) /\left(\mathbb{C}^{\times} \cdot I_{4}\right)$ (cf. [Kr85, Thm. II.1.8]). Therefore in case of $\mathbb{K}=\mathbb{Q}(\sqrt{-3})$ we only need to consider elements of $\Gamma(2 ; \mathbb{K})$ of determinant 1 . We set

$$
\widetilde{\Gamma(2 ; \mathbb{K})}:= \begin{cases}\Gamma(2 ; \mathbb{K}) \cap \operatorname{SL}(4 ; \mathbb{K}), & \text { if } \Delta_{\mathbb{K}}=3 \\ \Gamma(2 ; \mathbb{K}), & \text { if } \Delta_{\mathbb{K}} \neq 3\end{cases}
$$

and we define the extended Hermitian modular group $\Gamma_{\mathbb{K}}$ as subgroup of $\operatorname{Bihol}(H(2 ; \mathbb{C}))$ by

$$
\Gamma_{\mathbb{K}}:=\left\langle\{Z \mapsto M\langle Z\rangle ; M \in \widetilde{\Gamma(2 ; \mathbb{K})}\}, I_{\mathrm{tr}}\right\rangle
$$

A Hermitian modular form of weight $k \in \mathbb{Z}$ with respect to $\Gamma_{\mathbb{K}}$ and with respect to an Abelian character $\chi \in \Gamma_{\mathbb{K}}^{\mathrm{ab}}$ is a holomorphic function $f: H(2 ; \mathbb{C}) \rightarrow \mathbb{C}$ satisfying

$$
\left(\left.f\right|_{k} M\right)(Z):=\operatorname{det}(C Z+D)^{-k} f(M\langle Z\rangle)=\chi(M) f(Z)
$$

for all $M=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \widetilde{\Gamma(2, \mathbb{K})}$ and, additionally,

$$
f \circ I_{\mathrm{tr}}=\chi\left(I_{\mathrm{tr}}\right) f .
$$

If f satisfies $f \circ I_{\mathrm{tr}}=f$, i.e., we have $\chi\left(I_{\mathrm{tr}}\right)=1$, then we call f symmetric, otherwise we call f skew-symmetric. We denote the vector space of those forms by $\left[\Gamma_{\mathbb{K}}, k, \chi\right]$. The subspace of cusp forms which is as usual defined as kernel of Siegel's Φ-operator (note that this relies on $\left.h\left(-\Delta_{\mathbb{K}}\right)=1\right)$ is denoted by $\left[\Gamma_{\mathbb{K}}, k, \chi\right]_{0}$.

Examples of Hermitian modular forms are given by the Hermitian Eisenstein series

$$
E_{k}^{\mathbb{K}}(Z):=\sum_{M=\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) \in \Gamma(2 ; \mathbb{K})_{0} \backslash \Gamma(2 ; \mathbb{K})}(\operatorname{det} M)^{k / 2} \operatorname{det}(C Z+D)^{-k}
$$

for even $k>4$ where $\Gamma(2 ; \mathbb{K})_{0}=\left\{\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \Gamma(2 ; \mathbb{K}) ; C=0\right\}$. Additionally, we define $E_{4}^{\mathbb{K}}$ as Maßß lift (cf. [Kr91]) with constant Fourier coefficient equal to 1. According to [DK03] we have $E_{k}^{\mathbb{K}} \in\left[\Gamma_{\mathbb{K}}, k, \operatorname{det}^{-k / 2}\right]$ for all even $k \geq 4$. In particular, the Eisenstein series are symmetric modular forms.

Let

$$
S^{\mathbb{K}}=\left(\begin{array}{cc}
2 & 2 \operatorname{Re}(\omega) \\
2 \operatorname{Re}(\omega) & 2|\omega|^{2}
\end{array}\right) .
$$

Then

$$
\begin{aligned}
& \varphi_{\mathbb{K}}: \mathcal{H}_{S^{\mathbb{K}}} \rightarrow H(2 ; \mathbb{C}),\left(x_{1}, u_{1}, u_{2}, x_{2}\right)+i\left(y_{1}, v_{1}, v_{2}, y_{2}\right) \mapsto \\
&\left(\begin{array}{cc}
x_{1}+i y_{1} & \left(u_{1}+\omega u_{2}\right)+i\left(v_{1}+\omega v_{2}\right) \\
\left(u_{1}+\bar{\omega} u_{2}\right)+i\left(v_{1}+\bar{\omega} v_{2}\right) & x_{2}+i y_{2}
\end{array}\right)
\end{aligned}
$$

biholomorphically maps the orthogonal half-space $\mathcal{H}_{S^{K}}$ to the Hermitian half-space $H(2 ; \mathbb{C})$. Via this map we can identify $\operatorname{Bihol}\left(\mathcal{H}_{S^{\mathbb{K}}}\right)$ and $\operatorname{Bihol}(H(2 ; \mathbb{C}))$. Thus according to Remark
1.12 we have

$$
\begin{equation*}
\mathrm{PO}^{+}\left(S_{1}^{\mathbb{K}} ; \mathbb{R}\right) \cong \mathrm{PSU}(2 ; \mathbb{C}) \rtimes\left\langle I_{\mathrm{tr}}\right\rangle \tag{2.10}
\end{equation*}
$$

Now we consider the three imaginary quadratic number fields $\mathbb{Q}(\sqrt{-1}), \mathbb{Q}(\sqrt{-3})$ and $\mathbb{Q}(\sqrt{-2})$ of discriminant $-4,-3$ and -8 , respectively. The corresponding matrices $S^{\mathbb{K}}$ are $A_{1}^{(2)}, A_{2}$ and S_{2}, respectively. The isomorphism (2.10) allows us to identify the extended Hermitian modular group $\Gamma_{\mathbb{K}}$ with a subgroup of $\mathrm{PO}^{+}\left(S_{1}^{\mathbb{K}} ; \mathbb{R}\right)$. We get

$$
\Gamma_{\mathbb{Q}(\sqrt{-1})} \cong \Gamma_{A_{1}^{(2)}} /\left\{ \pm I_{6}\right\}, \quad \Gamma_{\mathbb{Q}(\sqrt{-3})} \cong \Gamma_{A_{2}} /\left\{ \pm I_{6}\right\}, \quad \Gamma_{\mathbb{Q}(\sqrt{-2})} \cong \Gamma_{S_{2}} /\left\{ \pm I_{6}\right\}
$$

In Appendix B we list the generators of $\Gamma_{\mathbb{K}}$ and the elements of $\Gamma_{S^{\mathbb{K}}}$ those generators correspond to, and we determine the characters of $\Gamma_{\mathbb{K}}$. We have

$$
\Gamma_{\mathbb{Q}(\sqrt{-1})}^{\mathrm{ab}}=\left\langle\operatorname{det}, \nu_{\wp}, \nu_{\text {skew }}\right\rangle, \quad \Gamma_{\mathbb{Q}(\sqrt{-3})}^{\mathrm{ab}}=\left\langle\nu_{\text {skew }}\right\rangle, \quad \Gamma_{\mathbb{Q}(\sqrt{-2})}^{\mathrm{ab}}=\left\langle\nu_{\wp}, \nu_{\text {skew }}\right\rangle
$$

Theorem 2.35 Let $k \in \mathbb{Z}$ and $l, m, n \in\{0,1\}$.
a) If k is even and $f \in\left[\Gamma_{\mathbb{Q}(\sqrt{-1})}, k\right.$, $\left.\operatorname{det}^{l} \nu_{\wp}^{m} \nu_{\text {skew }}^{n}\right]$ then $f \circ \varphi_{\mathbb{Q}(\sqrt{-1})} \in\left[\Gamma_{A_{1}^{(2)}}, k, \nu_{\pi}^{l+k / 2} \nu_{2}^{m} \operatorname{det}^{n}\right]$.
b) If $f \in\left[\Gamma_{\mathbb{Q}(\sqrt{-3})}, k, \nu_{\text {skew }}^{n}\right]$ then $f \circ \varphi_{\mathbb{Q}(\sqrt{-3})} \in\left[\Gamma_{A_{2}}, k, \nu_{\pi}^{k} \operatorname{det}^{n+k}\right]$.
c) If $f \in\left[\Gamma_{\mathbb{Q}(\sqrt{-2})}, k, \nu_{\wp}^{m} \nu_{\text {skew }}^{n}\right]$ then $f \circ \varphi_{\mathbb{Q}(\sqrt{-2})} \in\left[\Gamma_{S_{2}}, k, \nu_{2}^{m} \nu_{\pi}^{k} \operatorname{det}^{n+k}\right]$.

Proof Let $f \in\left[\Gamma_{\mathbb{K}}, k, \chi\right]$. We have to show that $\tilde{f}:=f \circ \varphi_{\mathbb{K}}: \mathcal{H}_{S^{\mathbb{K}}} \rightarrow \mathbb{C}$ transforms like a modular form with respect to $\Gamma_{S^{\mathbb{K}}}$ and the character $\widetilde{\chi}$ given above. Let $\widetilde{N} \in \Gamma_{S^{\mathrm{K}}}$. Then $\widetilde{N}=M_{\mathrm{tr}}^{r} \widetilde{M}$ for some $\widetilde{M} \in \Gamma_{S^{\mathbb{K}}} \cap \mathrm{SO}\left(S_{1}^{\mathbb{K}} ; \mathbb{R}\right)$ and $r \in\{0,1\}$. Let $\gamma=I_{\mathrm{tr}}^{r} \circ(Z \mapsto M\langle Z\rangle)$ with $M=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \Gamma(2, \mathbb{K})$, be the corresponding element of $\Gamma_{\mathbb{K}}$, i.e.,

$$
\gamma(Z)=I_{\mathrm{tr}}^{r}(M\langle Z\rangle)=\varphi_{\mathbb{K}}\left(\widetilde{N}\left\langle\varphi_{\mathbb{K}}^{-1}(Z)\right\rangle\right) \quad \text { for all } Z \in H(2 ; \mathbb{C})
$$

Then for $w \in \mathcal{H}_{S^{\mathbb{K}}}$ and $Z=\varphi_{\mathbb{K}}(w)$ we have

$$
\begin{aligned}
\tilde{f}(\tilde{N}\langle w\rangle) & =f\left(\varphi_{\mathbb{K}}(\tilde{N}\langle w\rangle)\right)=f\left(I_{\mathrm{tr}}^{r}(M\langle Z\rangle)\right)=\chi\left(I_{\mathrm{tr}}^{r}\right) f(M\langle Z\rangle) \\
& =\chi\left(I_{\mathrm{tr}}^{r}\right) \operatorname{det}(C Z+D)^{k} \chi(M) f(Z) \\
& =\chi\left(I_{\mathrm{tr}}^{r}\right) \operatorname{det}(C Z+D)^{k} \chi(M) \widetilde{f}(w),
\end{aligned}
$$

and thus

$$
\left(\left.\widetilde{f}\right|_{k} \widetilde{N}\right)(w)=j(\widetilde{N}, w)^{-k} \widetilde{f}(\widetilde{N}\langle w\rangle)=j(\widetilde{N}, w)^{-k} \chi\left(I_{\mathrm{tr}}^{r}\right) \operatorname{det}\left(C \varphi_{\mathbb{K}}(w)+D\right)^{k} \chi(M) \widetilde{f}(w)
$$

So we have to show that

$$
j(\widetilde{N}, w)^{-k} \chi\left(I_{\mathrm{tr}}^{r}\right) \operatorname{det}\left(C \varphi_{\mathbb{K}}(w)+D\right)^{k} \chi(M)=\widetilde{\chi}(\widetilde{N})=\widetilde{\chi}\left(M_{\mathrm{tr}}^{r}\right) \widetilde{\chi}(\widetilde{M})
$$

for all $\widetilde{N} \in \Gamma_{S^{\mathbb{K}}}$ and all $w \in \mathcal{H}_{S^{\mathbb{K}}}$. Since $j(\widetilde{N}, w)$ and $j_{\text {Her }}(M, Z):=\operatorname{det}(C Z+D)$ are
factors of automorphy and, moreover, $j\left(M_{\mathrm{tr}}, w\right)=1$ we only have to verify that

$$
j(\widetilde{M}, w)^{-k} \operatorname{det}\left(C \varphi_{\mathbb{K}}(w)+D\right)^{k} \chi(M)=\widetilde{\chi}(\widetilde{M})
$$

holds for the generators of $\Gamma_{S^{\mathbb{K}}} \cap \operatorname{SO}\left(S_{1}^{\mathbb{K}} ; \mathbb{R}\right)$ and that

$$
\chi\left(I_{\mathrm{tr}}\right)=\widetilde{\chi}\left(M_{\mathrm{tr}}\right)
$$

The second equation is true, and the first equation can easily be checked for $T_{g}, g \in \Lambda_{0}^{\mathbb{K}}$, and for $R_{A}, A \in \operatorname{SO}\left(\Lambda^{\mathbb{K}}\right)$. Finally, for J we have

$$
j(J, w)=q_{S_{0}^{\mathbb{K}}}(w)=\operatorname{det}\left(\varphi_{\mathbb{K}}(w)\right)=j_{\mathrm{Her}}\left(J_{\mathrm{Her}}, \varphi_{\mathbb{K}}(w)\right) .
$$

This completes the proof.
For $k \geq 4$, k even, we define orthogonal Eisenstein series $E_{k}^{S_{\mathrm{K}}}$ by

$$
E_{k}^{S_{\mathbb{K}}}:=E_{k}^{\mathbb{K}} \circ \varphi_{\mathbb{K}}
$$

According to the above theorem we have $E_{k}^{S_{\mathrm{K}}} \in\left[\Gamma_{S^{\mathrm{K}}}, k, 1\right]$.
Using the above theorem we can now translate the results about graded rings of Hermitian modular forms of degree 2 stated in [De01], [DK03] and [DK04] to our setting.
Theorem 2.36 a) Let $S=A_{1}^{(2)}$. The graded ring $\mathcal{A}\left(\Gamma_{S}^{\prime}\right)=\bigoplus_{k \in \mathbb{Z}}\left[\Gamma_{S}^{\prime}, k, 1\right]$ is generated by

$$
E_{4}, \phi_{4}, E_{6}, E_{10}, \phi_{10}, E_{12} \text { and } \phi_{30}
$$

where the $E_{k}=E_{k}^{S}$ are orthogonal Eisenstein series of weight $k, \phi_{4} \in\left[\Gamma_{S}, 4, \nu_{2} \nu_{\pi} \operatorname{det}\right]_{0}$, $\phi_{10} \in\left[\Gamma_{S}, 10, \nu_{\pi}\right]_{0}$ and $\phi_{30} \in\left[\Gamma_{S}, 30, \nu_{2}\right]_{0}$.
Moreover, the subring $\mathcal{A}\left(\Gamma_{S}\right)=\bigoplus_{k \in \mathbb{Z}}\left[\Gamma_{S}, 2 k, 1\right]$ is a polynomial ring in

$$
E_{4}, E_{6}, \phi_{4}^{2}, E_{10} \text { and } E_{12}
$$

i.e., $E_{4}, E_{6}, \phi_{4}^{2}, E_{10}$ and E_{12} are algebraically independent.
b) Let $S=A_{2}$. The graded ring $\mathcal{A}\left(\Gamma_{S}^{\prime}\right)=\bigoplus_{k \in \mathbb{Z}}\left[\Gamma_{S}^{\prime}, k, 1\right]$ is generated by

$$
E_{4}, E_{6}, \phi_{9}, E_{10}, E_{12} \text { and } \phi_{45}
$$

where the $E_{k}=E_{k}^{S}$ are the orthogonal Eisenstein series of weight $k, \phi_{9} \in\left[\Gamma_{S}, 9, \nu_{\pi}\right]_{0}$ and $\phi_{45} \in\left[\Gamma_{S}, 45, \nu_{\pi} \operatorname{det}\right]_{0}$.
Moreover, the subring $\mathcal{A}\left(\Gamma_{S}\right)=\bigoplus_{k \in \mathbb{Z}}\left[\Gamma_{S}, 2 k, 1\right]$ is a polynomial ring in

$$
E_{4}, E_{6}, E_{10}, E_{12} \text { and } \phi_{9}^{2},
$$

i.e., $E_{4}, E_{6}, E_{10}, E_{12}$ and ϕ_{9} are algebraically independent.

Proof [DK03, Thm. 10, Cor. 9] and [DK03, Thm. 6, Thm. 7].

2.7. Quaternionic modular forms of degree 2

Similar to Hermitian modular forms quaternionic modular forms of degree 2 can also be considered as orthogonal modular forms. We consider the case $S=D_{4}$ which corresponds to the case of quaternionic modular forms with respect to the extended modular group for the Hurwitz integers. Since we only need this case in order to define certain examples of modular forms for $\mathrm{O}(2,5)$ we only state the necessary facts. For details confer [Kr85].

Recall that we denote the canonical basis of the skew field \mathbb{H} of Hamilton quaternions by $1, \mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{i}_{3}$. For $z=z_{1}+z_{2} \mathrm{i}_{1}+z_{3} \mathrm{i}_{2}+z_{4} \mathrm{i}_{3} \in \mathbb{H}$ with $z_{j} \in \mathbb{R}$ the conjugate of z is given by $\bar{z}=z_{1}-z_{2} \mathrm{i}_{1}-z_{3} \mathrm{i}_{2}-z_{4} \mathrm{i}_{3}$ and the norm of z is given by $N(z)=z \bar{z}=z_{1}^{2}+z_{2}^{2}+z_{3}^{2}+z_{4}^{2}$.

The half-space of quaternions $H(2 ; \mathbb{H})$ of degree 2 is given by

$$
H(2 ; \mathbb{H})=\left\{Z=X+i Y \in \operatorname{Mat}(2 ; \mathbb{H}) \otimes_{\mathbb{R}} \mathbb{C} ; Z={ }^{t} Z:={ }^{t} \bar{X}+i^{t} \bar{Y}, Y>0\right\}
$$

Let

$$
\mathcal{O}=\mathbb{Z}+\mathbb{Z} \mathrm{i}_{1}+\mathbb{Z} \mathrm{i}_{2}+\mathbb{Z} \omega, \omega=\frac{1}{2}\left(1+\mathrm{i}_{1}+\mathrm{i}_{2}+\mathrm{i}_{3}\right)
$$

be the Hurwitz order, and let

$$
\wp=\left(1+\mathrm{i}_{1}\right) \mathcal{O}=\mathcal{O}\left(1+\mathrm{i}_{1}\right)=\{a \in \mathcal{O} ; N(a) \in 2 \mathbb{Z}\}
$$

be the ideal of even Hurwitz quaternions. The symplectic group of degree 2 over \mathbb{H} is defined by

$$
\operatorname{Sp}(2 ; \mathbb{H})=\left\{M \in \operatorname{Mat}(4 ; \mathbb{H}) ;{ }^{t} \bar{M} J_{\mathbb{H}} M=J_{\mathbb{H}}\right\}, \quad J_{\mathbb{H}}=\left(\begin{array}{cc}
0 & -I_{2} \\
I_{2} & 0
\end{array}\right) .
$$

It acts on $H(2 ; \mathbb{H})$ as group of biholomorphic automorphisms via the symplectic transformations

$$
(M, Z) \mapsto M\langle Z\rangle=(A Z+B)(C Z+D)^{-1}, \quad M=\left(\begin{array}{ll}
A & B \\
C & D
\end{array}\right)
$$

The group of all biholomorphic automorphisms $\operatorname{Bihol}(H(2 ; \mathbb{H}))$ is generated by $\operatorname{Sp}(2 ; \mathbb{H})$ and the additional biholomorphic automorphism

$$
I_{\text {tr }}: H(2 ; \mathbb{H}) \rightarrow H(2 ; \mathbb{H}), Z \mapsto{ }^{t} Z
$$

We define the extended quaternionic modular group $\Gamma_{\mathbb{H}}$ as subgroup of $\operatorname{Bihol}(H(2 ; \mathbb{H}))$ by

$$
\Gamma_{\mathbb{H}}:=\left\langle\{Z \mapsto M\langle Z\rangle ; M \in \operatorname{Sp}(2 ; \mathcal{O}) \text { or } M=\rho I\}, I_{\mathrm{tr}}\right\rangle
$$

where $\operatorname{Sp}(2 ; \mathcal{O})=\operatorname{Sp}(2 ; \mathbb{H}) \cap \operatorname{Mat}(4 ; \mathcal{O})$ and $\rho=\left(1+\mathrm{i}_{1}\right) / \sqrt{2}$.
A quaternionic modular form of weight $k \in 2 \mathbb{Z}$ with respect to $\Gamma_{\mathbb{H}}$ and an Abelian character $\chi \in \Gamma_{\mathbb{H}}^{\mathrm{ab}}$ is a holomorphic function $f: H(2 ; \mathbb{H}) \rightarrow \mathbb{C}$ satisfying

$$
\left(\left.f\right|_{k} M\right)(Z):=\left(\operatorname{det}(C Z+D)^{\vee}\right)^{-k / 2} f(M\langle Z\rangle)=\chi(M) f(Z) \quad \text { and } \quad f \circ I_{\mathrm{tr}}=\chi\left(I_{\mathrm{tr}}\right) f
$$

for all $M=\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in\langle\operatorname{Sp}(2 ; \mathcal{O}), \rho I\rangle$ where ${ }^{\vee}$ denotes the representation of quaternions as complex 2×2 matrices. We denote the space of all those functions by $\left[\Gamma_{\mathbb{H}}, k, \chi\right]$.
Let

$$
\mathcal{S}:=\left\{\left(\begin{array}{cc}
n & t \\
\bar{t} & m
\end{array}\right) ; m, n \in \mathbb{N}_{0}, t \in \mathcal{O}^{\sharp}, N(t)=t \bar{t} \leq m n\right\}
$$

where \mathcal{O}^{\sharp} is the dual lattice of \mathcal{O} with respect to the bilinear form $(a, b)_{\mathbb{H}}=2 \operatorname{Re}(\bar{a} b)$ for $a, b \in \mathbb{H}$ which is \mathbb{C}-linearly extended to $\mathbb{H}_{\mathbb{C}}=\mathbb{H} \otimes_{\mathbb{R}} \mathbb{C}$. Each quaternionic modular form $f \in\left[\Gamma_{H}, k, \chi\right]$ has a Fourier expansion of the form

$$
f(Z)=\sum_{T \in \mathcal{S}} \alpha_{f}(T) e^{\pi i \operatorname{trace}\left(T^{t} \bar{Z}+Z^{\hbar} \bar{T}\right)}=\sum_{n, m \in \mathbb{N}_{\mathbf{0}}} \sum_{\substack{t \in \mathcal{O}^{\sharp} \\
N(t) \leq m n}} \alpha_{f}\left(\begin{array}{cc}
n & t \\
\bar{t} & m
\end{array}\right) e^{2 \pi i\left(n \tau_{1}+m \tau_{2}+(t, z)_{\mathbb{H}}\right)}
$$

for $Z=\left(\begin{array}{cc}\tau_{1} & z \\ * & \tau_{2}\end{array}\right) \in H(2 ; \mathbb{H})$. If the Fourier coefficients of $f \in\left[\Gamma_{\mathbb{H}}^{\prime}, k, 1\right]$ satisfy the condition

$$
\alpha_{f}(T)=\sum_{d \mid \varepsilon(T)} d^{k-1} \alpha_{f}\left(\begin{array}{cc}
1 & t / d \tag{2.11}\\
\bar{t} / d & m n / d^{2}
\end{array}\right) \quad \text { for all } T=\left(\begin{array}{cc}
n & t \\
\bar{t} & m
\end{array}\right) \in \mathcal{S}, T \neq 0
$$

where $\varepsilon(T)=\max \left\{d \in \mathbb{N} ; d^{-1} T \in \mathcal{S}\right\}$ then f belongs to the Maaß space $\mathcal{M}\left(\Gamma_{\mathbb{H}}, k\right)$ (cf. [Kr87]). Note that, according to Krieg, $f \in\left[\Gamma_{\mathbb{H}}^{\prime}, k, 1\right]$ satisfies the Maaß condition (2.11) if and only if a function $\alpha_{f}^{*}: \mathbb{N}_{0} \rightarrow \mathbb{C}$ exists such that

$$
\alpha_{f}(T)=\sum_{d \mid \varepsilon(T)} d^{k-1} \alpha_{f}^{*}\left(4 \operatorname{det} T / d^{2}\right) \quad \text { for all } T=\left(\begin{array}{cc}
n & t \tag{2.12}\\
\bar{t} & m
\end{array}\right) \in \mathcal{S}, T \neq 0
$$

Due to $\operatorname{det}\left({ }^{t} T\right)=\operatorname{det}(T)=\operatorname{det}(\rho T \bar{\rho})$ and $\varepsilon\left({ }^{t} T\right)=\varepsilon(T)=\varepsilon(\rho T \bar{\rho})$ for all $T \in \mathcal{S}$ the alternative Maaß condition (2.12) implies $\alpha_{f}\left({ }^{t} T\right)=\alpha_{f}(T)=\alpha_{f}(\rho T \bar{\rho})$ and thus $f\left({ }^{t} Z\right)=$ $f(Z)=\left(\left.f\right|_{k}(\rho I)\right)(Z)$ for all $f \in \mathcal{M}\left(\Gamma_{\mathbb{H}}, k\right)$. Hence $\mathcal{M}\left(\Gamma_{\mathbb{H}}, k\right) \subset\left[\Gamma_{\mathbb{H}}, k, 1\right]$.

Examples of quaternionic modular forms are given by the quaternionic Siegel-Eisenstein series

$$
E_{k}^{\mathbb{H}}(Z):=\sum_{\left(\begin{array}{c}
A \\
C
\end{array}\right.}^{\substack{B \\
\hline}} \sum_{\operatorname{Sp}(2 ; \mathcal{O})_{0} \backslash \operatorname{Sp}(2 ; \mathcal{O})}\left(\operatorname{det}(C Z+D)^{\vee}\right)^{-k / 2}
$$

for even $k>6$ where $\operatorname{Sp}(2 ; \mathcal{O})_{0}=\left\{\left(\begin{array}{cc}A & B \\ C & D\end{array}\right) \in \operatorname{Sp}(2 ; \mathcal{O}) ; C=0\right\}$. The Fourier expansion of the Eisenstein series can be explicitly calculated (cf. [Kr90, Thm. 3]). In particular, the Eisenstein series are normalized, i.e., the constant term in the Fourier expansion equals 1. Additionally, we define $E_{4}^{\mathbb{H}}$ and $E_{6}^{\mathbb{H}}$ as Maaß lifts (cf. [Kr 90$]$) with constant Fourier coefficient equal to 1 . According to $[\mathrm{Kr} 90]$, we have $E_{k}^{\mathbb{H}} \in \mathcal{M}\left(\Gamma_{\mathbb{H}}, k\right)$ for all even $k \geq 4$, and thus, in particular, $E_{k}^{\mathbb{H} \mathbb{I}} \in\left[\Gamma_{\mathbb{H}}, k, 1\right]$ for all even $k \geq 4$.

The orthogonal half-space $\mathcal{H}_{D_{4}}$ is biholomorphically mapped to $H(2 ; \mathbb{H})$ by

$$
\varphi_{\mathbb{H}}: \mathcal{H}_{D_{4}} \rightarrow H(2 ; \mathbb{H}),\left(x_{1}, u, x_{2}\right)+i\left(y_{1}, v, y_{2}\right) \mapsto\left(\begin{array}{cc}
\frac{x_{1}}{\iota_{D_{4}}(u)}+i y_{1} & \iota_{D_{4}}(u)+i \iota_{D_{4}}(v) \\
\iota_{D_{4}}(v) & x_{2}+i y_{2}
\end{array}\right),
$$

where $\iota_{D_{4}}: \mathbb{R}^{4} \rightarrow \mathbb{H}$ is defined as in Proposition 1.17. This map allows us to identify $\operatorname{Bihol}\left(\mathcal{H}_{D_{4}}\right)$ and $\operatorname{Bihol}(H(2 ; \mathbb{H}))$. In particular, we get

$$
\Gamma_{\mathbb{H}} \cong \Gamma_{D_{4}} /\left\{ \pm I_{8}\right\} .
$$

In Appendix A we list the generators of $\Gamma_{\mathbb{H}}$ and the elements of $\Gamma_{D_{4}}$ they correspond to. According to [KW98] we have

$$
\Gamma_{\mathbb{H}}^{\mathrm{ab}}=\left\langle\nu_{\rho}, \nu_{\mathrm{tr}}\right\rangle
$$

where

$$
\begin{array}{lll}
\nu_{\rho}(\rho I)=-1, & \nu_{\rho}\left(I_{\operatorname{tr}}\right)=1, & \nu_{\rho}(M)=1 \text { for all } M \in \operatorname{Sp}(2 ; \mathcal{O}), \\
\nu_{\operatorname{tr}}(\rho I)=1, & \nu_{\operatorname{tr}}\left(I_{\operatorname{tr}}\right)=-1, & \nu_{\operatorname{tr}}(M)=1 \text { for all } M \in \operatorname{Sp}(2 ; \mathcal{O}) .
\end{array}
$$

Theorem 2.37 Let $k \in 2 \mathbb{Z}$ and $r, s \in\{0,1\}$. If $f \in\left[\Gamma_{\mathbb{H}}, k, \nu_{\rho}^{r} \nu_{\mathrm{tr}}^{s}\right]$ with Fourier expansion

$$
f(Z)=\sum_{n, m \in \mathbb{N}_{\mathbf{0}}} \sum_{\substack{t \in \mathcal{O}_{\begin{subarray}{c}{\sharp} }}^{N(t) \leq m n}}\end{subarray}} \alpha_{f}\left(\begin{array}{cc}
n & t \\
\bar{t} & m
\end{array}\right) e^{2 \pi i\left(n \tau_{1}+m \tau_{2}+(t, z)_{\mathbb{H}}\right)}, \quad Z=\binom{\tau_{1} z}{* \tau_{2}} \in H(2 ; \mathbb{H}),
$$

then $g:=f \circ \varphi_{\mathbb{H}} \in\left[\Gamma_{D_{4}}, k, \nu_{\pi}^{r} \operatorname{det}^{s}\right]$ with Fourier expansion

$$
g(w)=\sum_{m, n \in \mathbb{N}_{0}} \sum_{\substack{\mu \in \Lambda^{\sharp} \\ q(\mu) \leq m n}} \alpha_{g}(m, \mu, n) e^{2 \pi i\left(n \tau_{1}+m \tau_{2}+(\mu, \widetilde{w}) s\right)}, \quad w=\left(\tau_{1}, \widetilde{w}, \tau_{2}\right) \in \mathcal{H}_{S}
$$

where

$$
\alpha_{g}(m, \mu, n)=\alpha_{f}\left(\begin{array}{cc}
n & \iota_{D_{4}}(\mu) \tag{2.13}\\
* & m
\end{array}\right) .
$$

Proof The assertion $f \circ \varphi_{\mathbb{H}} \in\left[\Gamma_{D_{4}}, k, \nu_{\pi}^{r} \operatorname{det}^{s}\right]$ can be proved analogously to Theorem 2.35 if one notes that $j_{\mathbb{H}}(M, Z):=\left(\operatorname{det}(C Z+D)^{\vee}\right)^{k / 2}$ is a factor of automorphy of weight k (cf. [KW98]) and that

$$
j(J, w)^{k}=q_{\left(D_{4}\right)_{0}}(w)^{k}=\left(\operatorname{det}\left(\varphi_{\mathbb{H}}(w)^{\vee}\right)\right)^{k / 2}=j_{\mathbb{H}}\left(J_{\mathbb{H}}, \varphi_{\mathbb{H}}(w)\right) .
$$

Since we have $\mathcal{O}^{\sharp}=\iota_{D_{4}}\left(\Lambda^{\sharp}\right)$ and $(a, b)_{D_{4}}=\left(\iota_{D_{4}}(a), \iota_{D_{4}}(b)\right)_{\mathbb{H}}$ the Fourier expansion of $f \circ \varphi_{\mathbb{H}}$ can easily be derived from the expansion of f.

Since we explicitly know how the Fourier expansion of $f \circ \varphi_{\mathbb{H}}$ arises from the Fourier expansion of $f \in\left[\Gamma_{\mathbb{H}}, k, \chi\right]$ we can show that Maaß forms are mapped to Maaß forms.

Corollary 2.38 Given an even $k>0$, the map

$$
\mathcal{M}\left(\Gamma_{\mathbb{H}}, k\right) \rightarrow \mathcal{M}\left(\Gamma_{D_{4}}, k\right), f \mapsto f \circ \varphi_{\mathbb{H}},
$$

is an isomorphism. In particular, we have

$$
\operatorname{dim} \mathcal{M}\left(\Gamma_{D_{4}}, k\right)=\left\lfloor\frac{k+2}{6}\right\rfloor .
$$

Proof The map $\left[\Gamma_{\mathbb{H}}, k\right] \rightarrow\left[\Gamma_{D_{4}}, k\right], f \mapsto f \circ \varphi_{\mathbb{H}}$, is obviously an isomorphism. Moreover, by virtue of (2.13) the validity of the Maßß condition (2.8) for the Fourier coefficients of $f \circ \varphi_{\mathbb{H}}$ follows immediately from the validity of the Maaß condition (2.11) for the Fourier coefficients of f and vice versa. According to [Kr87, Thm. 1], we have $\operatorname{dim} \mathcal{M}\left(\Gamma_{\mathbb{H}}, k\right)=$ $\left\lfloor\frac{k+2}{6}\right\rfloor$. This completes the proof.

For $k \geq 4, k$ even, we define the orthogonal Eisenstein series $E_{k}^{D_{4}}$ by

$$
E_{k}^{D_{4}}:=E_{k}^{\mathbb{H}} \circ \varphi_{\mathbb{H}},
$$

and for $T \in\left\{A_{3}, A_{1}^{(3)}\right\}$ we define the orthogonal Eisenstein series $E_{k}^{T}: \mathcal{H}_{T} \rightarrow \mathbb{C}$ as restrictions of the Eisenstein series $E_{k}^{D_{4}}$ to \mathcal{H}_{T}, i.e.,

$$
E_{k}^{A_{3}}:=E_{k}^{D_{4}} \mid \mathcal{H}_{A_{3}} \quad \text { and } \quad E_{k}^{A_{1}^{(3)}}:=E_{k}^{D_{4}} \mid \mathcal{H}_{A_{1}^{(3)}} .
$$

According to the above corollary, we have $E_{k}^{D_{4}} \in \mathcal{M}\left(\Gamma_{D_{4}}, k\right)$ for all even $k \geq 4$. By virtue of Proposition 2.27 and Proposition 2.28 this implies $E_{k}^{A_{3}} \in \mathcal{M}\left(\Gamma_{A_{3}}, k\right)$ and $E_{k}^{A_{1}^{(3)}} \in$ $\mathcal{M}\left(\Gamma_{A_{1}^{(3)}}, k\right)$ for all even $k \geq 4$. Since the $E_{k}^{\mathbb{H}}$ are normalized the same is true for the $E_{k}^{D_{4}}$. Moreover, note that the E_{k}^{T} are no cusp forms (and consequently do not vanish identically) since the constant term in the Fourier expansion equals 1.

2.8. Quaternionic theta series

In this section we consider the theta series

$$
Y_{1}=\Theta_{\binom{0}{0}}, \quad Y_{2}=\Theta_{\binom{0}{2}}, \quad Y_{3}=\Theta_{\binom{2}{0}}, \quad Y_{4}=\Theta_{\binom{2}{2}}, \quad Y_{5}=\Theta_{\binom{2}{2 \omega}}, \quad Y_{6}=\Theta_{\binom{2}{2 \omega}}
$$

introduced in [FH00, Sect. 10], where for all $a \in \mathcal{O}^{2}$ the theta series Θ_{a} are defined by

$$
\Theta_{a}(Z):=\vartheta_{1}(a)(Z)=\sum_{g \in \wp^{2}} e^{\pi i Z[g+a / 2]} \quad \text { for all } Z \in H(2 ; \mathbb{H})
$$

According to [FH00], the Y_{j} are modular forms of weight 2 with respect to the principal congruence subgroup

$$
\operatorname{Sp}(2 ; \mathcal{O})[\wp]:=\left\{M \in \operatorname{Sp}(2 ; \mathcal{O}) ; M \equiv I_{4} \quad(\bmod \wp)\right\}
$$

and the trivial character, i.e., we have $Y_{j} \in[\operatorname{Sp}(2 ; \mathcal{O})[\wp], 2,1]$ for $1 \leq j \leq 6$. Moreover, according to [Krb], for all $Z \in H(2 ; \mathbb{H})$ we have

$$
\begin{aligned}
\Theta_{a+2 b}(Z) & =\Theta_{a}(Z) & & \text { for all } b \in \wp^{2} \\
\Theta_{a}(Z[U]) & =\Theta_{U a}(Z) & & \text { for all } U \in \operatorname{GL}(2 ; \mathcal{O}), \\
\Theta_{a \varepsilon}(Z) & =\Theta_{a}(Z) & & \text { for all } \varepsilon \in \mathcal{O}^{\times}
\end{aligned}
$$

where $\mathcal{O}^{\times}=\{\varepsilon \in \mathcal{O} ; N(\varepsilon)=1\}$ is the unit group of \mathcal{O}. Additionally, Krieg showed that

$$
Y_{j}(Z[\rho I])=Y_{j}\left({ }^{t} Z\right)=Y_{\pi(j)}(Z), \quad 1 \leq j \leq 6
$$

where $\pi=(1)(2)(3)(4)(56) \in S(6)$.
We are particularly interested in the restrictions of the Y_{j} to the submanifold

$$
H\left(2 ; \mathbb{H}_{A_{1}^{(3)}}\right)=\left\{\left(\begin{array}{cc}
\tau_{1} & z \\
* & \tau_{2}
\end{array}\right) \in H(2 ; \mathbb{H}) ; z=z_{1}+z_{2} \mathrm{i}_{1}+z_{3} \mathrm{i}_{2}+z_{4} \mathrm{i}_{3}, z_{4}=0\right\}
$$

of $H(2 ; \mathbb{H})$ which corresponds via $\varphi_{\mathbb{H}} \circ \iota_{A_{1}^{(3)}}^{D_{4}}: \mathcal{H}_{A_{1}^{(3)}} \rightarrow H(2 ; \mathbb{H})$ to the orthogonal halfspace $\mathcal{H}_{A_{1}^{(3)}}$. We denote those restrictions by \widetilde{Y}_{j}. Note that for all $Z \in H\left(2 ; \mathbb{H}_{A_{1}^{(3)}}\right)$ we have ${ }^{t} Z=Z\left[i_{3} I\right]$. Thus, by applying the above transformation formulas it is easy to check that

$$
Y_{6}(Z)=Y_{5}\left({ }^{t} Z\right)=Y_{5}\left(Z\left[i_{3} I\right]\right)=Y_{5}(Z)
$$

holds for all $Z \in H\left(2 ; \mathbb{H}_{A_{1}^{(3)}}\right)$. Hence \widetilde{Y}_{5} and \widetilde{Y}_{6} coincide.
We want to examine how the \widetilde{Y}_{j} behave under the generators of

$$
\Gamma^{*}:=\operatorname{Bihol}\left(H\left(2 ; \mathbb{H}_{A_{1}^{(3)}}\right)\right) \cap \Gamma_{\mathbb{H}} \cong \operatorname{Bihol}\left(\mathcal{H}_{A_{1}^{(3)}}\right) \cap \mathrm{O}\left(\Lambda_{1}\right) \cong\left(\Gamma_{A_{1}^{(3)}} /\{ \pm I\}\right),
$$

where $\Lambda_{1}=\mathbb{Z}^{7}$ is the lattice associated with $A_{1}^{(3)}$. Due to Corollary 1.28 and the table in Section A. 2 we know that Γ^{*} is generated by the modular transformations corresponding to

$$
\begin{gathered}
J_{\mathbb{H}}, \operatorname{Trans}(H):=\left(\begin{array}{cc}
I_{2} & H \\
0 & I_{2}
\end{array}\right)\left(H \in \operatorname{Her}\left(2 ; \mathcal{O}_{A_{1}^{(3)}}\right)\right), R_{1}:=\operatorname{Rot}\left(\begin{array}{cc}
\bar{\omega}+\mathrm{i}_{2} & 0 \\
0 & \bar{\omega}+\mathrm{i}_{1}
\end{array}\right) \text { and } \\
R_{2}:=\operatorname{Rot}\left(\begin{array}{cc}
\left(\mathrm{i}_{2}-\mathrm{i}_{1}\right) / \sqrt{2} & 0 \\
0 & \left(\mathrm{i}_{1}-\mathrm{i}_{2}\right) / \sqrt{2}
\end{array}\right)=\operatorname{Rot}\left(\begin{array}{cc}
-\bar{\omega}-\mathrm{i}_{1} & 0 \\
0 & \bar{\omega}+\mathrm{i}_{1}
\end{array}\right) \operatorname{Rot}\left(\begin{array}{cc}
\rho & 0 \\
0 & \rho
\end{array}\right),
\end{gathered}
$$

where $\mathcal{O}_{A_{1}^{(3)}}=\mathbb{Z}+\mathbb{Z} i_{1}+\mathbb{Z i}_{2}$ and $\operatorname{Rot}(U)=\left(\begin{array}{cc}\bar{U} & 0 \\ 0 & U^{-1}\end{array}\right)$.
Theorem 2.39 Let $\Theta={ }^{t}\left(\widetilde{Y}_{1}, \ldots, \widetilde{Y}_{5}\right): H\left(2 ; \mathbb{H}_{A_{1}^{(3)}}\right) \rightarrow \mathbb{C}^{5}$. There exists a unique homomorphism of groups

$$
\Psi: \Gamma^{*} \rightarrow \mathrm{GL}(5 ; \mathbb{C})
$$

given by

$$
\left.\Theta\right|_{2} M=\Psi(M) \Theta, \quad M \in \Gamma^{*}
$$

We have

$$
\begin{gathered}
\Psi\left(R_{1}\right)=\Psi\left(R_{2}\right)=I_{5}, \\
\Psi(\operatorname{Trans}(H))= \begin{cases}{[1,1,-1,-1,-1],} & \text { if } H=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right), \\
{[1,-1,1,-1,-1],} & \text { if } H=\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right), \\
{[1,1,1,1,-1],} & \text { if } H=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right),\end{cases}
\end{gathered}
$$

and

$$
\Psi\left(J_{\mathbb{H}}\right)=\frac{1}{4}\left(\begin{array}{ccccc}
1 & 3 & 3 & 3 & 6 \\
1 & -1 & 3 & -1 & -2 \\
1 & 3 & -1 & -1 & -2 \\
1 & -1 & -1 & 3 & -2 \\
1 & -1 & -1 & -1 & -2
\end{array}\right)
$$

Proof Using the above transformation formulas we can easily verify that Θ is invariant under the two rotations R_{1} and R_{2}. Moreover, Θ transforms under the translations Trans (H) and under $J_{\mathbb{H}}$ as stated above according to [Kra]. In view of their Fourier expansions the $\widetilde{Y}_{1}, \ldots, \widetilde{Y}_{5}$ are obviously linearly independent. Thus Ψ is uniquely determined.

Note that $\operatorname{Trans}(H) \in \operatorname{ker} \Psi$ whenever $H \in \operatorname{Her}\left(2 ; \wp_{A_{1}^{(3)}}\right)$, where

$$
\wp_{A_{1}^{(3)}}=\wp \cap \mathcal{O}_{A_{1}^{(3)}}=\mathbb{Z} 2+\mathbb{Z}\left(1+\mathrm{i}_{1}\right)+\mathbb{Z}\left(1+\mathrm{i}_{2}\right)
$$

Obviously we have $\mathcal{O}_{A_{1}^{(3)}} / \wp_{A_{1}^{(3)}} \cong \mathbb{Z} / 2 \mathbb{Z}$. Thus in view of the above theorem the map Ψ defines a five-dimensional representation of the finite group

$$
\Gamma^{*} / \operatorname{ker} \Psi \cong \operatorname{Sp}\left(2 ; \mathbb{F}_{2}\right) \cong S(6)
$$

We denote the orthogonal theta series $Y_{j} \circ \varphi_{\mathbb{H}} \circ \iota_{A_{1}^{(3)}}^{D_{4}}$ again by Y_{j}. Moreover, we denote the r-th elementary symmetric polynomial in $Y_{2}^{n}, Y_{3}^{n}, Y_{4}^{n}$ by $e_{r}\left(Y^{n}\right)$. Using MaGMA (cf. [BCP97]) we compute the invariant ring of the representation Ψ.

Theorem 2.40 There are 5 algebraically independent modular forms

$$
h_{k} \in\left[\Gamma_{A_{1}^{(3)}}, k, 1\right], \quad k=4,6,8,10,12,
$$

given by

$$
\begin{aligned}
& h_{4}=Y_{1}^{2}+3 e_{1}\left(Y^{2}\right)+6 Y_{5}^{2}=Y_{1}^{2}+3\left(Y_{2}^{2}+Y_{3}^{2}+Y_{4}^{2}+2 Y_{5}^{2}\right), \\
& h_{6}=Y_{1}^{3}-9 Y_{1}\left(e_{1}\left(Y^{2}\right)-4 Y_{5}^{2}\right)+54 e_{3}(Y) \\
& h_{8}=Y_{1}^{4}+6 Y_{1}^{2} e_{1}\left(Y^{2}\right)+24 Y_{1} e_{3}(Y)+6 e_{2}\left(Y^{2}\right)+9 e_{1}\left(Y^{4}\right)+48 e_{1}\left(Y^{2}\right) Y_{5}^{2}+24 Y_{5}^{4},
\end{aligned}
$$

$$
\begin{aligned}
h_{10}= & Y_{1}^{5}-6 Y_{1}^{3} e_{1}\left(Y^{2}\right)+12 Y_{1}^{2} e_{3}(Y)+3 Y_{1}\left(10 e_{2}\left(Y^{2}\right)-9 e_{1}\left(Y^{4}\right)+32 e_{1}\left(Y^{2}\right) Y_{5}^{2}+16 Y_{5}^{4}\right) \\
\quad & +36 e_{1}\left(Y^{2}\right) e_{3}(Y)+576 e_{3}(Y) Y_{5}^{2} \\
h_{12}= & Y_{1}^{6}+45 Y_{1}^{2}\left(e_{1}\left(Y^{4}\right)+2 Y_{5}^{4}\right)+1080 Y_{1} e_{3}(Y) Y_{5}^{2}+18 e_{1}\left(Y^{6}\right)+270 e_{3}\left(Y^{2}\right) \\
& \quad+540 e_{2}\left(Y^{2}\right) Y_{5}^{2}+270 e_{1}\left(Y^{2}\right) Y_{5}^{4}+36 Y_{5}^{6} .
\end{aligned}
$$

The restrictions of those modular forms to $\mathcal{H}_{A_{1}^{(2)}}$ generate the graded ring $\mathcal{A}\left(\Gamma_{A_{1}^{(2)}}\right)$.
Proof The h_{k} are primary invariants of the representation Ψ. This implies that they are elements of $\left[\Gamma_{A_{1}^{(3)}}, k, 1\right]$. In order to show that they are algebraically independent we consider their restrictions $\widetilde{h}_{k}:=h_{k} \mid \mathcal{H}_{A_{1}^{(2)}}$ to $\mathcal{H}_{A_{1}^{(2)}}$. Due to Theorem 2.34 we have $\widetilde{h}_{k} \in\left[\Gamma_{A_{1}^{(2)}}, k, 1\right]$. According to Theorem 2.36, the graded ring $\mathcal{A}\left(\Gamma_{A_{1}^{(2)}}\right)$ is a polynomial ring in five modular forms of weight $4,6,8,10$ and 12. Thus $\operatorname{dim}\left[\Gamma_{A_{1}^{(2)}}, 4,1\right]=\operatorname{dim}\left[\Gamma_{A_{1}^{(2)}}, 6,1\right]=1$, $\operatorname{dim}\left[\Gamma_{A_{1}^{(2)}}, 8,1\right]=\operatorname{dim}\left[\Gamma_{A_{1}^{(2)}}, 10,1\right]=2$ and $\operatorname{dim}\left[\Gamma_{A_{1}^{(2)}}, 12,1\right]=3$. By calculating the Fourier expansion of the \widetilde{h}_{k} we can easily verify that the vector spaces $\left[\Gamma_{A_{1}^{(2)}}, k, 1\right], k=$ $4,6,8,10,12$, are spanned by suitable products of the \widetilde{h}_{k}. So, in particular, the five generators of $\mathcal{A}\left(\Gamma_{A_{1}^{(2)}}\right)$ can be written as polynomials in the \widetilde{h}_{k} which implies that the \widetilde{h}_{k} generate the graded ring $\mathcal{A}\left(\Gamma_{A_{1}^{(2)}}\right)$. Since the five generators of $\mathcal{A}\left(\Gamma_{A_{1}^{(2)}}\right)$ are algebraically independent the same must be true for the \widetilde{h}_{k} and thus of course also for the h_{k}.

Since the invariants h_{k} are polynomials in the theta series Y_{1}, \ldots, Y_{5} the algebraic independence of the h_{k} implies the algebraic independence of the theta series (on $\mathcal{H}_{A_{1}^{(3)}}$). According to the proof of the above theorem, we even have the following

Corollary 2.41 The theta series Y_{1}, \ldots, Y_{5} are algebraically independent on $\mathcal{H}_{A_{1}^{(3)}}$ and also on $\mathcal{H}_{A_{1}^{(2)}}$.

3. Vector-valued Modular Forms

In this chapter we introduce vector-valued elliptic modular forms of half-integral weight. They will be used as input for the construction of Borcherds products. The facts presented in this chapter are mostly well-known so we will not go into too much detail.

3.1. The metaplectic group

As usual, the action of $\operatorname{SL}(2 ; \mathbb{R})$ on \mathcal{H} (or $\widehat{\mathbb{C}}=\mathbb{C} \cup\{\infty\})$ is defined by

$$
M\langle\tau\rangle=\frac{a \tau+b}{c \tau+d}, \quad M=\left(\begin{array}{cc}
a & b \\
c & d
\end{array}\right) \in \mathrm{SL}(2 ; \mathbb{R}) .
$$

Since we will have to consider modular forms of half-integral weight we have to introduce the metaplectic group $\operatorname{Mp}(2 ; \mathbb{R})$ which is the double cover of $\operatorname{SL}(2 ; \mathbb{R})$. Its elements can be written in the form

$$
(M, \varphi),
$$

where $M=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \in \operatorname{SL}(2 ; \mathbb{R})$, and φ is a holomorphic function on \mathcal{H} such that

$$
\varphi^{2}(\tau)=c \tau+d \quad \text { for all } \tau \in \mathcal{H}
$$

i.e., φ is a holomorphic root of $\tau \mapsto c \tau+d$. We define the action of $(M, \varphi) \in \operatorname{Mp}(2 ; \mathbb{R})$ on $\mathcal{H}($ or $\widehat{\mathbb{C}})$ to be the same as that of M. The product of two elements $\left(M_{1}, \varphi_{1}\right),\left(M_{2}, \varphi_{2}\right) \in$ $\operatorname{Mp}(2 ; \mathbb{R})$ is given by

$$
\left(M_{1}, \varphi_{1}\right)\left(M_{2}, \varphi_{2}\right)=\left(M_{1} M_{2}, \varphi_{1}\left(M_{2}\langle \rangle\right) \varphi_{2}\right) .
$$

As in $[\mathrm{Br} 02]$ we define the embedding of $\mathrm{SL}(2 ; \mathbb{R})$ into $\operatorname{Mp}(2 ; \mathbb{R})$ as

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \mapsto \widetilde{\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)}:=\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \sqrt{c \tau+d}\right) .
$$

Let $\operatorname{Mp}(2 ; \mathbb{Z})$ be the inverse image of $\operatorname{SL}(2 ; \mathbb{Z})$ under the covering map $\operatorname{Mp}(2 ; \mathbb{R}) \rightarrow$ $\operatorname{SL}(2 ; \mathbb{R})$. It is well known that $\operatorname{Mp}(2 ; \mathbb{Z})$ is generated by

$$
T=\left(\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right), 1\right) \quad \text { and } \quad J=\left(\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right), \sqrt{\tau}\right)
$$

and that the center of $\operatorname{Mp}(2 ; \mathbb{Z})$ is generated by

$$
C:=J^{2}=(J T)^{3}=\left(\left(\begin{array}{cc}
-1 & 0 \\
0 & -1
\end{array}\right), i\right) .
$$

For $N \in \mathbb{N}$ we denote the principal congruence subgroup of $\operatorname{Mp}(2 ; \mathbb{Z})$ of level N by

$$
\operatorname{Mp}(2 ; \mathbb{Z})[N]:=\left\{(M, \varphi) \in \operatorname{Mp}(2 ; \mathbb{Z}) ; M \equiv I_{2} \quad(\bmod N)\right\}
$$

Moreover, we set

$$
\Gamma_{\infty}:=\left\{\left(\begin{array}{cc}
1 & n \\
0 & 1
\end{array}\right) ; n \in \mathbb{Z}\right\} \leq \operatorname{SL}(2 ; \mathbb{Z})
$$

and

$$
\widetilde{\Gamma}_{\infty}:=\left\{\left(\left(\begin{array}{cc}
1 & n \\
0 & 1
\end{array}\right), 1\right) ; n \in \mathbb{Z}\right\}=\langle T\rangle \leq \operatorname{Mp}(2 ; \mathbb{Z})
$$

3.2. Vector-valued modular forms

Let V be a finite dimensional vector space over \mathbb{C}, and let $k \in \frac{1}{2} \mathbb{Z}$. For vector-valued functions $f: \mathcal{H} \rightarrow V$ and $(M, \varphi) \in \mathrm{Mp}(2 ; \mathbb{Z})$ we define the Petersson slash operator by

$$
\left(\left.f\right|_{k}(M, \varphi)\right)(\tau)=\varphi(\tau)^{-2 k} f(M\langle\tau\rangle)
$$

This defines an action of $\operatorname{Mp}(2 ; \mathbb{Z})$ on functions $f: \mathcal{H} \rightarrow V$.
Definition 3.1 Suppose that ρ is a finite representation of $\operatorname{Mp}(2 ; \mathbb{Z})$ on a finite dimensional complex vector space V, and let $k \in \frac{1}{2} \mathbb{Z}$. A (holomorphic) modular form of weight k with respect to ρ and $\mathrm{Mp}(2 ; \mathbb{Z})$ is a function $f: \mathcal{H} \rightarrow V$ satisfying
(i) $\left.f\right|_{k} g=\rho(g) f$ for all $g \in \operatorname{Mp}(2 ; \mathbb{Z})$,
(ii) f is holomorphic on \mathcal{H},
(iii) f is bounded on $\left\{\tau \in \mathbb{C} ; \operatorname{Im}(\tau)>y_{0}\right\}$ for all $y_{0}>0$.

If f additionally satisfies $\lim _{\operatorname{Im}(\tau) \rightarrow \infty} f(\tau)=0$ then f is called a cusp form. We denote the space of (holomorphic) modular forms of weight k with respect to ρ and $\operatorname{Mp}(2 ; \mathbb{Z})$ by $[\mathrm{Mp}(2 ; \mathbb{Z}), k, \rho]$ and the subspace of cusp forms by $[\mathrm{Mp}(2 ; \mathbb{Z}), k, \rho]_{0}$.

Remark 3.2 a) As $\operatorname{Mp}(2 ; \mathbb{Z})$ is generated by S and T condition (i) is equivalent to (i^{\prime}) $f(\tau+1)=\rho(T) f(\tau)$ and $f\left(-\tau^{-1}\right)=\sqrt{\tau}^{2 k} \rho(J) f(\tau)$.
b) Since ρ is a finite representation there exists an $N \in \mathbb{Z}$ such that $T^{N} \in \operatorname{ker} \rho$, and thus $f(\tau+N)=f(\tau)$, i.e., f is periodic with period N. Let \mathcal{B} be a basis of V. We denote the components of f by f_{v}, so that $f=\sum_{v \in \mathcal{B}} f_{v} v$. Obviously, f is holomorphic if and only if all its components f_{v} are holomorphic. Therefore each f_{v} has a Fourier expansion of the form

$$
f_{v}(\tau)=\sum_{n \in \mathbb{Z}} c_{v}(n / N) e^{2 \pi i n \tau / N}
$$

Condition (iii) is then equivalent to
(iii') f has a Fourier expansion of the form

$$
f(\tau)=\sum_{v \in \mathcal{B}} \sum_{\substack{n \in \mathbb{Z} \\ n \geq 0}} c_{v}(n / N) e^{2 \pi i n \tau / N} v .
$$

f is a cusp form if $c_{v}(0)=0$ for all $v \in \mathcal{B}$.
Example 3.3 The Dedekind eta function $\eta: \mathcal{H} \rightarrow \mathbb{C}$ defined by

$$
\eta(\tau)=e^{\pi i \tau / 12} \prod_{n=1}^{\infty}\left(1-e^{2 \pi i n \tau}\right)
$$

is a cusp form of weight $\frac{1}{2}$ with respect to $\operatorname{Mp}(2 ; \mathbb{Z})$ and the Abelian character ν_{η} with

$$
\nu_{\eta}(T)=e^{\pi i / 12} \quad \text { and } \quad \nu_{\eta}(J)=e^{-\pi i / 4}
$$

(cf. [Ap90, Ch. 3] or [Le64, Thm. XI.1C]).
We note a few simple facts about vector-valued modular forms.
Proposition 3.4 Suppose that ρ_{1} and ρ_{2} are two finite representations of $\operatorname{Mp}(2 ; \mathbb{Z})$ on finite dimensional complex vector spaces V_{1} and V_{2}, respectively. If $f_{j} \in\left[\operatorname{Mp}(2 ; \mathbb{Z}), k_{j}, \rho_{j}\right], j=$ 1,2 , then $f_{1} \otimes f_{2}: \mathcal{H} \rightarrow V_{1} \otimes V_{2}, \tau \mapsto f_{1}(\tau) \otimes f_{2}(\tau)$ is a modular form of weight $k_{1}+k_{2}$ with respect to $\rho_{1} \otimes \rho_{2}$. In particular, if f_{1} is scalar-valued then $f_{1} f_{2} \in\left[\operatorname{Mp}(2 ; \mathbb{Z}), k_{1}+k_{2}, \rho_{1} \rho_{2}\right]$.

Proposition 3.5 Suppose that ρ is a representation of $\operatorname{Mp}(2 ; \mathbb{Z})$ on a finite dimensional complex vector space V such that ρ factors through the double cover $\operatorname{Mp}(2 ; \mathbb{Z} / N \mathbb{Z})$ of the finite group $\mathrm{SL}(2 ; \mathbb{Z} / N \mathbb{Z})$ for some positive integer N, i.e., $\operatorname{ker} \rho \subset \operatorname{Mp}(2 ; \mathbb{Z})[N]$ is a congruence subgroup of level N. Then
a) $[\operatorname{Mp}(2 ; \mathbb{Z}), k, \rho]=\{0\}$ if $k<0$,
b) $[\operatorname{Mp}(2 ; \mathbb{Z}), 0, \rho] \cong \mathbb{C}^{g}$ where g is the multiplicity of the trivial one-dimensional representation in ρ,
c) $\operatorname{dim}[\operatorname{Mp}(2 ; \mathbb{Z}), k, \rho]<\infty$ for all $k \in \mathbb{Z}$.

Proof All components f_{v} of f are elliptic modular forms with respect to the congruence subgroup ker ρ. Thus a) and c) follow immediately from the well known facts about $[k e r \rho, k, 1]$. By considering the decomposition of ρ into irreducible representations ρ_{j} : $\operatorname{Mp}(2 ; \mathbb{Z}) \rightarrow \operatorname{GL}\left(V_{j}\right)$ b) follows from $[\operatorname{ker} \rho, 0,1] \cong \mathbb{C},[\operatorname{Mp}(2 ; \mathbb{Z}), 0, \chi]=\{0\}$ for all non-trivial Abelian characters $\chi: \operatorname{Mp}(2 ; \mathbb{Z}) \rightarrow \mathbb{C}$ and the fact that

$$
\operatorname{span}\left\{\rho_{j}(\operatorname{Mp}(2 ; \mathbb{Z}))\left(\left.f\right|_{V_{j}}(\tau)\right) ; \tau \in \mathcal{H}\right\}=V_{j}
$$

whenever $\left.f\right|_{V_{j}} \neq 0$.

For the construction of Borcherds products we need a certain type of non-holomorphic modular forms.
Definition 3.6 A nearly holomorphic modular form of weight k with respect to ρ and $\operatorname{Mp}(2 ; \mathbb{Z})$ is a function $f: \mathcal{H} \rightarrow V$ satisfying
(i) $\left.f\right|_{k} g=\rho(g) f$ for all $g \in \operatorname{Mp}(2 ; \mathbb{Z})$,
(ii) f is holomorphic on \mathcal{H},
(iii) f has at most a pole in ∞, i.e., there exists an $n_{0} \in \mathbb{Z}, n_{0}<0$ such that f has a Fourier expansion of the form

$$
f(\tau)=\sum_{v \in \mathcal{B}} \sum_{\substack{n \in \mathbb{Z} \\ n \geq n_{0}}} c_{v}(n / N) e^{2 \pi i n \tau / N} v .
$$

We denote the space of nearly holomorphic modular forms of weight k with respect to ρ and $\operatorname{Mp}(2 ; \mathbb{Z})$ by $[\operatorname{Mp}(2 ; \mathbb{Z}), k, \rho]_{\infty}$. The principal part of f is given by

$$
\sum_{v \in \mathcal{B}} \sum_{\substack{n \in \mathbb{Z} \\ n<0}} c_{v}(n / N) e^{2 \pi i n \tau / N} v .
$$

3.3. The Weil representation

In this section we introduce a special representation which plays an important role in the theory of Borcherds products.

Suppose that $S \in \operatorname{Sym}(l ; \mathbb{R})$ is an even matrix of signature $\left(b^{+}, b^{-}\right)$. Let $\Lambda=\mathbb{Z}^{l}$ be the associated lattice with bilinear form $(\cdot, \cdot)=(\cdot, \cdot)_{S}$ and the corresponding quadratic form $q=q_{S}$. Let $\left(e_{\mu}\right)_{\mu \in \Lambda^{\sharp} / \Lambda}$ be the standard basis of the group ring $\mathbb{C}\left[\Lambda^{\sharp} / \Lambda\right]$. Then there is a unitary representation ρ_{S} of $\operatorname{Mp}(2 ; \mathbb{Z})$ on $\mathbb{C}\left[\Lambda^{\sharp} / \Lambda\right]$ which is defined by

$$
\begin{aligned}
\rho_{S}(T) e_{\mu} & =e^{2 \pi i q(\mu)} e_{\mu}, \\
\rho_{S}(J) e_{\mu} & =\frac{\sqrt{i}}{\sqrt{|\operatorname{det} S|}} \sum_{\nu \in \Lambda^{\sharp} / \Lambda} e^{-2 \pi i(\mu, \nu)} e_{\nu} .
\end{aligned}
$$

Note that this implies

$$
\begin{equation*}
\rho_{S}(C) e_{\mu}=i^{b^{-}-b^{+}} e_{-\mu} . \tag{3.1}
\end{equation*}
$$

This representation is essentially the Weil representation of the quadratic module $\left(\Lambda^{\sharp} / \Lambda, q\right)$. Let N be the level of Λ. Then the representation ρ_{S} factors through the finite group $\mathrm{SL}(2 ; \mathbb{Z} / N \mathbb{Z})$ if l is even, and through a double cover of $\mathrm{SL}(2 ; \mathbb{Z} / N \mathbb{Z})$ if l is odd. In particular, ρ_{S} is a finite representation.

We denote the dual representation of ρ_{S} by ρ_{S}^{\sharp}. Since ρ_{S} is a unitary representation the values $\rho_{S}^{\sharp}((M, \varphi))$, understood as element of $\operatorname{Mat}(l ; \mathbb{C})$, are simply the complex conjugate of $\rho_{S}((M, \varphi))$. Note that $\rho_{-S}=\bar{\rho}_{S}$. Therefore all the results we state for ρ_{S} also hold for ρ_{S}^{\sharp} if one replaces S by $-S$.

Now we consider modular forms with respect to those special representations. Assume that $f \in\left[\operatorname{Mp}(2 ; \mathbb{Z}), k, \rho_{S}\right]$. In this case we denote the components of f by f_{μ}, so that $f=\sum_{\mu \in \Lambda^{\sharp} / \Lambda} f_{\mu} e_{\mu}$. Now f satisfying $\left.f\right|_{k}(T)=\rho_{S}(T) f$ implies that $e^{-2 \pi i q(\mu) \tau} f_{\mu}(\tau)$ is periodic with period 1 for all $\mu \in \Lambda^{\sharp} / \Lambda$. Therefore f has a Fourier expansion of the form

$$
\begin{equation*}
f(\tau)=\sum_{\mu \in \Lambda^{\sharp} / \Lambda} \sum_{\substack{n \in q(\mu)+\mathbb{Z} \\ n \geq 0}} c_{\mu}(n) q^{n} e_{\mu}, \tag{3.2}
\end{equation*}
$$

where, as usual, $q=e^{2 \pi i \tau}$ (not to be confused with the quadratic form $q=q_{S}$). Analogously, $f \in\left[\mathrm{Mp}(2 ; \mathbb{Z}), k, \rho_{S}^{\sharp}\right]$ has a Fourier expansion of the form

$$
\begin{equation*}
f(\tau)=\sum_{\mu \in \Lambda^{\sharp} / \Lambda} \sum_{\substack{n \in-q(\mu)+\mathbb{Z} \\ n \geq 0}} c_{\mu}(n) q^{n} e_{\mu} . \tag{3.3}
\end{equation*}
$$

Considering that C^{2} acts trivially on $\tau \in \mathcal{H}$ we can deduce a first necessary condition on the weight for the existence of non-trivial modular forms.
Proposition 3.7 If $2 k \not \equiv b^{+}-b^{-}(\bmod 2)$ then

$$
\left[\operatorname{Mp}(2 ; \mathbb{Z}), k, \rho_{S}\right]=\{0\}
$$

Proof Let $f \in\left[\operatorname{Mp}(2 ; \mathbb{Z}), k, \rho_{S}\right]$. Then

$$
(-1)^{-2 k} f=\left.f\right|_{k}\left(C^{2}\right)=\rho_{S}\left(C^{2}\right) f=(-1)^{b^{-}-b^{+}} f
$$

and thus $f=0$ unless $2 k \equiv b^{+}-b^{-}(\bmod 2)$.
The functional equation for modular forms with respect to ρ_{S} under $C \in \operatorname{Mp}(2 ; \mathbb{Z})$ implies
Proposition 3.8 Let $2 k \equiv b^{+}-b^{-}(\bmod 2)$ and $f \in\left[\operatorname{Mp}(2 ; \mathbb{Z}), k, \rho_{S}\right]$ with Fourier expansion (3.2). Then

$$
c_{-\mu}(n)=(-1)^{\left(2 k+b^{-}-b^{+}\right) / 2} c_{\mu}(n)
$$

for all $\mu \in \Lambda^{\sharp} / \Lambda$ and $n \in \mathbb{Z}+q(\mu)$.
Proof Let $f \in\left[\operatorname{Mp}(2 ; \mathbb{Z}), k, \rho_{S}\right]$. Then

$$
i^{-2 k} f=\left.f\right|_{k} C=\rho_{S}(C) f=i^{b^{-}-b^{+}} \sum_{\mu \in \Lambda^{\sharp} / \Lambda} f_{\mu} e_{-\mu}
$$

yields $f_{-\mu}=i^{2 k+b^{-}-b^{+}} f_{\mu}=(-1)^{\left(2 k+b^{-}-b^{+}\right) / 2} f_{\mu}$ for all $\mu \in \Lambda^{\sharp} / \Lambda$.
If $\mu \equiv-\mu(\bmod \Lambda)$ for all $\mu \in \Lambda^{\sharp}$ then we get another necessary condition on the weight for the existence of non-trivial modular forms.
Corollary 3.9 If $2 k+b^{-}-b^{+} \equiv 2(\bmod 4)$ and $\mu=-\mu$ for all $\mu \in \Lambda^{\sharp} / \Lambda$ then

$$
\left[\operatorname{Mp}(2 ; \mathbb{Z}), k, \rho_{S}\right]=\{0\}
$$

3.4. A dimension formula

If the representation ρ of $\operatorname{Mp}(2 ; \mathbb{Z})$ satisfies certain conditions then for $k \geq 2$ the dimension of $[\mathrm{Mp}(2 ; \mathbb{Z}), k, \rho]$ can be calculated explicitly. In [Sk84] (see also [ES95]) Skoruppa determined a dimension formula using the Eichler-Selberg trace formula.

Theorem 3.10 Let $k \in \frac{1}{2} \mathbb{Z}$, and let $\rho: \operatorname{Mp}(2 ; \mathbb{Z}) \rightarrow \mathrm{GL}(V)$ be a finite representation such that $\rho(C)=e^{-\pi i k} \mathrm{id}_{V}$. Then the dimension of $[\operatorname{Mp}(2 ; \mathbb{Z}), k, \rho]$ is given by the following formula

$$
\begin{aligned}
& \operatorname{dim}[\operatorname{Mp}(2 ; \mathbb{Z}), k, \rho]-\operatorname{dim}[\operatorname{Mp}(2 ; \mathbb{Z}), 2-k, \bar{\rho}]_{0}= \\
& \quad \frac{k+5}{12} n+\frac{1}{4} \operatorname{Re}\left(e^{\pi i k / 2} \operatorname{trace} \rho(J)\right)+\frac{2}{3 \sqrt{3}} \operatorname{Re}\left(e^{\pi i(2 k+1) / 6} \operatorname{trace} \rho(J T)\right)-\sum_{j=1}^{n} \lambda_{j},
\end{aligned}
$$

where $n=\operatorname{dim} V$ and $\lambda_{1}, \ldots, \lambda_{n} \in \mathbb{Q}, 0 \leq \lambda_{j}<1$, such that the eigenvalues of $\rho(T)$ are $e^{2 \pi i \lambda_{j}}$.

Proof We show how this follows from the formula given in [ES95]. Since ρ is a finite representation we can find $\lambda_{j} \in \mathbb{Q}$ with $0 \leq \lambda_{j}<1$ such that the eigenvalues of $\rho(T)$ are $e^{2 \pi i \lambda_{j}}$. Then

$$
\frac{1}{2} a(\rho)-\sum_{j=1}^{n} \mathbb{B}_{1}\left(\lambda_{j}\right)=\frac{1}{2} \sum_{\substack{1 \leq j \leq n \\ \lambda_{j} \in \mathbb{Z}}} 1-\sum_{\substack{1 \leq j \leq n \\ \lambda_{j} \notin \mathbb{Z}}}\left(\lambda_{j}-\left\lfloor\lambda_{j}\right\rfloor-\frac{1}{2}\right)=-\sum_{j=1}^{n}\left(\lambda_{j}-\left\lfloor\lambda_{j}\right\rfloor-\frac{1}{2}\right)=\frac{n}{2}-\sum_{j=1}^{n} \lambda_{j},
$$

where $a(\rho)$ and $\mathbb{B}_{1}\left(\lambda_{j}\right)$ are defined as in [ES95] and where $\lfloor\cdot\rfloor$ is the greatest integer function.

Remark 3.11 a) If $k \geq 2$ then $\operatorname{dim}[\operatorname{Mp}(2 ; \mathbb{Z}), k, \rho]$ can be calculated directly using the above formula since the dimension of the spaces of cusp forms of non-positive weight is 0 . In the cases $k=\frac{1}{2}$ and $k=\frac{3}{2}$ the dimension of $[\mathrm{Mp}(2 ; \mathbb{Z}), k, \rho]$ can also be calculated explicitly (cf. [Sk84]). For the case $k=1$ an explicit formula is not known to the author.
b) In [Bo99, Sec. 4] Borcherds gives another dimension formula.

In general the dimension formula is not directly applicable to the Weil representation ρ_{S} because the condition on C acting as a scalar on $\mathbb{C}\left[\Lambda^{\sharp} / \Lambda\right]$ is usually not satisfied. But we can apply the formula to the induced representation of $\operatorname{Mp}(2 ; \mathbb{Z})$ on the subspace of $\mathbb{C}\left[\Lambda^{\sharp} / \Lambda\right]$ on which C acts as $e^{-\pi i k}$. According to (3.1) this space is spanned by $\left\{e_{\mu}+\right.$ $\left.e_{-\mu} ; \mu \in \Lambda^{\sharp} / \Lambda\right\}$ whenever $2 k+b^{-}-b^{+} \equiv 0(\bmod 4)$ and by $\left\{e_{\mu}-e_{-\mu} ; \mu \in \Lambda^{\sharp} / \Lambda\right\}$ whenever $2 k+b^{-}-b^{+} \equiv 2(\bmod 4)$.

Luckily, according to Proposition 3.8, all $f \in\left[\operatorname{Mp}(2 ; \mathbb{Z}), k, \rho_{S}\right]$ belong to the subspace spanned by $\left\{e_{\mu}+e_{-\mu} ; \mu \in \Lambda^{\sharp} / \Lambda\right\}$ if $2 k+b^{-}-b^{+} \equiv 0(\bmod 4)$ and to the subspace spanned by $\left\{e_{\mu}-e_{-\mu} ; \mu \in \Lambda^{\sharp} / \Lambda\right\}$ if $2 k+b^{-}-b^{+} \equiv 2(\bmod 4)$. So in those cases we
can calculate the dimension of $\left[\operatorname{Mp}(2 ; \mathbb{Z}), k, \rho_{S}\right]$ by considering the induced representation of $\operatorname{Mp}(2 ; \mathbb{Z})$ on those subspaces of $\mathbb{C}\left[\Lambda^{\sharp} / \Lambda\right]$. We denote those induced representations by ρ_{S}^{+}and ρ_{S}^{-}, respectively.

First we look at the case $S=A_{3}$. Then the Weil representation acts as follows.

$$
\begin{gathered}
\rho_{A_{3}}(T)=\left[1, e^{3 \pi i / 4},-1, e^{3 \pi i / 4}\right] \\
\rho_{A_{3}}(J)=\frac{e^{-3 \pi i / 4}}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & i & -1 & -i \\
1 & -1 & 1 & -1 \\
1 & -i & -1 & i
\end{array}\right), \quad \rho_{A_{3}}(C)=i \cdot\left(\begin{array}{cccc}
1 & \cdot & \cdot & \cdot \\
. & \cdot & \cdot & 1 \\
\cdot & \cdot & 1 & \cdot \\
. & 1 & \cdot & .
\end{array}\right) .
\end{gathered}
$$

Since C does not act as a scalar we have to consider the induced representations $\rho_{A_{3}}^{+}$and $\rho_{A_{3}}^{-}$. We get

$$
\rho_{A_{3}}^{+}(T)=\left[1, e^{3 \pi i / 4},-1\right], \quad \rho_{A_{3}}^{+}(J)=\frac{e^{-3 \pi i / 4}}{2}\left(\begin{array}{ccc}
1 & 1 & 1 \\
2 & 0 & -2 \\
1 & -1 & 1
\end{array}\right), \quad \rho_{A_{3}}^{+}(C)=e^{-3 \pi i / 2} \cdot I_{3}
$$

and

$$
\rho_{A_{3}}^{-}(T)=e^{3 \pi i / 4}, \quad \rho_{A_{3}}^{-}(J)=e^{-\pi i / 4}, \quad \rho_{A_{3}}^{-}(C)=e^{-\pi i / 2}
$$

Lemma 3.12 Suppose that $S=A_{3}$. Then for $k \in \frac{1}{2} \mathbb{Z}, k \geq 0$, we have

$$
\operatorname{dim}\left[\operatorname{Mp}(2 ; \mathbb{Z}), k, \rho_{S}\right]=\left\{\begin{array}{lll}
\left\lfloor\frac{k-\frac{3}{2}}{4}\right\rfloor+1 & \text { if } k \in \frac{3}{2}+2 \mathbb{Z}, \\
\left\lfloor\frac{k-\frac{9}{2}}{12}\right\rfloor+1 & \text { if } k \in \frac{1}{2}+2 \mathbb{Z}, k-\frac{13}{2} \not \equiv 0 & (\bmod 12), \\
\left\lfloor\frac{k-\frac{9}{2}}{12}\right\rfloor & \text { if } k \in \frac{1}{2}+2 \mathbb{Z}, k-\frac{13}{2} \equiv 0 & (\bmod 12), \\
0 & \text { if } k \in \mathbb{Z}
\end{array}\right.
$$

Proof The assertion for $k \in \mathbb{Z}$ follows from Proposition 3.7. For $k \in \frac{1}{2}+\mathbb{Z}, k \geq 2$, we apply Theorem 3.10 on ρ_{S}^{+}and ρ_{S}^{-}, respectively.

Since the eigenvalue $e^{3 \pi i / 4}$ of $\rho_{S}^{-}(T)$ is not of the form $e^{2 \pi i \frac{n^{2}}{8}}$ with $n \in \mathbb{Z}$, the supplement to the dimension formula in [ES95, Sec. 4.2] yields $\operatorname{dim}\left[\operatorname{Mp}(2 ; \mathbb{Z}), \frac{1}{2}, \rho_{S}\right]=$ $\operatorname{dim}\left[\operatorname{Mp}(2 ; \mathbb{Z}), \frac{1}{2}, \rho_{S}^{-}\right]=0$. By the same argument we get $\operatorname{dim}\left[\operatorname{Mp}(2 ; \mathbb{Z}), \frac{1}{2}, \overline{\rho_{S}^{+}}\right]=0$, and thus $\operatorname{dim}\left[\operatorname{Mp}(2 ; \mathbb{Z}), \frac{1}{2}, \overline{\rho_{S}^{+}}\right]_{0}=0$. Then Theorem 3.10 yields $\operatorname{dim}\left[\operatorname{Mp}(2 ; \mathbb{Z}), \frac{3}{2}, \rho_{S}^{+}\right]=1$. This completes the proof.

Corollary 3.13 Suppose that $S=A_{3}$. If $k \in \frac{1}{2}+2 \mathbb{Z}, k \geq \frac{9}{2}$ then $\left[\operatorname{Mp}(2 ; \mathbb{Z}), k, \rho_{S}\right]$ is isomorphic to the space of (elliptic) modular forms of (even) weight $k-\frac{9}{2}$ with respect to the full modular group $\mathrm{SL}(2 ; \mathbb{Z})$. The isomorphism is given by

$$
\left[\mathrm{SL}(2 ; \mathbb{Z}), k-\frac{9}{2}, 1\right] \rightarrow\left[\operatorname{Mp}(2 ; \mathbb{Z}), k, \rho_{S}\right], \quad f \mapsto \eta^{9} \cdot f \cdot\left(e_{\left(\frac{1}{4}, \frac{1}{2},-\frac{1}{4}\right)}-e_{\left(-\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right)}\right)
$$

Proof Let $f \in\left[\mathrm{SL}(2 ; \mathbb{Z}), k-\frac{9}{2}, 1\right]$. According to Example 3.3, η^{9} is a modular form of weight $\frac{9}{2}$ with respect to ρ_{S}^{-}. Thus Proposition 3.5 yields $\eta^{9} \cdot f \in\left[\operatorname{Mp}(2 ; \mathbb{Z}), k, \rho_{S}^{-}\right]$and by Proposition 3.8 we have

$$
\eta^{9} \cdot f \cdot\left(e_{\left(\frac{1}{4}, \frac{1}{2},-\frac{1}{4}\right)}-e_{\left(-\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right)}\right) \in\left[\operatorname{Mp}(2 ; \mathbb{Z}), k, \rho_{S}\right] .
$$

A comparison of the dimension of the spaces completes the proof.
Next we consider the case $S=A_{1}^{(3)}$. Then the Weil representation acts as follows.

$$
\begin{gathered}
\rho_{A_{1}^{(3)}}(T)=[1, i, i, i,-1,-1,-1,-i], \\
\rho_{A_{1}^{(3)}}(J)=\frac{e^{-3 \pi i / 4}}{2 \sqrt{2}}\left(\begin{array}{cccccccc}
1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & -1 & 1 & 1 & 1 & -1 & -1 & -1 \\
1 & 1 & -1 & 1 & -1 & 1 & -1 & -1 \\
1 & 1 & 1 & -1 & -1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 & 1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1 & -1 & 1 & -1 & 1 \\
1 & -1 & -1 & 1 & -1 & -1 & 1 & 1 \\
1 & -1 & -1 & -1 & 1 & 1 & 1 & -1
\end{array}\right), \\
\rho_{A_{1}^{(3)}}(C)=e^{-3 \pi i / 2} \cdot I_{8} .
\end{gathered}
$$

Since C acts as a scalar we can immediately apply the dimension formula on $\rho_{A_{1}^{(3)}}$.
Lemma 3.14 Suppose that $S=A_{1}^{(3)}$. Then for $k \in \frac{1}{2} \mathbb{Z}, k \geq 0$ we have

$$
\operatorname{dim}\left[\operatorname{Mp}(2 ; \mathbb{Z}), k, \rho_{S}\right]= \begin{cases}\left\lfloor\frac{2 k+2}{3}\right\rfloor & \text { if } k \in \frac{3}{2}+2 \mathbb{Z} \\ 0 & \text { if } k \notin \frac{3}{2}+2 \mathbb{Z}\end{cases}
$$

Proof For $k \in \mathbb{Z}$ the assertion follows from Proposition 3.7, and for $k \in \frac{1}{2}+2 \mathbb{Z}$ the assertion follows from Corollary 3.9. A similar argument as in the proof of Lemma 3.12 yields $\operatorname{dim}\left[\operatorname{Mp}(2 ; \mathbb{Z}), \frac{1}{2}, \overline{\rho_{S}}\right]_{0}=0$. Then application of Theorem 3.10 completes the proof.

Finally we consider the case $S=D_{4}$. Then the Weil representation acts as follows.

$$
\begin{gathered}
\rho_{D_{4}}(T)=[1,-1,-1,-1] \\
\rho_{D_{4}}(J)=-\frac{1}{2}\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right), \\
\rho_{D_{4}}(C)=I_{4} .
\end{gathered}
$$

Again C acts as a scalar so that we can immediately apply the dimension formula on $\rho_{D_{4}}$.

Lemma 3.15 Suppose that $S=D_{4}$. Then for $k \in \mathbb{Z}, k \geq 0$ we have

$$
\operatorname{dim}\left[\operatorname{Mp}(2 ; \mathbb{Z}), k, \rho_{S}\right]= \begin{cases}\left\lfloor\frac{k}{3}\right\rfloor & \text { if } k \equiv 0 \quad(\bmod 4) \\ \left\lfloor\frac{k}{3}\right\rfloor+1 & \text { if } k \equiv 2 \quad(\bmod 4) \\ 0 & \text { if } k \text { odd } .\end{cases}
$$

Proof The assertion for odd k follows from Corollary 3.9, the assertion for positive even k follows from Theorem 3.10, and the assertion for $k=0$ follows from Proposition $3.5 \mathbf{b}$) and the fact that ρ_{S} decomposes into one irreducible two-dimensional representation and two non-trivial one-dimensional representations.

3.5. Examples of vector-valued modular forms

In this section we introduce two important examples of vector-valued modular forms, Eisenstein series and theta series.

3.5.1. Eisenstein series

Throughout this section we suppose that $S \in \operatorname{Sym}(l ; \mathbb{R})$ is an even matrix of signature $\left(b^{+}, b^{-}\right)$, and we set $\Lambda=\mathbb{Z}^{l}$.

Definition 3.16 Let $k \in \frac{1}{2} \mathbb{Z}, k>2$, such that $2 k-b^{+}+b^{-} \equiv 0(\bmod 4)$. Moreover, let $v \in \mathbb{C}\left[\Lambda^{\sharp} / \Lambda\right]$ such that $\rho_{S}(T) v=v$. Then we define the Eisenstein series $E_{k}(\cdot ; v, S)$: $\mathcal{H} \rightarrow \mathbb{C}\left[\Lambda^{\sharp} / \Lambda\right]$ by

$$
E_{k}(\tau ; v, S)=\frac{1}{2} \sum_{g: \tilde{\Gamma}_{\infty} \backslash \operatorname{Mp}(2 ; \mathbb{Z})} \rho_{S}(g)^{-1}\left(\left.v\right|_{k} g\right)(\tau),
$$

where the sum runs over a set of representatives of $\widetilde{\Gamma}_{\infty} \backslash \operatorname{Mp}(2 ; \mathbb{Z})$ and where v is considered as constant function $\mathcal{H} \rightarrow \mathbb{C}\left[\Lambda^{\sharp} / \Lambda\right]$.

Remark a) Due to $\rho_{S}(T) v=v$ the definition is independent of the choice of representatives of $\widetilde{\Gamma}_{\infty} \backslash \mathrm{Mp}(2 ; \mathbb{Z})$. Moreover, just as in the scalar case, the series converges normally on \mathcal{H} if (and only if) $k>2$.
b) The definition can be extended to allow arbitrary $v \in \mathbb{C}\left[\Lambda^{\sharp} / \Lambda\right]$ by taking the sum over a set of representatives of $\left(\widetilde{\Gamma}_{\infty} \cap \operatorname{ker} \rho_{S}\right) \backslash \operatorname{Mp}(2 ; \mathbb{Z})(c f$. [De01, Sec. 3.2]).

Let $v=\sum_{\mu \in \Lambda^{\sharp} / \Lambda} a(\mu) e_{\mu} \in \mathbb{C}\left[\Lambda^{\sharp} / \Lambda\right]$. Then the condition $\rho_{S}(T) v=v$ is obviously equivalent to $a(\mu)=0$ for all $\mu \in \Lambda^{\sharp} / \Lambda$ with $q(\mu) \notin \mathbb{Z}$. Moreover, $E_{k}(\cdot ; v, S)=$ $\sum_{\mu \in \Lambda^{\sharp} / \Lambda} a(\mu) E_{k}\left(\cdot ; e_{\mu}, S\right)$ if $\rho_{S}(T) v=v$. Therefore it is sufficient to consider the Eisenstein series $E_{k}\left(\cdot ; e_{\beta}, S\right)$ for $\beta \in \Lambda^{\sharp} / \Lambda$ with $q(\beta) \in \mathbb{Z}$.

Proposition 3.17 Let $k \in \frac{1}{2} \mathbb{Z}, k>2$, such that $2 k-b^{+}+b^{-} \equiv 0(\bmod 4)$. Moreover, let $\beta \in \Lambda^{\sharp} / \Lambda$ with $q(\beta) \in \mathbb{Z}$. Then

$$
E_{k}\left(\cdot ; e_{\beta}, S\right) \in\left[\operatorname{Mp}(2 ; \mathbb{Z}), k, \rho_{S}\right]
$$

Proof $E_{k}\left(\cdot ; e_{\beta}, S\right)$ converges normally on \mathcal{H} and thus defines a holomorphic function on \mathcal{H}. Since $\widetilde{\Gamma}_{\infty} \backslash \operatorname{Mp}(2 ; \mathbb{Z}) \rightarrow \widetilde{\Gamma}_{\infty} \backslash \operatorname{Mp}(2 ; \mathbb{Z}), \widetilde{\Gamma}_{\infty} g \mapsto \widetilde{\Gamma}_{\infty} g h$, is a bijection for all $h \in$ $\operatorname{Mp}(2 ; \mathbb{Z})$ we have

$$
\begin{aligned}
\left.E_{k}\left(\cdot ; e_{\beta}, S\right)\right|_{k} h & =\left.\frac{1}{2} \sum_{g: \tilde{\Gamma}_{\infty} \backslash \operatorname{Mp}(2 ; \mathbb{Z})} \rho_{S}(g)^{-1}\left(\left.e_{\beta}\right|_{k} g\right)\right|_{k} h \\
& =\left.\frac{1}{2} \sum_{g: \tilde{\Gamma}_{\infty} \backslash \operatorname{Mp}(2 ; \mathbb{Z})} \rho_{S}\left(g h h^{-1}\right)^{-1} e_{\beta}\right|_{k}(g h) \\
& =\left.\frac{1}{2} \sum_{g^{\prime}: \tilde{\Gamma}_{\infty} \backslash \operatorname{Mp}(2 ; \mathbb{Z})} \rho_{S}(h) \rho_{S}\left(g^{\prime}\right)^{-1} e_{\beta}\right|_{k} g^{\prime} \\
& =\rho_{S}(h) E_{k}\left(\cdot ; e_{\beta}, S\right)
\end{aligned}
$$

for all $h \in \operatorname{Mp}(2 ; \mathbb{Z})$. Finally, we have

$$
\lim _{y \rightarrow \infty} E_{k}\left(i y ; e_{\beta}, S\right)=\left.\frac{1}{2} \sum_{g \in\langle C\rangle} \rho_{S}(g)^{-1} e_{\beta}\right|_{k} g=e_{\beta}+e_{-\beta},
$$

i.e., $E_{k}\left(\cdot ; e_{\beta}, S\right)$ is bounded on $\left\{\tau \in \mathbb{C} ; \operatorname{Im}(\tau)>y_{0}\right\}$ for all $y_{0}>0$.

In [BK01] Bruinier and Kuss defined certain Eisenstein series E_{β}^{BK} and gave explicit formulas for the Fourier coefficients of E_{0}^{BK}. Their E_{β}^{BK} are defined via the dual representation ρ_{S}^{\sharp} while our Eisenstein series are defined via ρ_{S}, but, according to the remarks in Section $3.3, \rho_{S}^{\sharp}$ is essentially the same as ρ_{-S}, and thus we have $E_{\beta}^{\mathrm{BK}}=E_{k}\left(\cdot ; e_{\beta},-S\right)$. Due to this identification we can use their formulas to calculate the Fourier coefficients of $E_{k}\left(\cdot ; e_{0}, S\right)$.

3.5.2. Theta series

In this section we introduce vector-valued theta series. Our definition is based on the one used in [Pf53] and [Sh73].

Definition 3.18 Suppose that $S \in \operatorname{Sym}(l ; \mathbb{R})$ is an even positive definite matrix. Let $\Lambda=$ \mathbb{Z}^{l}.
a) Let $r \in \mathbb{Z}, r \geq 0$, and additionally $r \leq 1$ if $l=1$. A homogeneous spherical polynomial of degree r with respect to S is a function $p: \mathbb{R}^{l} \rightarrow \mathbb{C}$ of the form

$$
p(x)=\sum_{v \in \mathbb{C}^{l}} \alpha_{v}\left({ }^{t} v S x\right)^{r}
$$

with $\alpha_{v} \neq 0$ for finitely many vectors $v \in \mathbb{C}^{l}$ satisfying $S[v]=0$ if $r>1$.
b) Let p_{r} be a homogeneous spherical polynomial of degree r with respect to S. Then we define the theta series $\Theta\left(\cdot ; S, p_{r}\right): \mathcal{H} \rightarrow \mathbb{C}\left[\Lambda^{\sharp} / \Lambda\right]$ by

$$
\Theta\left(\tau ; S, p_{r}\right)=\sum_{\mu \in \Lambda^{\sharp} / \Lambda} \theta_{\mu}\left(\tau ; S, p_{r}\right) e_{\mu}
$$

where

$$
\theta_{\mu}\left(\tau ; S, p_{r}\right)=\sum_{\lambda \in \mu+\Lambda} p_{r}(\lambda) e^{\pi i S[\lambda] \tau} \quad \text { for } \tau \in \mathcal{H}
$$

According to Pfetzer ([Pf53]) and Shimura ([Sh73]), those theta series are holomorphic modular forms.

Theorem 3.19 Suppose that $S \in \operatorname{Sym}(l ; \mathbb{R})$ is an even positive definite matrix and that p_{r} is a homogeneous spherical polynomial of degree r with respect to S. Then $\Theta\left(\cdot ; S, p_{r}\right)$ is a modular form of weight $l / 2+r$ with respect to the Weil representation ρ_{S}, i.e.,

$$
\Theta\left(\cdot ; S, p_{r}\right) \in\left[\operatorname{Mp}(2 ; \mathbb{Z}), l / 2+r, \rho_{S}\right] .
$$

If $r>0$ then $\Theta\left(\cdot ; S, p_{r}\right)$ is a cusp form.
The Fourier expansion of the components $\theta_{\mu}, \mu \in \Lambda^{\sharp} / \Lambda$, of Θ is given by

$$
\theta_{\mu}\left(\tau ; S, p_{r}\right)=\sum_{\substack{n \in q(\mu)+\mathbb{Z} \\ n \geq 0}} c_{\mu}\left(n ; p_{r}\right) e^{2 \pi i n \tau}, \quad \text { where } \quad c_{\mu}\left(n ; p_{r}\right)=\sum_{\substack{\lambda \in \mu+\Lambda \\ q(\lambda)=n}} p_{r}(\lambda)
$$

Concrete examples of theta series will be constructed in Section 5.2.

4. Borcherds Products

In this chapter we apply the results of $[\mathrm{Bo} 98]$ and $[\mathrm{Br} 02]$ to our special case.
Let $S \in \operatorname{Pos}(l ; \mathbb{R})$ be an even positive definite matrix of degree $l \in \mathbb{N}$. Recall the definition of S_{0} and S_{1} as well as the definitions of the associated bilinear forms $(\cdot, \cdot),(\cdot, \cdot)_{0}$ and $(\cdot, \cdot)_{1}$ and the corresponding quadratic forms q, q_{0} and q_{1} from Section 1.2. Moreover, let $\Lambda=\mathbb{Z}^{l}, \Lambda_{0}=\mathbb{Z}^{l+2}, \Lambda_{1}=\mathbb{Z}^{l+4}$ and $V=\mathbb{R}^{l}, V_{0}=\mathbb{R}^{l+2}, V_{1}=\mathbb{R}^{l+4}$. Note that Λ_{1} together with $(\cdot, \cdot)_{1}$ is an even lattice of signature $(2, l+2)$. Furthermore, note that $q=q_{S}$ and thus $q_{1}((*, *, x, *, *))+\mathbb{Z}=q_{0}((*, x, *))+\mathbb{Z}=-q(x)+\mathbb{Z}$ for all $x \in V$.

Recall that the discriminant groups of Λ, Λ_{0} and Λ_{1} are canonically isomorphic. Therefore we will make no distinction between those groups or between the corresponding group algebras, i.e., we will often write $\mu\left(\in \Lambda^{\sharp} / \Lambda\right)$ and e_{μ} or $\mu_{0}\left(\in \Lambda_{0}^{\sharp} / \Lambda_{0}\right)$ and $e_{\mu_{0}}$ instead of the corresponding elements of $\Lambda_{1}^{\sharp} / \Lambda_{1}$ and $\mathbb{C}\left[\Lambda_{1}^{\sharp} / \Lambda_{1}\right]$. In particular, we will often denote the Fourier coefficients of a vector-valued modular form $f: \mathcal{H}_{S} \rightarrow \mathbb{C}\left[\Lambda_{1}^{\sharp} / \Lambda_{1}\right]$ by $c_{\mu}(n)$ or $c_{\mu_{0}}(n)$. Also, since the Weil representation $\rho_{S_{1}}$ is essentially the same as the dual Weil representation $\rho_{S}^{\sharp}\left(\cong \rho_{-S}\right)$, we will always use the latter even though using the former would be more correct. Moreover, by abuse of notation we will sometimes write an element μ of a discriminant group in place of an element λ of the corresponding dual lattice or vice versa. In this case we always mean an arbitrary element of the coset μ or the coset λ lies in, respectively. For example we often write $q(\mu)+\mathbb{Z}$ and $\mu+\Lambda$ for $\mu \in \Lambda^{\sharp} / \Lambda$, and we sometimes write $c_{\lambda}(n)$ instead of $c_{\lambda+\Lambda}(n)$ for $\lambda \in \Lambda^{\sharp}$. In any case it will always be clear from the context what is meant.

In order to apply Borcherds's theory we have to choose a primitive isotropic vector $z \in$ Λ_{1} and a second vector $z^{\sharp} \in \Lambda_{1}^{\sharp}$ such that $\left(z, z^{\sharp}\right)_{1}=1$. We choose and fix $z=(1,0, \ldots, 0)$ and $z^{\sharp}=(0, \ldots, 0,1)$. This choice allows us to identify $\left(\Lambda_{1} \cap z^{\perp}\right) / \mathbb{Z} z$ with the Lorentzian lattice $\Lambda_{0} \cong\{0\} \times \Lambda_{0} \times\{0\}=\Lambda_{1} \cap z^{\perp} \cap\left(z^{\sharp}\right)^{\perp}$.

4.1. Weyl chambers and the Weyl vector

We consider the Lorentzian lattice Λ_{0}, and set $z_{0}=(1,0, \ldots, 0)$ and $z_{0}^{\sharp}=(0, \ldots, 0,1)$. Then z_{0} is a primitive isotropic element of Λ_{0} and $z_{0} \in \Lambda_{0}^{\sharp}$ with $\left(z_{0}, z_{0}^{\sharp}\right)_{0}=1$. Therefore we can identify $\left(\Lambda_{0} \cap z_{0}^{\perp}\right) / \mathbb{Z} z_{0}$ with the negative definite lattice $\Lambda \cong\{0\} \times \Lambda \times\{0\}=$ $\Lambda_{0} \cap z_{0}^{\perp} \cap\left(z_{0}^{\sharp}\right)^{\perp}$. Note that z_{0} is in the closure of the cone \mathcal{P}_{S} of positive norm vectors of $V_{0}=\Lambda_{0} \otimes \mathbb{R}$ we fixed in section 1.2.

Definition 4.1 Let $\mathcal{P}_{S}^{1}=\left\{v \in \mathcal{P}_{S} ; q_{0}(v)=1\right\}$ be the subset of norm 1 vectors in \mathcal{P}_{S}.
a) For $\mu \in \Lambda^{\sharp} / \Lambda$ and $n \in-q(\mu)+\mathbb{Z}, n<0$, we define the subset $H_{0}(\mu, n)$ of \mathcal{P}_{S}^{1} by

$$
H_{0}(\mu, n)=\bigcup_{\substack{\lambda_{0} \in(0, \mu, 0)+\Lambda_{0} \\ q_{0}\left(\lambda_{0}\right)=n}} \lambda_{0}^{\perp}
$$

where λ_{0}^{\perp} is the orthogonal complement of λ_{0} in \mathcal{P}_{S}^{1}. Then the connected components of $\mathcal{P}_{S}^{1}-H_{0}(\mu, n)$ are called Weyl chambers of \mathcal{P}_{S}^{1} of index (μ, n).
b) Let $f: \mathcal{H}_{S} \rightarrow \mathbb{C}\left[\Lambda_{1}^{\sharp} / \Lambda_{1}\right]$ be a nearly holomorphic modular form of weight $k=-l / 2$ with respect to the dual Weil representation ρ_{S}^{\sharp}. Suppose that f has Fourier expansion

$$
\sum_{\mu \in \Lambda^{\sharp} / \Lambda} \sum_{n \in-q(\mu)+\mathbb{Z}} c_{\mu}(n) q^{n} e_{\mu} .
$$

Then the connected components of

$$
\mathcal{P}_{S}^{1}-\bigcup_{\substack{\mu \in \Lambda^{\sharp} / \Lambda}} \bigcup_{\substack{n \in-q(\mu)+\mathbb{Z} \\ n<0, c_{\mu}(n) \neq 0}} H_{0}(\mu, n)
$$

are called Weyl chambers of \mathcal{P}_{S}^{1} with respect to f.
c) Let W be a Weyl chamber (of either type) and $\lambda_{0} \in \Lambda_{0}^{\sharp}$. Then we write $\left(\lambda_{0}, W\right)_{0}>0$ if $\left(\lambda_{0}, w\right)_{0}>0$ for all $w \in W$.

The Weyl chambers are usually not explicitly given. Therefore a condition of the form $\left(\lambda_{0}, W\right)_{0}>0$ is hard to verify. Luckily, it often suffices to check the condition for a single element of a Weyl chamber.

Lemma 4.2 Let W be a Weyl chamber of \mathcal{P}_{S}^{1} with respect to a nearly holomorphic modular form f with Fourier expansion

$$
\sum_{\mu \in \Lambda^{\sharp} / \Lambda} \sum_{n \in-q(\mu)+\mathbb{Z}} c_{\mu}(n) q^{n} e_{\mu} .
$$

If $\lambda_{0} \in \Lambda_{0}^{\sharp}$ with $c_{\lambda_{0}}\left(q_{0}\left(\lambda_{0}\right)\right) \neq 0$ and $\left(\lambda_{0}, v\right)_{0}>0$ for one vector $v \in W$ then $\left(\lambda_{0}, W\right)_{0}>0$, i.e., $\left(\lambda_{0}, w\right)_{0}>0$ for all $w \in W$.

Proof Obviously we have

$$
W=\bigcap_{\mu \in \Lambda^{\sharp} / \Lambda} \bigcap_{\substack{n \in-q(\mu)+\mathbb{Z} \\ n<0, c_{\mu}(n) \neq 0}} W_{\mu, n}
$$

for suitable Weyl chambers $W_{\mu, n}$ of index (μ, n) (cf. [$\left.\left.\operatorname{Br} 02, \mathrm{p} .88\right]\right)$. Since $c_{\lambda_{0}}\left(q_{0}\left(\lambda_{0}\right)\right) \neq 0$ we either have $q_{0}\left(\lambda_{0}\right) \geq 0$ or $q_{0}\left(\lambda_{0}\right)=n<0$ and $\lambda_{0} \in(0, \mu, 0)+\Lambda_{0}$ for one of the Weyl chambers $W_{\mu, n}$ which occur in the above section. Therefore we can apply [Br02, La. 3.2]
(where, in case of $q_{0}\left(\lambda_{0}\right) \geq 0$, we choose an arbitrary Weyl chamber $W_{\mu, n}$ occurring in the section) and get $\left(\lambda_{0}, w\right)_{0}>0$ for all $w \in W_{\mu, n} \supset W$.

Definition 4.3 Let f be a nearly holomorphic modular form with Fourier expansion

$$
\sum_{\mu \in \Lambda^{\sharp} / \Lambda} \sum_{n \in-q(\mu)+\mathbb{Z}} c_{\mu}(n) q^{n} e_{\mu},
$$

and let W be a Weyl chamber of \mathcal{P}_{S}^{1} with respect to f such that z_{0} lies in the closure of the positive cone generated by W. Then we define the Weyl vector $\varrho_{f}(W) \in V_{0}$ of W by $\varrho_{f}(W)=\left(\varrho_{z_{0}}, \varrho, \varrho_{z_{0}^{\sharp}}\right)$ where

$$
\begin{align*}
\varrho_{z_{0}} & =\frac{1}{24} \sum_{\lambda \in \Lambda^{\sharp}} c_{\lambda}(-q(\lambda)), \\
\varrho & =-\frac{1}{2} \sum_{\substack{\lambda \in \Lambda^{\sharp} \\
\left((0, \lambda,)^{\sharp}, W\\
\right)_{0}>0}} c_{\lambda}(-q(\lambda)) \lambda, \tag{4.1}\\
\varrho_{z_{0}^{\sharp}} & =\varrho_{z_{0}}-\sum_{n=1}^{\infty} \sigma_{1}(n) \sum_{\lambda \in \Lambda^{\sharp}} c_{\lambda}(-n-q(\lambda)),
\end{align*}
$$

and $\sigma_{1}(n)=\sum_{d \mid n} d$ is the sum of divisors of n.

Note that the sums which occur in the definition of the components of the Weyl vector are all finite since $q=q_{S}$ is positive definite. Therefore and due to Lemma 4.2 we can explicitly calculate the Weyl vector of the Weyl chamber W with respect to f if the Fourier coefficients of the principal part of f are known and if we find a suitable $v \in W$.

Proposition 4.4 Our definition of the Weyl vector is compatible with Borcherds's definition in [Bo98, Sec. 10].

Proof According to [Bo98, Th. 10.4] and the correction in the introduction of [Bo00] the Weyl vector defined in [Bo98, Sec. 10] is equal to $\left(\varrho_{z_{0}}, \varrho, \varrho_{z_{0}}\right)$ with

$$
\begin{aligned}
\varrho_{z_{0}} & =-q_{0}\left(z_{0}^{\sharp}\right) \varrho_{z_{0}^{\sharp}}+\frac{1}{4} \sum_{\lambda \in \Lambda^{\sharp}} \sum_{\substack{\delta \in \Lambda_{0}^{\sharp} / \Lambda_{0} \\
\delta=(0, \lambda, 0)+\Lambda_{0}}} c_{\delta}(-q(\lambda)) B_{2}\left(\left(\delta, z_{0}^{\sharp}\right)_{0}\right), \\
\varrho & =-\frac{1}{2} \sum_{\substack{\lambda \in \Lambda^{\sharp},(0, \lambda, 0) \in \Lambda_{0}^{\sharp} \\
((0, \lambda, 0), W)_{0}>0}} c_{(0, \lambda, 0)}(-q(\lambda)) \lambda, \\
\varrho_{z_{0}^{\sharp}} & =\text { constant term of } \bar{\Theta}_{\Lambda}(\tau) f_{\Lambda}(\tau) E_{2}(\tau) / 24,
\end{aligned}
$$

where $B_{2}(x)=x^{2}-x+\frac{1}{6}$ for $0 \leq x \leq 1$ is a Bernoulli piecewise polynomial,

$$
\bar{\Theta}_{\Lambda}(\tau)=\sum_{\mu \in \Lambda^{\sharp} / \Lambda} \sum_{\lambda \in \mu+\Lambda} e^{2 \pi i q(\lambda) \tau} e_{-\mu}
$$

is a certain vector-valued theta series, f_{Λ} (as defined in [Bo98, p. 512]) is in our situation equal to f,

$$
E_{2}(\tau)=1-24 \sum_{n=1}^{\infty} \sigma_{1}(n) q^{n}
$$

is the elliptic Eisenstein series of weight 2 , and $\bar{\Theta}_{\Lambda} f_{\Lambda}$ is the inner product of $\bar{\Theta}_{\Lambda}$ and f_{Λ} with $\left(e_{\mu}, e_{\mu^{\prime}}\right)=1$ for $\mu, \mu^{\prime} \in \Lambda^{\sharp} / \Lambda$ if $\mu+\mu^{\prime}=0$ and 0 otherwise.

Since $q_{0}\left(z_{0}^{\sharp}\right)=0$ the first term in the formula for $\varrho_{z_{0}}$ vanishes. Moreover, $\left(\delta, z_{0}^{\sharp}\right)_{0}=0$ for all $\delta \in \Lambda_{0}^{\sharp} / \Lambda_{0}$ with $\delta=(0, \lambda, 0)+\Lambda_{0}$. Thus the formula for $\varrho_{z_{0}}$ can be simplified to

$$
\varrho_{z_{0}}=\frac{1}{4} \sum_{\lambda \in \Lambda^{\sharp}} c_{(0, \lambda, 0)}(-q(\lambda)) B_{2}(0)=\frac{1}{24} \sum_{\lambda \in \Lambda^{\sharp}} c_{\lambda}(-q(\lambda)) .
$$

Because of $\Lambda_{0}^{\sharp}=\mathbb{Z} \times \Lambda^{\sharp} \times \mathbb{Z}$ the additional condition $(0, \lambda, 0) \in \Lambda_{0}^{\sharp}$ in the formula for ϱ can be omitted.

Finally we calculate the constant term of $\bar{\Theta}_{\Lambda}(\tau) f(\tau) E_{2}(\tau) / 24$. Let $\alpha(g ; n)$ denote the n-th Fourier coefficient of g. Then

$$
\begin{equation*}
\varrho_{z_{0}^{\sharp}}=\alpha\left(\bar{\Theta}_{\Lambda} f E_{2} / 24 ; 0\right)=\frac{1}{24} \alpha\left(\bar{\Theta}_{\Lambda} f ; 0\right)-\sum_{n=1}^{\infty} \sigma_{1}(n) \alpha\left(\bar{\Theta}_{\Lambda} f ;-n\right) . \tag{4.2}
\end{equation*}
$$

With the above Fourier expansions for f and Θ_{Λ} we get

$$
\begin{aligned}
\bar{\Theta}_{\Lambda}(\tau) f(\tau) & =\left(\sum_{\mu \in \Lambda^{\sharp} / \Lambda}\left(\sum_{\lambda \in \mu+\Lambda} q^{q(\lambda)}\right) e_{-\mu}\right) \cdot\left(\sum_{\mu \in \Lambda^{\sharp} / \Lambda}\left(\sum_{n \in-q(\mu)+\mathbb{Z}} c_{\mu}(n) q^{n}\right) e_{\mu}\right) \\
& =\sum_{\mu \in \Lambda^{\sharp} / \Lambda}\left(\sum_{\lambda \in \mu+\Lambda} q^{q(\lambda)}\right) \cdot\left(\sum_{n \in-q(\mu)+\mathbb{Z}} c_{\mu}(n) q^{n}\right)
\end{aligned}
$$

and thus

$$
\alpha\left(\bar{\Theta}_{\Lambda} f ;-n\right)=\sum_{\mu \in \Lambda^{\sharp} / \Lambda} \sum_{\lambda \in \mu+\Lambda} c_{\mu}(-n-q(\lambda))=\sum_{\lambda \in \Lambda^{\sharp}} c_{\lambda}(-n-q(\lambda)) .
$$

Inserting this into (4.2) yields

$$
\begin{aligned}
\varrho_{z_{0}^{\sharp}} & =\frac{1}{24} \sum_{\lambda \in \Lambda^{\sharp}} c_{\lambda}(-q(\lambda))-\sum_{n=1}^{\infty} \sigma_{1}(n) \sum_{\lambda \in \Lambda^{\sharp}} c_{\lambda}(-n-q(\lambda)) \\
& =\varrho_{z_{0}}-\sum_{n=1}^{\infty} \sigma_{1}(n) \sum_{\lambda \in \Lambda^{\sharp}} c_{\lambda}(-n-q(\lambda)) .
\end{aligned}
$$

Remark For the special case where Λ is the maximal order of an imaginary quadratic field with quadratic form $q(z)=|z|^{2}$ this result can already be found in [DK03].

Next we will define a special Weyl chamber W_{f} which will allow us to replace the hard-to-check condition $(\lambda, W)_{0}>0$ appearing in the definition of the Weyl vector by a much nicer condition.

Proposition 4.5 For $x \in \mathbb{R}, x>0$, we define the vectors $\alpha(x):=\left(1, \ldots, x^{l-1}\right) \in \mathbb{R}^{l}$ and $v(x):=\left(1,-x^{2} \alpha(x), x\right) \in \mathbb{R}^{l+2}$. Moreover, we set $v_{1}(x):=v(x) / \sqrt{q_{0}(v(x))}$ whenever $q_{0}(v(x))>0$.
a) For small positive values of x we have $v(x) \in \mathcal{P}_{S}$ and $v_{1}(x) \in \mathcal{P}_{S}^{1}$.
b) Suppose that f is a nearly holomorphic modular form with Fourier expansion

$$
\sum_{\mu \in \Lambda^{\sharp} / \Lambda} \sum_{n \in-q(\mu)+\mathbb{Z}} c_{\mu}(n) q^{n} e_{\mu} .
$$

Then there exists a Weyl chamber W of \mathcal{P}_{S}^{1} with respect to f such that $v_{1}(x) \in W$ for small values of $x>0$, i.e., there exists an $x_{0} \in \mathbb{R}, x_{0}>0$, such that $\left\{v_{1}(x) ; 0<x<\right.$ $\left.x_{0}\right\} \cap \lambda_{0}^{\perp}=\emptyset$ for all $\lambda_{0} \in \Lambda_{0}^{\sharp}$ with $q_{0}\left(\lambda_{0}\right)<0$ and $c_{\lambda_{0}}\left(q_{0}\left(\lambda_{0}\right)\right) \neq 0$.

PRoof a) For $x \rightarrow 0$ we have $q_{0}(v(x))=x-x^{4} q(\alpha(x))=x+O\left(x^{4}\right)$. Thus the definition of \mathcal{P}_{S} implies that $v(x) \in \mathcal{P}_{S}$ for small positive values of x. For those x we obviously have $v_{1}(x) \in \mathcal{P}_{S}^{1}$.
b) By virtue of a) we have $v_{1}(x) \in \mathcal{P}_{S}^{1}$ for small values of $x>0$. Suppose that for arbitrary small values of $x_{0}>0$ there is a $\lambda_{0}=(m, \lambda, n) \in \Lambda_{0}^{\sharp}$ with $q_{0}\left(\lambda_{0}\right)<0$ and $c_{\lambda_{0}}\left(q_{0}\left(\lambda_{0}\right)\right) \neq 0$ such that $v_{1}(x) \in \lambda_{0}^{\perp}$ for some $0<x<x_{0}$. Then

$$
0=\left(v_{1}(x), \lambda_{0}\right)=\left(v(x), \lambda_{0}\right)=m x+n+x^{2}(\alpha(x), \lambda) .
$$

Case 1: $(m, n) \neq(0,0)$. Due to the Cauchy-Schwarz inequality we have

$$
(m x+n)^{2}=x^{4}(\alpha(x), \lambda)^{2} \leq x^{4}(\alpha(x), \alpha(x)) \cdot(\lambda, \lambda)=4 x^{4} q(\alpha(x)) q(\lambda)
$$

and thus

$$
q_{0}\left(\lambda_{0}\right)=m n-q(\lambda) \leq m n-\frac{(m x+n)^{2}}{4 x^{4} q(\alpha(x))}
$$

This implies that $q_{0}\left(\lambda_{0}\right)$ tends to $-\infty$ for small values of $x>0$ which is impossible because $c_{\lambda_{0}}(m)=0$ for $m \ll 0$.
Case 2: $(m, n)=(0,0)$. Since $\Lambda^{\sharp}=S^{-1} \Lambda$ there is a $t={ }^{t}\left(t_{1}, \ldots, t_{l}\right) \in \Lambda=\mathbb{Z}^{l}$ such that $\lambda=S^{-1} t$. Note that $t \neq 0$ because $q_{0}\left(\lambda_{0}\right)=-q(\lambda)<0$. Because of $m=n=0$ we have

$$
\begin{equation*}
0=(\alpha(x), \lambda)=\left(\alpha(x), S^{-1} t\right)=\sum_{j=1}^{l} t_{j} x^{j-1} \tag{4.3}
\end{equation*}
$$

Let $r:=\min _{1 \leq j \leq l}\left\{j ; t_{j} \neq 0\right\}$ and $s:=\max _{1 \leq j \leq l}\left\{j ; t_{j} \neq 0\right\}$. Then (4.3) and $x \neq 0$ imply $r \neq s$. We get

$$
t_{s}=-\sum_{j=r}^{s-1} t_{j} x^{j-s}=-\frac{t_{r}}{x^{s-r}}+O\left(\frac{1}{x^{s-r-1}}\right)
$$

for $x \downarrow 0$. Now we consider

$$
\begin{aligned}
-q_{0}\left(\lambda_{0}\right) & =q(\lambda)=q_{S^{-1}}(t)=\sum_{r \leq j, k \leq s}\left(S^{-1}\right)_{j, k} t_{j} t_{k} \\
& =\sum_{r \leq j, k \leq s-1}\left(S^{-1}\right)_{j, k} t_{j} t_{k}+2 \sum_{j=r}^{s-1}\left(S^{-1}\right)_{j, s} t_{j} t_{s}+\left(S^{-1}\right)_{s, s} t_{s}^{2} \\
& =\left(S^{-1}\right)_{s, s} \frac{t_{r}^{2}}{x^{2 s-2 r}}+O\left(\frac{1}{x^{2 s-2 r-1}}\right) .
\end{aligned}
$$

Since S is positive definite we have $\left(S^{-1}\right)_{s, s}>0$. Thus, just as in the first case, we get a contradiction because $q_{0}\left(\lambda_{0}\right)$ tends to $-\infty$ for small values of $x>0$.

Definition 4.6 For $x \in \mathbb{R}, 0<x \ll 1$, let $v_{1}(x)$ be defined as in Proposition 4.5. Let f be a nearly holomorphic modular form. Then we denote the uniquely determined Weyl chamber of \mathcal{P}_{S}^{1} with respect to f that contains $v_{1}(x)$ for small values of x by W_{f} and call it the Weyl chamber of f. Moreover, we denote the corresponding Weyl vector $\varrho_{f}\left(W_{f}\right)$ simply by ϱ_{f} and call it the Weyl vector of f.

Note that $z_{0}=(1,0 \ldots, 0)$ is contained in the closure of the positive cone of the Weyl chamber W_{f} since $v(x)$ (as defined in Proposition 4.5) is contained in the positive cone for small values of x and converges to z_{0} for $x \rightarrow 0$. Thus the Weyl vector ϱ_{f} is well-defined.
Next we define a certain type of positive vectors. As we will show this positiveness coincides with positiveness with respect to the Weyl chamber W_{f}. The definition differs from the definition of positive vectors introduced in Section 2.1, but this should not lead to confusion.

Definition 4.7 Let $t={ }^{t}\left(t_{1}, \ldots, t_{l}\right) \in \Lambda=\mathbb{Z}^{l}$. We write $t>0$ if there is a $j \in \mathbb{N}$, $1 \leq j \leq l$, such that $t_{1}=\ldots=t_{j-1}=0$ and $t_{j}>0$. For $\lambda=S^{-1} t \in \Lambda^{\sharp}$ we write $\lambda>0$
if $t>0$, and for $\lambda_{0}=(m, \lambda, n) \in \Lambda_{0}^{\sharp}$ we write $\lambda_{0}>0$ if $n>0$ or $n=0$ and $m>0$ or $m=n=0$ and $\lambda>0$. Additionally, we write $t<0, \lambda<0$ and $\lambda_{0}<0$ if $-t>0,-\lambda>0$ and $-\lambda_{0}>0$, respectively.
Note that for each $t \in \mathbb{Z}^{l}$ we have either $t>0$ or $t<0$ or $t=0$. Analogous assertions hold for $\lambda \in \Lambda^{\sharp}$ and $\lambda_{0} \in \Lambda_{0}^{\sharp}$.
Proposition 4.8 Suppose that f is a nearly holomorphic modular form with Fourier expansion

$$
\sum_{\mu \in \Lambda^{\sharp} / \Lambda} \sum_{n \in-q(\mu)+\mathbb{Z}} c_{\mu}(n) q^{n} e_{\mu} .
$$

Let W_{f} be the corresponding Weyl chamber of \mathcal{P}_{S}^{1}. Then for all $\lambda_{0} \in \Lambda_{0}^{\sharp}$ with $c_{\lambda_{0}}\left(q_{0}\left(\lambda_{0}\right)\right) \neq$ 0 we have $\left(\lambda_{0}, W_{f}\right)>0$ if and only if $\lambda_{0}>0$.
Proof Let $\lambda_{0}=(m, \lambda, n) \in \Lambda_{0}^{\sharp}$ with $c_{\lambda_{0}}\left(q_{0}\left(\lambda_{0}\right)\right) \neq 0$, and let $t={ }^{t}\left(t_{1}, \ldots, t_{l}\right) \in \Lambda=$ \mathbb{Z}^{l} such that $\lambda=S^{-1} t$. For $x \in \mathbb{R}, 0<x \ll 1$ let $v(x)$ and $v_{1}(x)$ be defined as in Proposition 4.5. By virtue of Lemma 4.2 we have $\left(\lambda_{0}, W_{f}\right)>0$ if and only if $\left(\lambda_{0}, v_{1}(x)\right)>$ 0 (whenever $x>0$ such that $v_{1}(x) \in W_{f}$). Since $v_{1}(x)$ is a positive multiple of $v(x)$ we have $\left(\lambda_{0}, v_{1}(x)\right)>0$ if and only if $\left(\lambda_{0}, v(x)\right)>0$. The claim now follows from the fact that the inequality

$$
\left(\lambda_{0}, v(x)\right)=n+m x+x^{2}\left(t_{1}+\ldots+t_{l} x^{l-1}\right)>0
$$

is satisfied for arbitrary small values of x if and only if $\lambda_{0}>0$.

4.2. Quadratic divisors

For the purpose of this chapter we introduce a different realization of \mathcal{H}_{S} as subvariety of the projective space $P\left(V_{1}(\mathbb{C})\right):=\left\{[Z] ; Z \in V_{1}(\mathbb{C})\right\}$ associated to the complexification $V_{1}(\mathbb{C})=V_{1} \otimes \mathbb{C}$ of V_{1}. We extend the bilinear form $(\cdot, \cdot)_{1}: V_{1} \times V_{1} \rightarrow \mathbb{R}$ to a \mathbb{C}-bilinear form on $V_{1}(\mathbb{C})$. Let

$$
\mathcal{N}:=\left\{[Z] \in P\left(V_{1}(\mathbb{C})\right) ; q_{1}(Z)=0\right\}
$$

be the zero-quadric in $P\left(V_{1}(\mathbb{C})\right)$ and

$$
\mathcal{K}:=\left\{[Z] \in \mathcal{N} ;(Z, \bar{Z})_{1}>0\right\} .
$$

If $Z=X+i Y \in V_{1}(\mathbb{C})$ then $[Z] \in \mathcal{K}$ if and only if $q_{1}(X)=q_{1}(Y)>0$ and $(X, Y)_{1}=0$. We define a map $\iota: \mathcal{H}_{S} \cup\left(-\mathcal{H}_{S}\right) \rightarrow P\left(V_{1}(\mathbb{C})\right)$ by

$$
\iota(w)=\left[\left(-q_{0}(w), w, 1\right)\right] \quad \text { for all } w \in \mathcal{H}_{S} \cup\left(-\mathcal{H}_{S}\right)
$$

Let $w=u+i v \in \mathcal{H}_{S} \cup\left(-\mathcal{H}_{S}\right)$. Then $\iota(w)=[X+i Y]$ with $X=\left(q_{0}(v)-q_{0}(u), u, 1\right)$ and $Y=\left(-(u, v)_{0}, v, 0\right)$. Because of $q_{1}(X)=q_{1}(Y)=q_{0}(v)>0$ and $(X, Y)_{1}=(u, v)_{0}-$ $(u, v)_{0}=0$ for all $w \in \mathcal{H}_{S} \cup\left(-\mathcal{H}_{S}\right)$ we conclude $\iota(w) \in \mathcal{K}$ for all $w \in \mathcal{H}_{S} \cup\left(-\mathcal{H}_{S}\right)$.

Conversely, let $[Z]=[X+i Y] \in \mathcal{K}$. Since X and Y span a two-dimensional (and thus maximal) positive definite subspace of V_{1} we have $(Z, z)_{1} \neq 0$, where $z=(1,0, \ldots, 0)$ is the isotropic vector we fixed at the begin of this chapter. Therefore $[Z]$ has a unique representation of the form $\left[\left(-q_{0}\left(Z_{0}\right), Z_{0}, 1\right)\right], Z_{0} \in V_{0}(\mathbb{C}) \cong \mathbb{C}^{l+2}$. Now as above $[Z] \in \mathcal{K}$ implies $q_{0}\left(\operatorname{Im}\left(Z_{0}\right)\right)>0$ and thus $Z_{0} \in \mathcal{H}_{S} \cup\left(-\mathcal{H}_{S}\right)$.

We conclude that ι biholomorphically maps $\mathcal{H}_{S} \cup\left(-\mathcal{H}_{S}\right)$ to \mathcal{K}, and we denote the image of \mathcal{H}_{S} under ι by \mathcal{K}^{+}.

On \mathcal{K} the orthogonal group $\mathrm{O}\left(S_{1} ; \mathbb{R}\right)$ acts in a natural way (induced by the action on $\left.V_{1}\right)$. This action is (of course) exactly the same as the action of $\mathrm{O}\left(S_{1} ; \mathbb{R}\right)$ on $\mathcal{H}_{S} \cup\left(-\mathcal{H}_{S}\right)$ we introduced in Section 1.2. The subgroup $\mathrm{O}^{+}\left(S_{1} ; \mathbb{R}\right)$ of $\mathrm{O}\left(S_{1} ; \mathbb{R}\right)$ maps \mathcal{K}^{+}onto itself.

Definition 4.9 Suppose $0 \neq \lambda=\left(l_{-1}, \lambda_{0}, l_{l+2}\right) \in \Lambda_{1}^{\sharp}$. We define the rational quadratic divisor λ^{\perp} for λ by

$$
\lambda^{\perp}=\left\{w \in \mathcal{H}_{S} ; l_{-1}+\left(\lambda_{0}, w\right)_{0}-l_{l+2} q_{0}(w)=0\right\} .
$$

Let $\lambda_{p} \in \mathbb{Q} \lambda \cap \Lambda_{1}^{\sharp}$ be primitive. Then the discriminant $\delta\left(\lambda^{\perp}\right)$ of λ^{\perp} is defined by

$$
\delta\left(\lambda^{\perp}\right)=-N q_{1}\left(\lambda_{p}\right)
$$

where N is the level of Λ_{1}.
Remark 4.10 The discriminant is well-defined since the primitive vector λ_{p} corresponding to λ is uniquely determined up to the sign.

We have $w \in \lambda^{\perp}$ if and only if $\left(\lambda,\left(-q_{0}(w), w, 1\right)\right)_{1}=0$. Thus $\mathrm{O}^{+}\left(S_{1} ; \mathbb{R}\right)$ acts on the set of all rational quadratic divisors via

$$
M \lambda^{\perp}:=(M \lambda)^{\perp}=\left\{M\langle w\rangle ; w \in \lambda^{\perp}\right\}
$$

Obviously, the discriminant is invariant under this action.
Proposition 4.11 Let S be one of the matrices listed in (1.2). Then Γ_{S} acts transitively on the set of rational quadratic divisors of fixed discriminant, i.e., if $\lambda_{1}, \lambda_{2} \in \Lambda_{1}^{\sharp}$ such that $\delta\left(\lambda_{1}^{\perp}\right)=\delta\left(\lambda_{2}^{\perp}\right)$ then there exists an $M \in \Gamma_{S}$ such that $\lambda_{1}^{\perp}=M \lambda_{2}^{\perp}$.

Proof Each rational quadratic divisor is generated by a uniquely (up to the sign) determined primitive vector in Λ_{1}^{\sharp}. According to [FH00, La. 4.6] the group Γ_{S} acts transitively on the set of primitive vectors in Λ_{1}^{\sharp} of the same norm. Thus Γ_{S} also acts transitively on the set of rational quadratic divisors of the same discriminant.

4.3. Borcherds products

Now we can state the main result of [Bo98] adapted to our situation.

Theorem 4.12 Suppose that S is an even positive definite matrix of degree l. Given a nearly holomorphic modular form $f \in\left[\operatorname{Mp}(2 ; \mathbb{Z}),-l / 2, \rho_{S}^{\sharp}\right]_{\infty}$ of weight $-l / 2$ with respect to the dual Weil representation ρ_{S}^{\sharp} with Fourier expansion

$$
f(\tau)=\sum_{\mu \in \Lambda^{\sharp} / \Lambda} \sum_{n \in-q(\mu)+\mathbb{Z}} c_{\mu}(n) q^{n} e_{\mu}
$$

such that $c_{0}(0) \in 2 \mathbb{Z}$ and $c_{\mu}(n) \in \mathbb{Z}$ whenever $n<0$, there exists a Borcherds product $\psi_{k}: \mathcal{H}_{S} \rightarrow \mathbb{C}$ with the following properties:
a) ψ_{k} is a meromorphic modular form of weight $k=c_{0}(0) / 2$ with respect to $\mathrm{O}_{\mathrm{d}}\left(\Lambda_{1}\right) \cap \Gamma_{S}$ and some Abelian character χ of finite order.
b) The only zeros and poles of ψ_{k} lie on rational quadratic divisors. If $\lambda \in \Lambda_{1}^{\sharp}$ is primitive with $q_{1}(\lambda)<0$ then the order of ψ_{k} along λ^{\perp} is given by

$$
\sum_{r=1}^{\infty} c_{r \lambda}\left(r^{2} q_{1}(\lambda)\right)
$$

c) Let ϱ_{f} be the Weyl vector of f. Moreover, let $n_{0}:=\min \left\{n \in \mathbb{Q} ; c_{\gamma}(n) \neq 0\right\}$, and let \mathcal{S} be the set of poles of ψ_{k}. Then on $\left\{w=u+i v \in \mathcal{H}_{S} ; q_{0}(v)>\left|n_{0}\right|\right\}-\mathcal{S}$ the function ψ_{k} is given by the normally convergent product expansion

$$
\begin{equation*}
\psi_{k}(w)=e^{2 \pi i\left(\varrho_{f}, w\right)_{0}} \prod_{\substack{\lambda_{0} \in \Lambda_{0}^{\sharp} \\ \lambda_{0}>0}}\left(1-e^{2 \pi i\left(\lambda_{0}, w\right)_{0}}\right)^{c_{\lambda_{0}}\left(q_{0}\left(\lambda_{0}\right)\right)} . \tag{4.4}
\end{equation*}
$$

Proof Apply [Bo98, Thm. 13.3] and [Br02, Thm. 3.22] to our special case and take the other results from this chapter into account.

Note that the theorem only gives us modular forms with respect to the subgroup $\mathrm{O}_{\mathrm{d}}\left(\Lambda_{1}\right) \cap$ Γ_{S} of the full modular group Γ_{S}. But due to the explicitly given product expansion (4.4) we can explicitly check how the Borcherds product ψ_{k} transforms under the additional generators of Γ_{S} which do not fix the discriminant group, and thus we can show that the Borcherds products are in fact modular forms with respect to the full modular group. Moreover, we get explicit formulas for the values of the characters of the Borcherds products. By virtue of Proposition 1.15 we only have to consider how ψ_{k} transforms under matrices of the form $R_{A}, A \in \mathrm{O}(\Lambda)$.

Proposition 4.13 Let $A \in \mathrm{O}(\Lambda)$, and let ψ be a Borcherds product with product expansion
(4.4). Then

$$
\begin{aligned}
\frac{\psi\left(R_{A}\langle w\rangle\right)}{\psi(w)} & =\prod_{\substack{t \in \mathbb{Z}_{t}^{l} \\
t>0, t_{A t<} \\
\lambda=S^{-1} t}}\left(e^{\pi i^{t}(t A t-t) z} \frac{1-e^{-2 \pi i^{t}\left(t^{t} A t\right) z}}{1-e^{-2 \pi i^{t} t z}}\right)^{c_{\lambda}(-q(\lambda))} \times \\
& \times \prod_{\substack{t \in \mathbb{Z}^{l} \\
t>0, A_{t t>0} \\
\lambda=S^{-1} t}}\left(e^{\pi^{t} t(t A t-t) z}\right)^{c_{\lambda}(-q(\lambda))}
\end{aligned}
$$

for all $w=\left(\tau_{1}, z, \tau_{2}\right)$ in the domain of convergence.
Proof First of all note that for all w in the domain of convergence $R_{A}\langle w\rangle=\widetilde{R}_{A} w$, where $\widetilde{R}_{A}=I_{1} \times A \times I_{1}$, also lies in the domain of convergence. Thus we can insert $R_{A}\langle w\rangle$ in the product expansion of ψ and get

$$
\frac{\psi\left(R_{A}\langle w\rangle\right)}{\psi(w)}=e^{2 \pi i\left(e_{f}, R_{A}\langle w\rangle-w\right)_{0}} \prod_{\substack{\lambda_{0} \in \Lambda_{0}^{\sharp} \\ \lambda_{0}>0}}\left(\frac{1-e^{2 \pi i\left(\lambda_{0}, R_{A}\langle w\rangle\right)_{0}}}{1-e^{2 \pi i\left(\lambda_{0}, w\right)_{0}}}\right)^{c_{\lambda_{0}}\left(q_{0}\left(\lambda_{0}\right)\right)}
$$

First we look at $\left(\lambda_{0}, R_{A}\langle w\rangle\right)_{0}$. Let $\lambda_{0}=\left(m, S^{-1} t, n\right)$ and $w=\left(\tau_{1}, z, \tau_{2}\right)$. We have

$$
\left(S^{-1} t, A z\right)={ }^{t}\left(S^{-1} t\right) S A z={ }^{t}\left({ }^{t} A t\right) z
$$

and

$$
S^{-1 t} A=A^{-1} S^{-1}
$$

since $A \in \mathrm{O}(\Lambda)$. Therefore

$$
\begin{aligned}
\left(\lambda_{0}, R_{A}\langle w\rangle\right)_{0} & =\left(\left(m, S^{-1} t, n\right),\left(\tau_{1}, A z, \tau_{2}\right)\right)_{0}=m \tau_{2}+n \tau_{1}-\left(S^{-1} t, A z\right) \\
& =m \tau_{2}+n \tau_{1}-{ }^{t}\left({ }^{t} A t\right) z=\left(\left(m, S^{-1}\left({ }^{t} A t\right), n\right), w\right)_{0}=\left(\widetilde{R}_{A^{-1}} \lambda_{0}, w\right)_{0} .
\end{aligned}
$$

Because of $\widetilde{R}_{A^{-1}} \Lambda_{0}^{\sharp}=\Lambda_{0}^{\sharp}$ all terms for which $\widetilde{R}_{A^{-1}} \lambda_{0}=\left(m, S^{-1}\left({ }^{t} A t\right), n\right)>0$ cancel out, and thus we get

$$
\begin{aligned}
\frac{\psi\left(R_{A}\langle w\rangle\right)}{\psi(w)} & =e^{2 \pi i\left(\varrho_{f}, R_{A}\langle w\rangle-w\right)_{0}} \prod_{\substack{t \in \mathbb{Z}^{l} \\
\begin{array}{c}
t>0 \\
\lambda_{0}=\left(0, S_{A t} \\
S^{-1} t, 0\right)
\end{array}}}\left(\frac{1-e^{-2 \pi i^{t}(t A t) z}}{1-e^{-2 \pi i^{t} t z}}\right)^{c_{\lambda_{0}}\left(q_{0}\left(\lambda_{0}\right)\right)} \\
& =e^{2 \pi i\left(e_{f}, R_{A}\langle w\rangle-w\right)_{0}} \prod_{\substack{t \in \mathbb{Z}^{l} \\
t>0, \mathbb{Z}_{A t<0} \\
\lambda=S^{-1} t}}\left(\frac{1-e^{-2 \pi i^{t}(t A t) z}}{1-e^{-2 \pi i^{t} t z}}\right)^{c_{\lambda}(-q(\lambda))}
\end{aligned}
$$

Next we consider $\left(\varrho_{f}, R_{A}\langle w\rangle-w\right)_{0}=\left(\varrho_{f},(0, A z-z, 0)\right)_{0}=-(\varrho, A z-z)$. Inserting the explicit formula (4.1) for ϱ yields

$$
\begin{aligned}
\left(\varrho_{f}, R_{A}\langle w\rangle-w\right)_{0} & =\frac{1}{2} \sum_{\substack{t \in \mathbb{Z}^{l}, t>0 \\
\lambda=S^{-1} t}} c_{\lambda}(-q(\lambda))^{t} \lambda S(A z-z) \\
& =\frac{1}{2} \sum_{\substack{t \in \mathbb{Z}^{l}, t>0 \\
\lambda=S^{-1} t}} c_{\lambda}(-q(\lambda))^{t}\left({ }^{t} A t-t\right) z
\end{aligned}
$$

This completes the proof.
In order to construct concrete Borcherds products with known weight and known zeros and poles we need nearly holomorphic modular forms of weight $-l / 2$ with respect to the dual Weil representation ρ_{S}^{\sharp} with known principal part and constant term. In [Bo99] Borcherds gives a necessary and sufficient condition for the existence of nearly holomorphic modular forms with prescribed principal part and constant term. Note that, according to [Br02, Prop. 1.12], nearly holomorphic modular forms are uniquely determined by their principal part.

Theorem 4.14 Suppose that S is an even positive definite matrix of degree l. There exists a nearly holomorphic modular form $f \in\left[\mathrm{Mp}(2 ; \mathbb{Z}),-l / 2, \rho_{S}^{\sharp}\right]_{\infty}$ of weight $-l / 2$ with respect to the dual Weil representation ρ_{S}^{\sharp} with principal part and constant term

$$
\sum_{\mu \in \Lambda^{\sharp} / \Lambda} \sum_{\substack{n \in-q(\mu)+\mathbb{Z} \\ n \leq 0}} c_{\mu}(n) q^{n} e_{\mu},
$$

if and only if

$$
\sum_{\mu \in \Lambda^{\sharp} / \Lambda} \sum_{\substack{n \in-q(\mu)+\mathbb{Z} \\ n \leq 0}} c_{\mu}(n) \alpha_{\mu}(-n)=0
$$

for all holomorphic modular forms $g \in\left[\operatorname{Mp}(2 ; \mathbb{Z}), 2+l / 2, \rho_{S}\right]$ (the so-called obstruction space) with Fourier expansion

$$
g(\tau)=\sum_{\mu \in \Lambda^{\sharp} / \Lambda} \sum_{\substack{n \in q(\mu)+\mathbb{Z} \\ n \geq 0}} \alpha_{\mu}(n) q^{n} e_{\mu} .
$$

Proof [Bo99, Thm. 3.1]

4.3.1. Borcherds products for $S=A_{3}$

In this case we only have to check how the Borcherds products transform under $M_{\mathrm{tr}}=R_{A}$, $A=\left(\begin{array}{ccc}1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1\end{array}\right)$, because, according to Corollary 1.23 and Proposition 1.24, we have $\Gamma_{S}=$ $\left\langle\mathrm{O}_{\mathrm{d}}\left(\Lambda_{1}\right) \cap \Gamma_{S}, M_{\text {tr }}\right\rangle$.

Proposition 4.15 Let ψ be a Borcherds product with product expansion (4.4). Then

$$
\psi\left(M_{\mathrm{tr}}\langle w\rangle\right)=\left(\prod_{\substack{t_{2}, t_{3} \in \mathbb{Z} \\\left(t_{2}, t_{3}\right)>0}}(-1)^{c_{\lambda}(-q(\lambda))}\right) \psi(w)
$$

for all w in the domain of convergence where $\lambda=S^{-1 t}\left(0, t_{2}, t_{3}\right)$. In particular, all Borcherds products are modular forms with respect to the full modular group.

Proof We apply Proposition 4.13. Let $t=\left(t_{1}, t_{2}, t_{3}\right) \in \mathbb{Z}^{3}, t>0$. Then

$$
{ }^{t} A t=\left(\begin{array}{c}
t_{1} \\
t_{1}-t_{2} \\
-t_{3}
\end{array}\right) \quad \text { and } \quad{ }^{t} A t-t=\left(\begin{array}{c}
0 \\
t_{1}-2 t_{2} \\
-2 t_{3}
\end{array}\right)
$$

Thus

$$
\begin{array}{lll}
t>0 \text { and }{ }^{t} A t>0 & \Longleftrightarrow & t_{1}>0, t_{2}, t_{3} \in \mathbb{Z} \\
t>0 \text { and }{ }^{t} A t<0 & \Longleftrightarrow & t_{1}=0,\left(t_{2}, t_{3}\right)>0
\end{array}
$$

First we consider the case $t>0$ and ${ }^{t} A t<0$, i.e., $t=\left(0, t_{2}, t_{3}\right)>0$. In this case

$$
e^{\pi i^{t}(t A t-t) z} \frac{1-e^{-2 \pi i^{t}(t A t) z}}{1-e^{-2 \pi i t z}}=e^{\pi i\left(-2 t_{2} z_{2}-2 t_{3} z_{3}\right)} \frac{1-e^{\pi i\left(2 t_{2} z_{2}+2 t_{3} z_{3}\right)}}{1-e^{\pi i\left(-2 t_{2} z_{2}-2 t_{3} z_{3}\right)}}=-1 .
$$

Therefore the first product in (4.5) becomes

$$
\prod_{\substack{t_{2}, t_{3} \in \mathbb{Z} \\\left(t_{2}, t_{3}\right)>0}}(-1)^{c_{\lambda}(-q(\lambda))}
$$

where $\lambda=S^{-1 t}\left(0, t_{2}, t_{3}\right)$.
Next we consider the case $t>0$ and ${ }^{t} A t>0$, i.e., $t=\left(t_{1}, t_{2}, t_{3}\right), t_{1}>0$. We will show that the second product in (4.5) equals 1 . The set $\left\{t \in \mathbb{Z}^{3} ; t_{1}>0\right\}$ splits into the disjoint sets

$$
\begin{aligned}
& \left\{t \in \mathbb{Z}^{3} ; t_{1}>0,2 t_{2}>t_{1}\right\}, \quad\left\{t \in \mathbb{Z}^{3} ; t_{1}>0,2 t_{2}<t_{1}\right\} \\
& \left\{t \in \mathbb{Z}^{3} ; t_{1}>0,2 t_{2}=t_{1}, t_{3}>0\right\}, \quad\left\{t \in \mathbb{Z}^{3} ; t_{1}>0,2 t_{2}=t_{1}, t_{3}<0\right\} \\
& \left\{t \in \mathbb{Z}^{3} ; t_{1}>0,2 t_{2}=t_{1}, t_{3}=0\right\}
\end{aligned}
$$

For each $t=\left(t_{1}, t_{2}, t_{3}\right)$ in the first or third set $t^{\prime}=\left(t_{1}^{\prime}, t_{2}^{\prime}, t_{3}^{\prime}\right)=\left(t_{1}, t_{1}-t_{2},-t_{3}\right)=A t$ is in the second or fourth set, respectively. We have

$$
e^{\pi i i^{t}(t t-t) z}=e^{\pi i\left(\left(t_{1}-2 t_{2}\right) z_{2}+\left(-2 t_{3} z_{3}\right)\right)}
$$

and

$$
e^{\pi i^{t}\left(t A t^{\prime}-t^{\prime}\right) z}=e^{-\pi i\left(\left(t_{1}-2 t_{2}\right) z_{2}+\left(-2 t_{3} z_{3}\right)\right)} .
$$

Moreover, for $\lambda=S^{-1} t$ and $\lambda^{\prime}=S^{-1} t^{\prime}$ one easily verifies that $\lambda+\Lambda=-\lambda^{\prime}+\Lambda$ and $q(\lambda)=q\left(\lambda^{\prime}\right)$. Thus $c_{\lambda}(-q(\lambda))=c_{\lambda^{\prime}}\left(-q\left(\lambda^{\prime}\right)\right)$, and consequently the terms for t in the first and third set and the terms for the corresponding t^{\prime} in the second and fourth set cancel each other out in the second product in (4.5). The remaining terms for t in the fifth set are all equal to 1 . This completes the proof.

4.3.2. Borcherds products for $S=A_{1}^{(3)}$

According to Corollary 1.23 and Proposition 1.24, we have $\Gamma_{S}=\left\langle\mathrm{O}_{\mathrm{d}}\left(\Lambda_{1}\right) \cap \Gamma_{S}, R_{A}, R_{B}\right\rangle$, where $A=\left(\begin{array}{ccc}-1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right)$ and $B=\left(\begin{array}{ccc}0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)$. So in order to show that the Borcherds products are modular forms with respect to the full modular group Γ_{S} we have to consider how the Borcherds products transform under R_{A} and R_{B} (or some alternative generators). This will also help us to determine the Abelian characters of the Borcherds products.

Proposition 4.16 Suppose that ψ is a Borcherds product for $S=A_{1}^{(3)}$ with product expansion (4.4). Let

$$
A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 0 & -1 \\
0 & -1 & 0
\end{array}\right), \quad B=\left(\begin{array}{ccc}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & -1
\end{array}\right)
$$

Then

$$
\psi\left(R_{A}\langle w\rangle\right)=\left(\prod_{t=1}^{\infty}(-1)^{c_{(0, t / 2, t / 2)}\left(-t^{2} / 2\right)}\right) \psi(w)
$$

and

$$
\psi\left(R_{B}\langle w\rangle\right)=\left(\prod_{t=1}^{\infty}(-1)^{c_{(t / 2, t / 2,0)}}\left(-t^{2} / 2\right)+c_{(0,0, t / 2)}\left(-t^{2} / 4\right)\right) \psi(w)
$$

for all w in the domain of convergence. In particular, all Borcherds products are modular forms with respect to the full modular group.

Proof This can be proved analogously to Proposition 4.15.

5. Graded Rings of Orthogonal Modular Forms

5.1. The graded ring for $S=A_{3}$

In this section we will determine generators and algebraic structure of the graded ring of orthogonal modular forms in the case $S=A_{3}$, i.e.,

$$
\mathcal{A}\left(\Gamma_{S}^{\prime}\right)=\bigoplus_{k \in \mathbb{Z}}\left[\Gamma_{S}^{\prime}, k, 1\right]
$$

First we construct some suitable Borcherds products. As input we need nearly holomorphic modular forms $f \in\left[\mathrm{Mp}(2 ; \mathbb{Z}),-3 / 2, \rho_{S}^{\sharp}\right]_{\infty}$ of small pole order. According to Theorem 4.14, the Fourier coefficients of those forms have to satisfy a certain condition for all elements of the obstruction space $\left[\operatorname{Mp}(2 ; \mathbb{Z}), 7 / 2, \rho_{S}\right]$. By virtue of Lemma 3.12 the obstruction space has dimension 1. It is spanned by the Eisenstein series $E_{7 / 2}=E_{7 / 2}\left(\cdot ; e_{0}, A_{3}\right)$. Using the formulas in [BK01] we can calculate the Fourier expansion of this Eisenstein series. (We used the program eis which is available for download on Bruinier's homepage and verified the results with independent calculations.) We get

$$
\begin{aligned}
E_{7 / 2,(0,0,0)}(\tau) & =1-108 q-450 q^{2}-1656 q^{3}+O\left(q^{4}\right), \\
E_{7 / 2, \pm \frac{\left(1,1, \frac{1}{2},-\frac{1}{4}\right)}{}(\tau)} & =-8 q^{3 / 8}-216 q^{11 / 8}-792 q^{19 / 8}+O\left(q^{27 / 8}\right), \\
E_{7 / 2,\left(\frac{1}{2}, 0, \frac{1}{2}\right)}(\tau) & =-18 q^{1 / 2}-232 q^{3 / 2}-1080 q^{5 / 2}+O\left(q^{7 / 2}\right),
\end{aligned}
$$

where $q=e^{2 \pi i \tau}$. Using Theorem 4.14 we deduce the following condition for principal part and constant term of elements of $\left[\operatorname{Mp}(2 ; \mathbb{Z}),-3 / 2, \rho_{S}^{\sharp}\right]_{\infty}$:

$$
c_{0}(0)=8\left(c_{\left(\frac{1}{4}, \frac{1}{2},-\frac{1}{4}\right)}\left(-\frac{3}{8}\right)+c_{\left(-\frac{1}{4}, \frac{1}{2}, \frac{1}{4}\right)}\left(-\frac{3}{8}\right)\right)+18 c_{\left(\frac{1}{2}, 0, \frac{1}{2}\right)}\left(-\frac{1}{2}\right)+108 c_{0}(-1)+\cdots .
$$

Thus possible principal parts and constant terms of nearly holomorphic modular forms are given by

$$
\begin{aligned}
& q^{-3 / 8}\left(e_{1 / 4}+e_{-1 / 4}\right)+16 e_{0}, \\
& q^{-1 / 2} e_{1 / 2}+18 e_{0}, \\
& q^{-1} e_{0} \quad+108 e_{0},
\end{aligned}
$$

where we use the following abbreviations for the basis elements of $\mathbb{C}\left[\Lambda^{\sharp} / \Lambda\right]: e_{0}=e_{0+\Lambda}$, $e_{ \pm 1 / 4}=e_{ \pm\left(\frac{1}{4}, \frac{1}{2},-\frac{1}{4}\right)+\Lambda}, e_{1 / 2}=e_{\left(\frac{1}{2}, 0, \frac{1}{2}\right)+\Lambda}$. By applying Theorem 4.12 we obtain Borcherds products ψ_{k} which have zeros along rational quadratic divisors with discriminant ≤ 8. According to Proposition 4.11 the modular group Γ_{S} acts transitively on the set of rational quadratic divisors of fixed discriminant. Therefore it suffices to consider the following representatives λ_{δ}^{\perp} of discriminant δ :

$$
\begin{aligned}
& \lambda_{3}^{\perp}=\left\{w \in \mathcal{H}_{S} ; z_{3}=0\right\} \cong \mathcal{H}_{A_{2}} \\
& \lambda_{4}^{\perp}=\left\{w \in \mathcal{H}_{S} ; z_{2}=0\right\} \cong \mathcal{H}_{A_{1}^{(2)}} \\
& \lambda_{8}^{\perp}=\left\{w \in \mathcal{H}_{S} ; z_{3}=-z_{1}\right\} \cong \mathcal{H}_{S_{2}}
\end{aligned}
$$

where $w=\left(\tau_{1}, z_{1}, z_{2}, z_{3}, \tau_{2}\right)$.
Theorem 5.1 Let $S=A_{3}$. Then there exist Borcherds products

$$
\psi_{8} \in\left[\Gamma_{S}, 8,1\right]_{0}, \quad \psi_{9} \in\left[\Gamma_{S}, 9, \nu_{\pi}\right]_{0} \quad \text { and } \quad \psi_{54} \in\left[\Gamma_{S}, 54, \nu_{\pi} \operatorname{det}\right]_{0}
$$

The zeros of the products are all of first order and are given by

$$
\bigcup_{M \in \Gamma_{S}} M\left\langle\mathcal{H}_{A_{2}}\right\rangle, \quad \bigcup_{M \in \Gamma_{S}} M\left\langle\mathcal{H}_{A_{1}^{(2)}}\right\rangle \quad \text { and } \quad \bigcup_{M \in \Gamma_{S}} M\left\langle\mathcal{H}_{S_{2}}\right\rangle
$$

respectively.
Proof Theorem 4.12 yields the existence of holomorphic modular forms of the given weights with respect to $\mathrm{O}_{\mathrm{d}}\left(\Lambda_{1}\right) \cap \Gamma_{S}$ and some Abelian character χ and with the given zeros (and no poles). By virtue of Proposition 4.15 the ψ_{k} are in fact modular forms with respect to the full modular group Γ_{S}, and thus $\chi \in \Gamma_{S}^{\text {ab }}$. Moreover, the proposition allows us to calculate the value of $\chi\left(M_{\text {tr }}\right)$ explicitly. In view of Corollary 2.3 the character is uniquely determined by this value. Finally, the Borcherds products ψ_{k} obviously vanish on $\mathcal{H} \times\{0\}^{3} \times \mathcal{H} \subset \lambda_{\delta}^{\perp}$ which yields $\psi_{k} \mid \Phi=0$. This completes the proof.

Remark 5.2 a) The Borcherds products ψ_{8} and ψ_{9} occurred already in [FH00, 13.11, 13.12]. Using Theorem 2.31 and Theorem 2.36 we can identify the restrictions of the Borcherds products to the submanifolds $\mathcal{H}_{A_{1}^{(2)}}$ and $\mathcal{H}_{A_{2}}$. We get

$$
\begin{gathered}
\psi_{8} \mid \mathcal{H}_{A_{1}^{(2)}}=\left(\phi_{4}^{A_{1}^{(2)}}\right)^{2} \quad \text { and } \quad \psi_{54} \mid \mathcal{H}_{A_{1}^{(2)}} \in \phi_{4}^{A_{1}^{(2)}} \phi_{30}^{A_{1}^{(2)}} \cdot\left[\Gamma_{A_{1}^{(2)}}, 20,1\right], \\
\psi_{9} \mid \mathcal{H}_{A_{2}}=\phi_{9}^{A_{2}} \quad \text { and } \quad \psi_{54} \mid \mathcal{H}_{A_{2}}=\phi_{9}^{A_{2}} \phi_{45}^{A_{2}} .
\end{gathered}
$$

b) In [Kra] Krieg constructed lifts of ψ_{8} and ψ_{9}^{2} to quaternionic modular forms. $\psi_{8}^{\text {Krieg }}=$ $2 \psi_{8}$ is given as restriction of the sum of a certain Maaß form and a twisted version of the same Maßß form. This allows us to calculate the Fourier expansion of $\psi_{8}^{\text {Krieg }}$. Moreover,
he writes that there are $\alpha, \beta \in \mathbb{C} \backslash\{0\}$ such that

$$
\alpha \psi_{8}^{\text {Krieg }}\left(E_{10}-E_{4} E_{6}\right)+\beta \psi_{9}^{2}=F \mid \mathcal{H}_{A_{3}},
$$

for some cusp form $F \in\left[\Gamma_{D_{4}}, 18,1\right]$ which is explicitly given as polynomial of Eisenstein series. ψ_{9} vanishes on $\mathcal{H}_{A_{1}^{(2)}}$, but F does not vanish on $\mathcal{H}_{A_{1}^{(2)}}$. Therefore we can determine α by restricting the above equation to $\mathcal{H}_{A_{1}^{(2)}}$. We get $\alpha=\frac{17}{161280}$ and $\beta=9$ (where we choose β such that the Fourier coefficients of ψ_{9}^{2} are minimal but still integral). In particular, we can explicitly calculate the Fourier coefficients of ψ_{8} and ψ_{9}^{2}.

The Borcherds products vanish on quadratic divisors of first order. Therefore, if a modular form vanishes on a quadratic divisor one of the Borcherds products vanishes on, then we can divide this modular form by the Borcherds product. Luckily, for some of the quadratic divisors the Borcherds products vanish on there exist non-trivial elements of Γ_{S} stabilizing those quadratic divisors pointwise. Now, if a modular form is not stabilized by such a non-trivial element $M \in \Gamma_{S}$, then this modular form must vanish on the quadratic divisor which is stabilized by M. This way we can show that modular forms with respect to certain Abelian characters must be divisible by certain Borcherds products. The result is summarized in the following

Lemma 5.3 Let $S=A_{3}$ and $k \in \mathbb{Z}$.
a) If k is odd, $m \in\{0,1\}$, and $f \in\left[\Gamma_{S}, k, \nu_{\pi}^{m+1} \operatorname{det}^{m}\right]$ then f vanishes on $\mathcal{H}_{A_{1}^{(2)}}$ and we have $f / \psi_{9} \in\left[\Gamma_{S}, k-9, \nu_{\pi}^{m} \operatorname{det}^{m}\right]$.
b) If $f \in\left[\Gamma_{S}, k, \nu_{\pi}^{k+1} \operatorname{det}\right]$ then f vanishes on $\mathcal{H}_{S_{2}}$ and $f / \psi_{54} \in\left[\Gamma_{S}, k-54, \nu_{\pi}^{k}\right]$.

Proof a) Let $k \in \mathbb{Z}$ be odd and $f \in\left[\Gamma_{S}, k, \nu_{\pi}^{m+1} \operatorname{det}^{m}\right]$. Then f vanishes on $\mathcal{H}_{A_{1}^{(2)}}$ according to Corollary 2.29. Therefore Theorem 5.1 yields $f / \psi_{9} \in\left[\Gamma_{S}, k-9, \nu_{\pi}^{m} \operatorname{det}^{m}\right]$.
b) Let $f \in\left[\Gamma_{S}, k, \nu_{\pi}^{k+1} \operatorname{det}\right]$. By virtue of Corollary $2.29 f$ vanishes on $\mathcal{H}_{S_{2}}$. Thus Theorem 5.1 yields $f / \psi_{54} \in\left[\Gamma_{S}, k-54, \nu_{\pi}^{k}\right]$.

The preceding result allows us to give some more information about ψ_{9}.
Corollary $5.4 \psi_{9}$ is a Maaß form.
Proof According to Corollary 2.24 there is, up to a scalar factor, exactly one Maaß form f_{9} of weight 9 . By virtue of the preceding lemma we have $f_{9}=\psi_{9} \cdot f_{0}$ for some $f_{0} \in$ $\left[\Gamma_{S}^{\prime}, 0\right]=\mathbb{C}$ which yields the assertion.

Due to the above lemma we can reduce any modular form of odd weight and any modular form with respect to a non-trivial Abelian character to a modular form of even weight with respect to the trivial character by dividing the modular form by a suitable produce of ψ_{9} and ψ_{54}. This way we have reduced the problem of determining the graded ring

$$
\mathcal{A}\left(\Gamma_{S}^{\prime}\right)=\bigoplus_{k \in \mathbb{Z}}\left[\Gamma_{S}^{\prime}, k, 1\right]
$$

of modular forms with respect to Γ_{S}^{\prime} to the problem of determining the graded ring

$$
\mathcal{A}\left(\Gamma_{S}\right)=\bigoplus_{k \in \mathbb{Z}}\left[\Gamma_{S}, k, 1\right]=\bigoplus_{k \in \mathbb{Z}}\left[\Gamma_{S}, 2 k, 1\right],
$$

of modular forms of even weight with respect to the full modular group Γ_{S} (and trivial character). Elements of this graded ring are given by the Eisenstein series $E_{k}=E_{k}^{A_{3}}$, $k \geq 4$, we defined in Section 2.5.2 and, of course, also by ψ_{8}, ψ_{9}^{2} and ψ_{54}^{2}. Using our knowledge about the graded ring of modular forms on $\mathcal{H}_{A_{2}}$ we will now show that for each $f \in \mathcal{A}\left(\Gamma_{S}\right)$ we can find a polynomial in $E_{4}, E_{6}, E_{10}, E_{12}$ and ψ_{9}^{2} such that the restriction of f to $\mathcal{H}_{A_{2}}$ coincides with the restriction of this polynomial.
Lemma 5.5 Let $S=A_{3}, k \in 2 \mathbb{Z}$, and $f \in\left[\Gamma_{S}, k, 1\right]$. Then there exists a polynomial p such that

$$
f-p\left(E_{4}, E_{6}, E_{10}, E_{12}, \psi_{9}^{2}\right)
$$

vanishes on $\mathcal{H}_{A_{2}}$.
Proof Let $k \in \mathbb{Z}, k$ even, and $f \in\left[\Gamma_{A_{3}}, k, 1\right]$. Then due to Theorem $2.31 f \mid \mathcal{H}_{A_{2}} \in$ $\left[\Gamma_{A_{2}}, k, 1\right]$. By virtue of Theorem 2.36 b) $f \mid \mathcal{H}_{A_{2}}$ is a polynomial in $E_{4}^{A_{2}}, E_{6}^{A_{2}}, E_{10}^{A_{2}}, E_{12}^{A_{2}}$ and ϕ_{9}^{2}. Since $\operatorname{dim} \mathcal{M}\left(\Gamma_{A_{2}}, k\right)=1$ for $k \in\{4,6\}$ and $E_{k} \mid \mathcal{H}_{A_{2}} \in \mathcal{M}\left(\Gamma_{A_{2}}, k\right)$ we have $E_{4} \mid \mathcal{H}_{A_{2}}=E_{4}^{A_{2}}$ and $E_{6} \mid \mathcal{H}_{A_{2}}=E_{6}^{A_{2}}$. Moreover, we have $\psi_{9} \mid \mathcal{H}_{A_{2}}=\phi_{9}$. It remains to be shown that $E_{10}^{A_{2}}$ and $E_{12}^{A_{2}}$ can be expressed as polynomials in $E_{4}^{A_{2}}, E_{6}^{A_{2}}, E_{10} \mid \mathcal{H}_{A_{2}}$ and $E_{12} \mid \mathcal{H}_{A_{2}}$. This can easily be verified by comparing some Fourier coefficients.
The Eisenstein series E_{10} and E_{12} can be replaced by the cusp forms

$$
f_{10}:=E_{10}-E_{4} \cdot E_{6} \quad \text { and } \quad f_{12}:=E_{12}-\frac{441}{691} E_{4}^{3}-\frac{250}{691} E_{6}^{2}
$$

If we denote the normalized elliptic Eisenstein series of weight k by G_{k}, then we obtain

$$
f_{10} \mid \Phi=G_{10}-G_{4} \cdot G_{6}=0 \quad \text { and } \quad f_{12} \left\lvert\, \Phi=G_{12}-\frac{441}{691} G_{4}^{3}-\frac{250}{691} G_{6}^{2}=0\right.
$$

Thus f_{10} and f_{12} are indeed cusp forms according to Proposition 2.10. By explicitly calculating the first Fourier coefficients of f_{10} and f_{12} we can verify that f_{10} and f_{12} do not vanish identically on $\mathcal{H}_{A_{2}}$.

Now we can prove our main result in the case $S=A_{3}$.
Theorem 5.6 Let $S=A_{3}$.
a) The graded ring $\mathcal{A}\left(\Gamma_{S}\right)=\bigoplus_{k \in \mathbb{Z}}\left[\Gamma_{S}, 2 k, 1\right]$ is generated by

$$
E_{4}, E_{6}, \psi_{8}, E_{10}, E_{12} \text { and } \psi_{9}^{2}
$$

b) The graded ring $\mathcal{A}\left(\Gamma_{S}^{\prime}\right)=\bigoplus_{k \in \mathbb{Z}}\left[\Gamma_{S}^{\prime}, k, 1\right]$ is generated by

$$
E_{4}, E_{6}, \psi_{8}, \psi_{9}, E_{10}, E_{12} \text { and } \psi_{54}
$$

c) The ideal of cusp forms in $\mathcal{A}\left(\Gamma_{S}^{\prime}\right)$ is generated by

$$
\psi_{8}, \psi_{9}, f_{10}, f_{12} \text { and } \psi_{54}
$$

Proof a) Let $k \in \mathbb{Z}$ be even, and let $f \in\left[\Gamma_{S}, k, 1\right]$. According to Lemma 5.5 , there exists a polynomial p such that

$$
\tilde{f}:=f-p\left(E_{4}, E_{6}, E_{10}, E_{12}, \psi_{9}^{2}\right)
$$

vanishes on $\mathcal{H}_{A_{2}}$. Then Theorem 5.1 leads to

$$
\tilde{f} / \psi_{8} \in\left[\Gamma_{S}, k-8,1\right],
$$

and an induction yields the assertion.
b) Let $f \in\left[\Gamma_{S}^{\prime}, k, 1\right]$. If k is odd then, according to Lemma 5.3, the function f vanishes on $\mathcal{H}_{A_{1}^{(2)}}$ and we have $f / \psi_{9} \in\left[\Gamma_{S}^{\prime}, k-9,1\right]$. So we can assume that k is even. Due to Corollary 2.3 we know that $\left[\Gamma_{S}^{\prime}, k, 1\right]=\left[\Gamma_{S}, k, 1\right] \oplus\left[\Gamma_{S}, k, \nu_{\pi}\right.$ det $]$ for even k. Thus $f=f_{1}+f_{\nu_{\pi} \text { det }}$ with $f_{\chi} \in\left[\Gamma_{S}, k, \chi\right]$. The function $f_{\nu_{\pi} \text { det }}$ vanishes on $\mathcal{H}_{S_{2}}$, and we get $f_{\nu_{\pi} \operatorname{det}} / \psi_{54} \in\left[\Gamma_{S}, k-54,1\right]$. Applying part a) on f_{1} and $f_{\nu_{\pi} \operatorname{det}} / \psi_{54}$ completes the proof.
c) Let \mathcal{I} be the ideal generated by the cusp forms $\psi_{8}, \psi_{9}, f_{10}, f_{12}$ and ψ_{54}, and let $f \in$ $\left[\Gamma_{S}^{\prime}, k\right]_{0}$. According to part b) we can write f as a polynomial in $E_{4}, E_{6}, \psi_{8}, \psi_{9}, E_{10}$, E_{12} and ψ_{54}. In view of the above comments about f_{10} and f_{12} we can also write f as a polynomial in $E_{4}, E_{6}, \psi_{8}, \psi_{9}, f_{10}, f_{12}$ and ψ_{54}. Therefore there exists a polynomial $p \in \mathbb{C}\left[X_{1}, X_{2}\right]$ such that

$$
f-p\left(E_{4}, E_{6}\right) \in \mathcal{I} .
$$

Application of Siegel's Φ-operator yields

$$
0=\left(f-p\left(E_{4}, E_{6}\right)\right) \mid \Phi=p\left(E_{4}\left|\Phi, E_{6}\right| \Phi\right)=p\left(G_{4}, G_{6}\right)
$$

where G_{4} and G_{6} are the normalized elliptic Eisenstein series of the indicated weight. Since G_{4} and G_{6} are algebraically independent, we have $p=0$, and thus $f \in \mathcal{I}$.

Some more results are given in the following
Theorem 5.7 Let $S=A_{3}$.
a) The orthogonal modular forms $E_{4}, E_{6}, \psi, \psi_{9}, E_{10}$ and E_{12} are algebraically independent.
b) There is a unique polynomial $p \in \mathbb{C}\left[X_{1}, \ldots, X_{6}\right]$ such that

$$
\psi_{54}^{2}=p\left(E_{4}, E_{6}, \psi_{8}, \psi_{9}, E_{10}, E_{12}\right)
$$

c) We have

$$
\mathcal{A}\left(\Gamma_{S}^{\prime}\right) \cong \mathbb{C}\left[X_{1}, \ldots, X_{7}\right] /\left(X_{7}^{2}-p\left(X_{1}, \ldots, X_{6}\right)\right)
$$

and

$$
\sum_{k=0}^{\infty} \operatorname{dim}\left[\Gamma_{S}^{\prime}, k\right] t^{k}=\frac{1+t^{54}}{\left(1-t^{4}\right)\left(1-t^{6}\right)\left(1-t^{8}\right)\left(1-t^{9}\right)\left(1-t^{10}\right)\left(1-t^{12}\right)}
$$

Proof a) The restrictions of $E_{4}, E_{6}, \psi_{9}, E_{10}$ and E_{12} to $\mathcal{H}_{A_{2}}$ are algebraically independent due to Theorem 2.36. Moreover, ψ_{8} vanishes on $\mathcal{H}_{A_{2}}$ according to Theorem 5.1. This yields the assertion.
b) Because of $\psi_{54}^{2} \in\left[\Gamma_{S}, 108,1\right]$ the existence of p follows from Theorem 5.6. The uniqueness of p is a consequence of part a).
c) Let $Q \in \mathbb{C}\left[X_{1}, \ldots, X_{7}\right]$ such that $Q\left(E_{4}, E_{6}, \psi_{8}, \psi_{9}, E_{10}, E_{12}, \psi_{54}\right)=0$. There exist polynomials $Q_{0}, Q_{1} \in \mathbb{C}\left[X_{1}, \ldots, X_{6}\right]$ such that $Q-Q_{0}-X_{7} Q_{1} \in\left(X_{7}^{2}-p\left(X_{1}, \ldots, X_{6}\right)\right)$, hence

$$
\begin{equation*}
Q_{0}\left(E_{4}, E_{6}, \psi_{8}, \psi_{9}, E_{10}, E_{12}\right)+\psi_{54} \cdot Q_{1}\left(E_{4}, E_{6}, \psi_{8}, \psi_{9}, E_{10}, E_{12}\right)=0 \tag{5.1}
\end{equation*}
$$

Let $M=R_{\left(-I_{3}\right)} M_{\mathrm{tr}}$. Then the modular substitution $w \mapsto M\langle w\rangle$ maps ψ_{54} to $-\psi_{54}$ and leaves $E_{4}, E_{6}, \psi_{8}, \psi_{9}, E_{10}$ and E_{12} invariant. Therefore, by applying this substitution on (5.1) we get

$$
Q_{0}\left(E_{4}, E_{6}, \psi_{8}, \psi_{9}, E_{10}, E_{12}\right)-\psi_{54} \cdot Q_{1}\left(E_{4}, E_{6}, \psi_{8}, \psi_{9}, E_{10}, E_{12}\right)=0
$$

Since $E_{4}, E_{6}, \psi_{8}, \psi_{9}, E_{10}$ and E_{12} are algebraically independent Q_{0} and Q_{1} both have to vanish identically. Thus we have $Q \in\left(X_{7}^{2}-p\left(X_{1}, \ldots, X_{6}\right)\right)$. The dimension formula is a direct consequence of the algebraic structure of $\mathcal{A}\left(\Gamma_{S}^{\prime}\right)$.

The dimension formula for the Maaß space in Corollary 2.24 and Theorem 5.7 imply that all modular forms of weight $k \leq 10$ are Maaß forms, i.e., we get the following

Corollary 5.8 For $k \leq 10$ we have

$$
\left[\Gamma_{S}^{\prime}, k, 1\right]=\mathcal{M}\left(\Gamma_{S}^{\prime}, k\right)
$$

In particular, the Borcherds products ψ_{8} and ψ_{9} are Maaß forms.
Similarly to Aoki-Ibukiyama [AI05] and Krieg [Kra] we can construct the Borcherds product ψ_{54} from the algebraically independent primary generators of $\mathcal{A}\left(\Gamma_{A_{3}}^{\prime}\right)$ via the RankinCohen type differential operator we introduced in Section 2.2.

Corollary 5.9 There exists a constant $c \in \mathbb{C}, c \neq 0$, such that

$$
\left\{E_{4}, E_{6}, \psi_{8}, \psi_{9}, E_{10}, E_{12}\right\}=c \psi_{54}
$$

Proof Since $E_{4}, E_{6}, \psi_{8}, \psi_{9}, E_{10}$ and E_{12} are algebraically independent, we have $0 \neq$ $g:=\left\{E_{4}, E_{6}, \psi_{8}, \psi_{9}, E_{10}, E_{12}\right\} \in\left[\Gamma_{A_{3}}, 54, \nu_{\pi}\right.$ det $]$ according to Proposition 2.14. Due to the character Lemma 5.3 yields $g / \psi_{54} \in\left[\Gamma_{A_{3}}, 0,1\right]=\mathbb{C}$.

In [Kra] Krieg determines the graded rings $\mathcal{A}\left(\Gamma_{D_{4}}\right)$ and $\mathcal{A}\left(\Gamma_{D_{4}}^{\prime}\right)$ of quaternionic modular forms of degree 2 . He shows that $\mathcal{A}\left(\Gamma_{D_{4}}\right)$ is generated by the Eisenstein series $E_{6}^{D_{4}}$ and six modular forms $f_{j}, j \in\{2,5,6,8,9,12\}$, of weight $2 j$ (not to be confused with the cusp forms f_{10} and f_{12}) given as polynomials in six theta series. We examine the restrictions of those generators (where we denote the restrictions of the f_{j} again by f_{j}) to $\mathcal{H}_{A_{3}}$. Computing the Fourier expansions we get

$$
\begin{aligned}
E_{4} & =f_{2}, \\
51 E_{10} & =35 f_{5}+16 f_{2} E_{6}, \\
21421 E_{12} & =22050 f_{6}+400 E_{6}^{2}-1029 f_{2}^{3}, \\
382205952 \psi_{8}^{2} & =27 f_{8}-30 f_{2} f_{6}-4 E_{6} f_{5}+2 f_{2} E_{6}^{2}+5 f_{2}^{4}, \\
2779890176 \psi_{9}^{2} & =-54 f_{9}-9 E_{6} f_{6}-41472 \psi_{8}\left(f_{5}-f_{2} E_{6}\right)+2 f_{2}^{2} f_{5}+E_{6}^{3}+6 f_{2}^{3} E_{6} .
\end{aligned}
$$

So obviously we can replace some of the generators of the graded ring $\mathcal{A}\left(\Gamma_{A_{3}}\right)$ by some of the restrictions of the f_{j}.

Corollary 5.10 The graded ring $\mathcal{A}\left(\Gamma_{S}\right)=\bigoplus_{k \in \mathbb{Z}}\left[\Gamma_{S}, 2 k, 1\right]$ is generated by

$$
f_{2}\left|\mathcal{H}_{A_{3}}, E_{6}, \psi_{8}, f_{5}\right| \mathcal{H}_{A_{3}}, f_{6} \mid \mathcal{H}_{A_{3}} \text { and } f_{9} \mid \mathcal{H}_{A_{3}} .
$$

Due to Baily-Borel's theory of compactification of arithmetic quotients of bounded symmetric domains ([BB66]) each orthogonal modular function, i.e., each meromorphic modular form of weight 0 , is a quotient of two orthogonal modular forms of the same weight. Therefore the above results allow us to determine the algebraic structure of the field of orthogonal modular functions. We denote this field by $\mathcal{K}\left(\Gamma_{S}\right)$. Moreover, we denote the space of meromorphic modular forms with respect to an Abelian character χ by $\left[\Gamma_{S}, k, \chi\right]_{\text {mer }}$.

Theorem 5.11 Let $S=A_{3}$.
a) The field $\mathcal{K}\left(\Gamma_{S}\right)$ of orthogonal modular functions with respect to Γ_{S} and the trivial character is a rational function field in the generators

$$
\frac{E_{6}^{2}}{E_{4}^{3}}, \quad \frac{\psi_{8}}{E_{4}^{2}}, \quad \frac{E_{10}}{E_{4} E_{6}}, \quad \frac{E_{12}}{E_{4}^{3}} \quad \text { and } \quad \frac{\psi_{9}^{2}}{E_{6}^{3}} .
$$

b) The field $\mathcal{K}\left(\Gamma_{S}^{\prime}\right)$ of all orthogonal modular functions with respect to Γ_{S}^{\prime} is an extension of degree 2 over $\mathcal{K}\left(\Gamma_{S}\right)$ generated by ψ_{54} / ψ_{9}^{6}.

Proof a) Let $f \in \mathcal{K}\left(\Gamma_{S}\right)$. Due to Baily-Borel ([BB66, Cor. 10.12]) there exist $g, h \in$ [$\left.\Gamma_{S}^{\prime}, k\right]$ such that $f=g / h$. Since f is a modular function with respect to the trivial character g and h have to be modular forms with respect to the same character χ. Because of Lemma 5.3 we can assume $\chi=1$ and k even. Then, due to Theorem 5.6, f is a quotient of polynomials in $E_{4}, E_{6}, \psi_{8}, E_{10}, E_{12}$ and ψ_{9}^{2}. After dividing the polynomials by a suitable modular form $E_{4}^{l_{4}} E_{6}^{l_{6}}$ of weight $4 l_{4}+6 l_{6}=k$ it remains to be shown that
all monomials $E_{4}^{k_{4}} E_{6}^{k_{6}} \psi_{8}^{k_{8}} E_{10}^{k_{10}} E_{12}^{k_{12}} \psi_{9}^{2 k_{18}}$ with $k_{j} \in \mathbb{Z}$ and $\sum_{j} j \cdot k_{j}=0$ can be written in the above generators. This follows from

$$
\begin{aligned}
& E_{4}^{k_{4}} E_{6}^{k_{6}} \psi_{8}^{k_{8}} E_{10}^{k_{10}} E_{12}^{k_{12}} \psi_{9}^{2 k_{18}}= \\
& \quad\left(\frac{E_{6}^{2}}{E_{4}^{3}}\right)^{-k_{4}-k_{6}-2 k_{8}-2 k_{10}-3 k_{12}-3 k_{18}}\left(\frac{\psi_{8}}{E_{4}^{2}}\right)^{k_{8}}\left(\frac{E_{10}}{E_{4} E_{6}}\right)^{k_{10}}\left(\frac{E_{12}}{E_{4}^{3}}\right)^{k_{12}}\left(\frac{\psi_{9}^{2}}{E_{6}^{3}}\right)^{k_{18}} .
\end{aligned}
$$

Hence $\mathcal{K}\left(\Gamma_{S}\right)$ is a function field in the above generators which are algebraically independent according to Theorem 5.7.
b) The function $g=\psi_{54} / \psi_{9}^{6}$ is obviously a modular function with respect to the character $\chi=\nu_{\pi}$ det. If f is another modular function with respect to χ then $f / g \in$ $\left[\Gamma_{S}, 0,1\right]_{\text {mer }}=\mathcal{K}\left(\Gamma_{S}\right)$. Therefore

$$
\begin{aligned}
\mathcal{K}\left(\Gamma_{S}^{\prime}\right) & =\left[\Gamma_{S}^{\prime}, 0,1\right]_{\text {mer }}=\left[\Gamma_{S}, 0,1\right]_{\text {mer }} \oplus\left[\Gamma_{S}, 0, \nu_{\pi} \operatorname{det}\right]_{\text {mer }} \\
& =\mathcal{K}\left(\Gamma_{S}\right) \oplus g \cdot \mathcal{K}\left(\Gamma_{S}\right)=\mathcal{K}\left(\Gamma_{S}\right)[g] .
\end{aligned}
$$

Due to Theorem 5.7 we have $g^{2} \in \mathcal{K}\left(\Gamma_{S}\right)$. Thus $\mathcal{K}\left(\Gamma_{S}^{\prime}\right)$ is an extension of degree 2 over $\mathcal{K}\left(\Gamma_{S}\right)$.

Remark There are no non-trivial modular functions with respect to Γ_{S} and the Abelian characters det or ν_{π}.

5.2. The graded ring for $S=A_{1}^{(3)}$

In this section we will determine the algebraic structure of the graded ring of orthogonal modular forms in the case $S=A_{1}^{(3)}$, i.e.,

$$
\mathcal{A}\left(\Gamma_{S}^{\prime}\right)=\bigoplus_{k \in \mathbb{Z}}\left[\Gamma_{S}^{\prime}, k, 1\right]
$$

Just as in the case $S=A_{3}$ we will construct suitable Borcherds products in order to reduce this problem to the problem of determining the structure of

$$
\mathcal{A}\left(\Gamma_{S}\right)=\bigoplus_{k \in \mathbb{Z}}\left[\Gamma_{S}, 2 k, 1\right]
$$

The structure of this algebra can be easily derived from the structure of

$$
\mathcal{A}\left(\Gamma_{A_{1}^{(2)}}\right)=\bigoplus_{k \in \mathbb{Z}}\left[\Gamma_{A_{1}^{(2)}}, 2 k, 1\right] .
$$

First we will again construct some suitable Borcherds products. In this case, by virtue of Lemma 3.14, the obstruction space $\left[\mathrm{Mp}(2 ; \mathbb{Z}), 7 / 2, \rho_{S}\right]$ has dimension 3. So in addition
to the Eisenstein series $E_{7 / 2}=E_{7 / 2}\left(\cdot ; e_{0}, A_{1}^{(3)}\right)$ we need two more generators. They are given by theta series. According to Theorem 3.19 we have to find homogeneous spherical polynomials p of degree 2 with respect to S in order to get suitable theta series $\Theta(\cdot ; S, p)$. We can choose $p_{1}(x)=x_{1}^{2}-x_{2}^{2}$ and $p_{2}(x)=x_{2}^{2}-x_{3}^{2}$.

Using the formulas in [BK01] we can calculate the Fourier expansion of the Eisenstein series. (Again we used the program eis and verified the results with independent calculations.) We get

$$
\begin{aligned}
& E_{7 / 2,(0,0,0)}(\tau)=1-66 q-396 q^{2}+O\left(q^{3}\right), \\
& E_{7 / 2,\left(\frac{1}{2}, 0,0\right)}(\tau)=E_{7 / 2,\left(0, \frac{1}{2}, 0\right)}(\tau)=E_{7 / 2,\left(0,0, \frac{1}{2}\right)}(\tau)=-2 q^{1 / 4}-120 q^{5 / 4}+O\left(q^{9 / 4}\right), \\
& E_{7 / 2,\left(0, \frac{1}{2}, \frac{1}{2}\right)}(\tau)=E_{7 / 2,\left(\frac{1}{2}, 0, \frac{1}{2}\right)}(\tau)=E_{7 / 2,\left(\frac{1}{2}, \frac{1}{2}, 0\right)}(\tau)=-12 q^{1 / 2}-184 q^{3 / 2}+O\left(q^{7 / 2}\right), \\
& E_{7 / 2,\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)}(\tau)=-40 q^{3 / 4}-192 q^{7 / 4}+O\left(q^{11 / 4}\right),
\end{aligned}
$$

where $q=e^{2 \pi i \tau}$. According to Theorem 3.19, for the components of the two theta series we get the Fourier expansions

$$
\begin{aligned}
& \theta_{(0,0,0)}\left(\tau ; S, p_{1}\right)=0 \\
& \theta_{\left(\frac{1}{2}, 0,0\right)}\left(\tau ; S, p_{1}\right)=\frac{1}{2} q^{1 / 4}-2 q^{5 / 4}-\frac{3}{2} q^{9 / 4}+O\left(q^{13 / 4}\right), \\
& \theta_{\left(0, \frac{1}{2}, 0\right)}\left(\tau ; S, p_{1}\right)=-\theta_{\left(\frac{1}{2}, 0,0\right)}\left(\tau ; S, p_{1}\right) \\
& \theta_{\left(0,0, \frac{1}{2}\right)}\left(\tau ; S, p_{1}\right)=0, \\
& \theta_{\left(0, \frac{1}{2}, \frac{1}{2}\right)}\left(\tau ; S, p_{1}\right)=-q^{1 / 2}+6 q^{3 / 2}-10 q^{5 / 2}+O\left(q^{7 / 2}\right), \\
& \theta_{\left(\frac{1}{2}, 0, \frac{1}{2}\right)}\left(\tau ; S, p_{1}\right)=-\theta_{\left(0, \frac{1}{2}, \frac{1}{2}\right)}\left(\tau ; S, p_{1}\right), \\
& \theta_{\left(\frac{1}{2}, \frac{1}{2}, 0\right)}\left(\tau ; S, p_{1}\right)=0 \\
& \theta_{\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)}\left(\tau ; S, p_{1}\right)=0
\end{aligned}
$$

and

$$
\begin{aligned}
& \theta_{(0,0,0)}\left(\tau ; S, p_{2}\right)=0, \\
& \theta_{\left(\frac{1}{2}, 0,0\right)}\left(\tau ; S, p_{2}\right)=0, \\
& \theta_{\left(0, \frac{1}{2}, 0\right)}\left(\tau ; S, p_{2}\right)=\theta_{\left(\frac{1}{2}, 0,0\right)}\left(\tau ; S, p_{1}\right), \\
& \theta_{\left(0,0, \frac{1}{2}\right)}\left(\tau ; S, p_{2}\right)=\theta_{\left(0, \frac{1}{2}, 0\right)}\left(\tau ; S, p_{1}\right), \\
& \theta_{\left(0, \frac{1}{2}, \frac{1}{2}\right)}\left(\tau ; S, p_{2}\right)=0, \\
& \theta_{\left(\frac{1}{2}, 0, \frac{1}{2}\right)}\left(\tau ; S, p_{2}\right)=\theta_{\left(0, \frac{1}{2}, \frac{1}{2}\right)}\left(\tau ; S, p_{1}\right) \\
& \theta_{\left(\frac{1}{2}, \frac{1}{2}, 0\right)}\left(\tau ; S, p_{2}\right)=\theta_{\left(\frac{1}{2}, 0, \frac{1}{2}\right)}\left(\tau ; S, p_{1}\right), \\
& \theta_{\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)}\left(\tau ; S, p_{2}\right)=0 .
\end{aligned}
$$

Inserting the theta series into the obstruction condition (cf. Theorem 4.14) yields

$$
h_{\left(\frac{1}{2}, 0,0\right)}=h_{\left(0, \frac{1}{2}, 0\right)}=h_{\left(0,0, \frac{1}{2}\right)} \quad \text { and } \quad h_{\left(0, \frac{1}{2}, \frac{1}{2}\right)}=h_{\left(\frac{1}{2}, 0, \frac{1}{2}\right)}=h_{\left(\frac{1}{2}, \frac{1}{2}, 0\right)}
$$

for all $h \in\left[\operatorname{Mp}(2 ; \mathbb{Z}),-3 / 2, \rho_{S}^{\sharp}\right]_{\infty}$. Thus, using the Fourier expansion of the Eisenstein series $E_{7 / 2}$, we see that the terms

$$
\begin{aligned}
& 3 \cdot q^{-1 / 4}+6, \\
& 3 \cdot q^{-1 / 2}+36, \\
& \begin{aligned}
& q^{-3 / 4}+40, \\
&-3 \cdot q^{-1 / 4}+60,
\end{aligned}
\end{aligned}
$$

where the Fourier expansion of the components can be easily reconstructed from, are valid principal parts and constant terms of nearly holomorphic modular forms of weight $-3 / 2$ with respect to ρ_{S}^{\sharp}. By applying Theorem 4.12 we obtain Borcherds products ψ_{k} with zeros along rational quadratic divisors of discriminant ≤ 8. Just as in the case $S=A_{3}$ it suffices to consider the following representatives $\lambda_{\delta}^{\frac{1}{\delta}}$ of discriminant δ :

$$
\begin{aligned}
& \lambda_{2}^{\perp}=\left\{w \in \mathcal{H}_{S} ; z_{3}=0\right\} \cong \mathcal{H}_{A_{1}^{(2)}}, \\
& \lambda_{4}^{\perp}=\left\{w \in \mathcal{H}_{S} ; z_{2}=z_{3}\right\} \cong \mathcal{H}_{S_{2}}, \\
& \lambda_{6}^{\perp}=\left\{w \in \mathcal{H}_{S} ; z_{3}=z_{1}+z_{2}\right\} \cong \mathcal{H}_{2 A_{2}}, \\
& \lambda_{8}^{\perp}=\left\{w \in \mathcal{H}_{S} ; z_{3}=\frac{1}{2}\right\}=: \mathcal{H}_{8},
\end{aligned}
$$

where $w=\left(\tau_{1}, z_{1}, z_{2}, z_{3}, \tau_{2}\right)$.
Theorem 5.12 Let $S=A_{1}^{(3)}$. Then there exist Borcherds products

$$
\psi_{3} \in\left[\Gamma_{S}, 3, \nu_{2} \nu_{\pi} \operatorname{det}\right]_{0}, \psi_{18} \in\left[\Gamma_{S}, 18, \nu_{\pi}\right]_{0}, \psi_{20} \in\left[\Gamma_{S}, 20,1\right]_{0} \text { and } \psi_{30} \in\left[\Gamma_{S}, 30, \nu_{2}\right]_{0} .
$$

The zeros of the products are all of first order and are given by

$$
\bigcup_{M \in \Gamma_{S}} M\left\langle\mathcal{H}_{A_{1}^{(2)}}\right\rangle, \quad \bigcup_{M \in \Gamma_{S}} M\left\langle\mathcal{H}_{S_{2}}\right\rangle, \quad \bigcup_{M \in \Gamma_{S}} M\left\langle\mathcal{H}_{2 A_{2}}\right\rangle \quad \text { and } \quad \bigcup_{M \in \Gamma_{S}} M\left\langle\mathcal{H}_{8}\right\rangle,
$$

respectively.
Proof Theorem 4.12 yields the existence of holomorphic modular forms of the given weights with respect to $\mathrm{O}_{\mathrm{d}}\left(\Lambda_{1}\right) \cap \Gamma_{S}$ and some Abelian character χ and with the given zeros. By virtue of Proposition 4.16 the ψ_{k} are in fact modular forms with respect to the full modular group Γ_{S} and thus $\chi \in \Gamma_{S}^{\mathrm{ab}}$. Moreover, the proposition allows us to explicitly calculate the value of χ for two elements of Γ_{S}. In view of Corollary 2.3 the character is uniquely determined by those values. The Borcherds products ψ_{3}, ψ_{18} and ψ_{30} are cusp forms since they are modular forms with respect to a non-trivial character. Moreover, ψ_{20}
obviously vanishes on $\mathcal{H} \times\{0\}^{3} \times \mathcal{H} \subset \lambda_{6}^{\perp}$ which implies $\psi_{20} \mid \Phi=0$. This completes the proof.

Remark 5.13 Using Theorems 2.34 and 2.36 and comparing the divisors of the Borcherds products we can identify the restrictions of the Borcherds products to the submanifold $\mathcal{H}_{A_{1}^{(2)}}$. For example ψ_{18} vanishes on $\mathcal{H}_{S_{2}}$, and thus, in particular, on $H(2 ; \mathbb{R}) \cong \mathcal{H}_{A_{1}} \subset$ $\mathcal{H}_{S_{2}}$. This implies that its restriction to $\mathcal{H}_{A_{1}^{(2)}}$ is divisible by $\phi_{4}^{A_{1}^{(2)}}$. Due to the character we then conclude that $\psi_{18} \mid \mathcal{H}_{A_{1}^{(2)}}=\left(\phi_{4}^{A_{1}^{(2)}}\right)^{2} \phi_{10}^{A_{1}^{(2)}}$. For the other two Borcherds products we get

$$
\psi_{20} \mid \mathcal{H}_{A_{1}^{(2)}} \in \phi_{10}^{A_{1}^{(2)}} \cdot\left[\Gamma_{A_{1}^{(2)}}, 10,1\right] \quad \text { and } \quad \psi_{30} \mid \mathcal{H}_{A_{1}^{(2)}}=\phi_{30}^{A_{1}^{(2)}} .
$$

The restriction of ψ_{3} to $\mathcal{H}_{S_{2}}$ is equal to the Borcherds product ϕ_{3} occurring in [DK04].
Let $f=X_{1} \cdot \ldots \cdot X_{10}$ be the product of the ten theta series in [FHOO, Def. 10.3]. According to [FH00, Prop. 11.9] this product is a non-trivial modular form of weight 20 with respect to $\Gamma_{A_{1}^{(3)}}$ vanishing on $\mathcal{H}_{2 A_{2}}$. Hence f / ψ_{20} is a holomorphic modular form of weight 0 , and thus

$$
f=c \psi_{20}
$$

for some $c \in \mathbb{C} \backslash\{0\}$.
Just as in the case $S=A_{3}$ the fact that the Borcherds products vanish on quadratic divisors of first order allows us to conclude that modular forms with respect to certain Abelian characters must be divisible by certain Borcherds products. The result is summarized in the following

Lemma 5.14 Let $S=A_{1}^{(3)}, k \in \mathbb{Z}$, and $m \in\{0,1\}$.
a) If k is odd and $f \in\left[\Gamma_{S}^{\prime}, k, 1\right]$ then f vanishes on $\mathcal{H}_{A_{1}^{(2)}}$ and $f / \psi_{3} \in\left[\Gamma_{S}^{\prime}, k-3,1\right]$.
b) If $f \in\left[\Gamma_{S}, k, \nu_{2}^{m} \nu_{\pi}^{k+1} \operatorname{det}^{k}\right]$ then f vanishes on $\mathcal{H}_{S_{2}}$ and $f / \psi_{18} \in\left[\Gamma_{S}, k-18, \nu_{2}^{m} \nu_{\pi}^{k} \operatorname{det}^{k}\right]$.
c) If $f \in\left[\Gamma_{S}, k, \nu_{2}^{k+1} \nu_{\pi}^{m} \operatorname{det}^{k}\right]$ then f vanishes on \mathcal{H}_{8} and $f / \psi_{30} \in\left[\Gamma_{S}, k-30, \nu_{2}^{k} \nu_{\pi}^{m} \operatorname{det}^{k}\right]$.

Proof a) Let $k \in \mathbb{Z}$ be odd and $f \in\left[\Gamma_{S}^{\prime}, k, 1\right]$. Then f vanishes on $\mathcal{H}_{A_{1}^{(2)}}$ according to Corollary 2.32. Therefore Theorem 5.12 yields $f / \psi_{3} \in\left[\Gamma_{S}^{\prime}, k-3,1\right]$.
b) Let $f \in\left[\Gamma_{S}, k, \nu_{2}^{m} \nu_{\pi}^{k+1} \operatorname{det}^{k}\right]$. By virtue of Corollary $2.32 f$ vanishes on $\mathcal{H}_{S_{2}}$. Thus Theorem 5.12 yields $f / \psi_{18} \in\left[\Gamma_{S}, k-18, \nu_{2}^{m} \nu_{\pi}^{k} \operatorname{det}^{k}\right]$.
c) We have

Let $\chi=\nu_{2}^{k+1} \nu_{\pi}^{m} \operatorname{det}^{k}$ and $f \in\left[\Gamma_{S}, k, \chi\right]$. Then for all $w \in \mathcal{H}_{8}$ we have

$$
f(w)=\left(\left.f\right|_{k} M\right)(w)=\chi(M) f(w)=-f(w)
$$

if $M=T_{e_{4}} R_{\left(\begin{array}{cc}1 & 0 \\ 0 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right)}^{0}-1$. . Hence f vanishes on \mathcal{H}_{8}, and by virtue of Theorem 5.12 we conclude $f / \psi_{30} \in\left[\Gamma_{S}, k-30, \nu_{2}^{k} \nu_{\pi}^{m} \operatorname{det}^{k}\right]$.

Due to the above lemma we can reduce any modular form of odd weight and any modular form with respect to a non-trivial Abelian character of Γ_{S} to a modular form of even weight with respect to the trivial character by dividing the modular form by suitable powers of ψ_{3}, ψ_{18} and ψ_{30}. This way we have reduced the problem of determining the graded ring

$$
\mathcal{A}\left(\Gamma_{S}^{\prime}\right)=\bigoplus_{k \in \mathbb{Z}}\left[\Gamma_{S}^{\prime}, k, 1\right]
$$

of modular forms with respect to Γ_{S}^{\prime} to the problem of determining the graded ring

$$
\mathcal{A}\left(\Gamma_{S}\right)=\bigoplus_{k \in \mathbb{Z}}\left[\Gamma_{S}, k, 1\right]=\bigoplus_{k \in \mathbb{Z}}\left[\Gamma_{S}, 2 k, 1\right],
$$

of modular forms of even weight with respect to the full modular group Γ_{S} (and trivial character). Elements of this ring are given by the Eisenstein series $E_{k}=E_{k}^{A_{1}^{(3)}}, k \geq 4$, we defined in Section 2.5.2, by the invariants h_{k}, we determined in Section 2.8, and, of course, also by $\psi_{3}^{2}, \psi_{20}, \psi_{18}^{2}$ and ψ_{30}^{2}. The structure of this ring can be easily derived from the structure of the graded ring $\mathcal{A}\left(\Gamma_{A_{1}^{(2)}}\right)$.
Theorem 5.15 Let $S=A_{1}^{(3)}$. The graded ring $\mathcal{A}\left(\Gamma_{S}\right)$ is a polynomial ring in

$$
h_{4}, h_{6}, \psi_{3}^{2}, h_{8}, h_{10} \text { and } h_{12}
$$

Proof Let $k \in \mathbb{Z}$ be even, and let $f \in\left[\Gamma_{S}, k, 1\right]$. By virtue of Theorem 2.40, the restrictions of the h_{j} generate the graded ring $\mathcal{A}\left(\Gamma_{A_{1}^{(2)}}\right)$. Thus there exists a polynomial p such that

$$
\tilde{f}:=f-p\left(h_{4}, h_{6}, h_{8}, h_{10}, h_{12}\right)
$$

vanishes on $\mathcal{H}_{A_{1}^{(2)}}$. Since the Borcherds product ψ_{3} vanishes on $\mathcal{H}_{A_{1}^{(2)}}$ of first order we can divide \tilde{f} by ψ_{3} and get

$$
\tilde{f} / \psi_{3} \in\left[\Gamma_{S}, k-3, \nu_{2} \nu_{\pi} \operatorname{det}\right] .
$$

Due to Lemma 5.14 the quotient \widetilde{f} / ψ_{3} also vanishes on $\mathcal{H}_{A_{1}^{(2)}}$. Hence we can divide a second time by ψ_{3} and get

$$
\tilde{f} / \psi_{3}^{2} \in\left[\Gamma_{S}, k-6,1\right] .
$$

By induction we conclude that the graded ring is generated by the given functions. The algebraic independence of the generators follows from the algebraic independence of the restrictions of the h_{j} to $\mathcal{H}_{A_{1}^{(2)}}$ and the fact that ψ_{3}^{2} vanishes on $\mathcal{H}_{A_{1}^{(2)}}$.

Remark 5.16 In a forthcoming paper (cf. [FSM]) Freitag and Salvati Manni determine the structure of this ring using completely different methods.
5.2. The graded ring for $S=A_{1}^{(3)}$

Of course, it is possible to express the Eisenstein series E_{4}, E_{6}, E_{10} and E_{12} as polynomials in the generators. The result is

$$
\begin{aligned}
E_{4} & =h_{4}, \\
E_{6} & =h_{6}-3456 \psi_{3}^{2}, \\
17 E_{10} & =15 h_{10}+2 h_{4} h_{6}-18432 h_{4} \psi_{3}^{2}, \\
21421 E_{12} & =22050 h_{12}+400 h_{6}^{2}-2764800 h_{6} \psi_{3}^{2}-1029 h_{4}^{3}+4777574400 \psi_{3}^{4} .
\end{aligned}
$$

Corollary 5.17 The graded ring $\mathcal{A}\left(\Gamma_{A_{1}^{(3)}}\right)$ is a polynomial ring in

$$
E_{4}, E_{6}, \psi_{3}^{2}, h_{8}, E_{10} \text { and } E_{12}
$$

Now we can determine the structure of the full ring $\mathcal{A}\left(\Gamma_{S}^{\prime}\right)=\bigoplus_{k \in \mathbb{Z}}\left[\Gamma_{S}^{\prime}, k, 1\right]$ of modular forms with respect to Γ_{S} for $S=A_{1}^{(3)}$.
Theorem 5.18 Let $S=A_{1}^{(3)}$.
a) The graded ring $\mathcal{A}\left(\Gamma_{S}^{\prime}\right)=\bigoplus_{k \in \mathbb{Z}}\left[\Gamma_{S}^{\prime}, k, 1\right]$ is generated by the modular forms

$$
\psi_{3}, E_{4}, E_{6}, h_{8}, E_{10}, E_{12}, \psi_{18} \text { and } \psi_{30}
$$

of which $\psi_{3}, E_{4}, E_{6}, h_{8}, E_{10}$ and E_{12} are algebraically independent.
b) There are uniquely determined polynomials $p, q \in \mathbb{C}\left[X_{1}, \ldots, X_{6}\right]$ such that

$$
\begin{aligned}
& \psi_{18}^{2}=p\left(\psi_{3}, E_{4}, E_{6}, h_{8}, E_{10}, E_{12}\right), \\
& \psi_{30}^{2}=q\left(\psi_{3}, E_{4}, E_{6}, h_{8}, E_{10}, E_{12}\right) .
\end{aligned}
$$

c) We have

$$
\mathcal{A}\left(\Gamma_{S}^{\prime}\right) \cong \mathbb{C}\left[X_{1}, \ldots, X_{8}\right] /\left(X_{7}^{2}-p\left(X_{1}, \ldots, X_{6}\right), X_{8}^{2}-q\left(X_{1}, \ldots, X_{6}\right)\right)
$$

and

$$
\sum_{k=0}^{\infty} \operatorname{dim}\left[\Gamma_{S}^{\prime}, k\right] t^{k}=\frac{\left(1+t^{18}\right)\left(t+t^{30}\right)}{\left(1-t^{3}\right)\left(1-t^{4}\right)\left(1-t^{6}\right)\left(1-t^{8}\right)\left(1-t^{10}\right)\left(1-t^{12}\right)}
$$

PROOF a) This follows analogously to the corresponding result for $S=A_{3}$ from Theorem 5.15 and Lemma 5.14.
b) Theorem 5.15 yields existence and uniqueness of the polynomials.
c) Let $Q \in \mathbb{C}\left[X_{1}, \ldots, X_{8}\right]$ such that $Q\left(\psi_{3}, E_{4}, E_{6}, F_{8}, E_{10}, E_{12}, \psi_{18}, \psi_{30}\right)=0$. There exist polynomials $Q_{0}, Q_{1}, Q_{2}, Q_{3} \in \mathbb{C}\left[X_{1}, \ldots, X_{6}\right]$ such that $Q-Q_{0}-X_{7} Q_{1}-X_{8} Q_{2}-$ $X_{7} X_{8} Q_{3} \in\left(X_{7}^{2}-p\left(X_{1}, \ldots, X_{6}\right), X_{8}^{2}-q\left(X_{1}, \ldots, X_{6}\right)\right)$, hence

$$
\begin{aligned}
& Q_{0}\left(\psi_{3}, E_{4}, E_{6}, F_{8}, E_{10}, E_{12}\right)+\psi_{18} \cdot Q_{1}\left(E_{4}, E_{6}, \psi_{8}, \psi_{9}, E_{10}, E_{12}\right) \\
& \quad+\psi_{30} \cdot Q_{2}\left(\psi_{3}, E_{4}, E_{6}, F_{8}, E_{10}, E_{12}\right)+\psi_{18} \psi_{30} \cdot Q_{3}\left(\psi_{3}, E_{4}, E_{6}, F_{8}, E_{10}, E_{12}\right)=0 .
\end{aligned}
$$

Applying the modular substitution $w \mapsto M\langle w\rangle, M=R\left(\begin{array}{ccc}1 & 0 \\ 0 & 0 \\ 0 & 1 & 1 \\ 0 & 1\end{array}\right)$, to this equation we get

$$
\begin{aligned}
& Q_{0}\left(\psi_{3}, E_{4}, E_{6}, F_{8}, E_{10}, E_{12}\right)-\psi_{18} \cdot Q_{1}\left(E_{4}, E_{6}, \psi_{8}, \psi_{9}, E_{10}, E_{12}\right) \\
& \quad+\psi_{30} \cdot Q_{2}\left(\psi_{3}, E_{4}, E_{6}, F_{8}, E_{10}, E_{12}\right)-\psi_{18} \psi_{30} \cdot Q_{3}\left(\psi_{3}, E_{4}, E_{6}, F_{8}, E_{10}, E_{12}\right)=0,
\end{aligned}
$$

and thus

$$
\begin{aligned}
& Q_{0}\left(\psi_{3}, E_{4}, E_{6}, F_{8}, E_{10}, E_{12}\right)+\psi_{30} \cdot Q_{2}\left(\psi_{3}, E_{4}, E_{6}, F_{8}, E_{10}, E_{12}\right)=0, \\
& Q_{1}\left(\psi_{3}, E_{4}, E_{6}, F_{8}, E_{10}, E_{12}\right)+\psi_{30} \cdot Q_{3}\left(\psi_{3}, E_{4}, E_{6}, F_{8}, E_{10}, E_{12}\right)=0 .
\end{aligned}
$$

Applying the modular substitution $\left.w \mapsto M\langle w\rangle, M=T_{e_{4}} R_{\left(\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0 \\ 0 & 0\end{array}\right)} \begin{array}{c}-1\end{array}\right)$, to those equations yields

$$
\begin{aligned}
& Q_{0}\left(\psi_{3}, E_{4}, E_{6}, F_{8}, E_{10}, E_{12}\right)-\psi_{30} \cdot Q_{2}\left(\psi_{3}, E_{4}, E_{6}, F_{8}, E_{10}, E_{12}\right)=0, \\
& Q_{1}\left(\psi_{3}, E_{4}, E_{6}, F_{8}, E_{10}, E_{12}\right)-\psi_{30} \cdot Q_{3}\left(\psi_{3}, E_{4}, E_{6}, F_{8}, E_{10}, E_{12}\right)=0 .
\end{aligned}
$$

Now the algebraic independence of $\psi_{3}, E_{4}, E_{6}, F_{8}, E_{10}$ and E_{12} implies that Q_{0}, Q_{1}, Q_{2} and Q_{3} vanish identically. Thus $Q \in\left(X_{7}^{2}-p\left(X_{1}, \ldots, X_{6}\right), X_{8}^{2}-q\left(X_{1}, \ldots, X_{6}\right)\right)$. The dimension formula is a direct consequence of the algebraic structure of $\mathcal{A}\left(\Gamma_{S}^{\prime}\right)$.
As in the case $S=A_{3}$ we can apply the Rankin-Cohen type differential operator we introduced in Section 2.2 to the algebraically independent primary generators of $\mathcal{A}\left(\Gamma_{A_{1}^{(3)}}^{\prime}\right)$. The result is
Corollary 5.19 There exists a constant $c \in \mathbb{C}, c \neq 0$, such that

$$
\left\{\psi_{3}, E_{4}, E_{6}, h_{8}, E_{10}, E_{12}\right\}=c \psi_{18} \psi_{30}
$$

Proof Since $\psi_{3}, E_{4}, E_{6}, h_{8}, E_{10}$ and E_{12} are algebraically independent, we have $0 \neq$ $g:=\left\{\psi_{3}, E_{4}, E_{6}, h_{8}, E_{10}, E_{12}\right\} \in\left[\Gamma_{A_{1}^{(3)}}, 48, \nu_{2} \nu_{\pi}\right]$ according to Proposition 2.14. Due to the character Lemma 5.14 yields $g /\left(\psi_{18} \psi_{30}\right) \in\left[\Gamma_{A_{1}^{(3)}}, 0,1\right]=\mathbb{C}$.
Just as in the case $S=A_{3}$ we can replace some of the generators by cusp forms. We replace the Eisenstein series E_{10} and E_{12} by the cusp forms

$$
f_{10}:=E_{10}-E_{4} \cdot E_{6} \quad \text { and } \quad f_{12}:=E_{12}-\frac{441}{691} E_{4}^{3}-\frac{250}{691} E_{6}^{2}
$$

and we replace h_{8} by the cusp form

$$
f_{8}:=h_{8}-E_{4}^{2}
$$

Since the constant term of f_{8} vanishes and due to

$$
f_{8} \mid \Phi \in[\operatorname{SL}(2 ; \mathbb{Z}), 8]=\mathbb{C} \cdot G_{8}
$$

where G_{8} denotes the normalized elliptic Eisenstein series of weight 8, we conclude

$$
f_{8} \mid \Phi=0
$$

and thus f_{8} is indeed a cusp form.
Analogously to the corresponding result for $S=A_{3}$ we can now determine the generators of the ideal of cusp forms in $\mathcal{A}\left(\Gamma_{A_{1}^{(3)}}^{\prime}\right)$.

Corollary 5.20 The ideal of cusp forms in $\mathcal{A}\left(\Gamma_{S}^{\prime}\right)$ is generated by

$$
\psi_{3}, f_{8}, f_{10}, f_{12}, \psi_{18} \text { and } \psi_{30}
$$

Finally, we can again determine the algebraic structure of the field of orthogonal modular functions.

Theorem 5.21 Let $S=A_{1}^{(3)}$.
a) The field $\mathcal{K}\left(\Gamma_{S}\right)$ of orthogonal modular functions with respect to Γ_{S} and the trivial character is a rational function field in the generators

$$
\frac{\psi_{3}^{2}}{E_{6}}, \quad \frac{h_{8}}{E_{4}^{2}}, \quad \frac{E_{10}}{E_{4} E_{6}}, \quad \frac{E_{12}}{E_{4}^{3}} \quad \text { and } \quad \frac{E_{6}^{2}}{E_{4}^{3}}
$$

b) The field $\mathcal{K}\left(\Gamma_{S}^{\prime}\right)$ of all orthogonal modular functions with respect to Γ_{S}^{\prime} is an extension of degree 4 over $\mathcal{K}\left(\Gamma_{S}\right)$ generated by ψ_{18} / E_{6}^{3} and ψ_{30} / E_{6}^{5}.

Proof a) Let $f \in \mathcal{K}\left(\Gamma_{S}\right)$. Due to Baily-Borel ([BB66, Cor. 10.12]) there exist $g, h \in$ $\left[\Gamma_{S}^{\prime}, k\right]$ such that $f=g / h$. Just as in the case $S=A_{3}$ we can assume that g and h are modular forms of even weight with respect to the trivial character. Thus f is a quotient of polynomials in $E_{4}, E_{6}, \psi_{3}^{2}, h_{8}, E_{10}$ and E_{12}. Again it remains to be shown that all monomials $E_{4}^{k_{4}} E_{6}^{k_{6}} \psi_{3}^{2 k_{3}} h_{8}^{k_{8}} E_{10}^{k_{10}} E_{12}^{k_{12}}$ with $k_{j} \in \mathbb{Z}$ and $3 k_{3}+\sum_{j} j \cdot k_{j}=0$ can be written in the above generators. This follows from

$$
\begin{aligned}
& E_{4}^{k_{4}} E_{6}^{k_{6}} \psi_{3}^{2 k_{3}} h_{8}^{k_{8}} E_{10}^{k_{10}} E_{12}^{k_{12}}= \\
& \quad\left(\frac{E_{6}^{2}}{E_{4}^{3}}\right)^{-k_{4}-k_{6}-k_{3}-2 k_{8}-2 k_{10}-3 k_{12}}\left(\frac{\psi_{3}^{2}}{E_{6}}\right)^{k_{3}}\left(\frac{h_{8}}{E_{4}^{2}}\right)^{k_{8}}\left(\frac{E_{10}}{E_{4} E_{6}}\right)^{k_{10}}\left(\frac{E_{12}}{E_{4}^{3}}\right)^{k_{12}} .
\end{aligned}
$$

Hence $\mathcal{K}\left(\Gamma_{S}\right)$ is a function field in the above generators which are algebraically independent according to Theorem 5.15.
b) We have $g:=\psi_{18} / E_{6}^{3} \in\left[\Gamma_{S}, 0, \nu_{\pi}\right]_{\text {mer }}$ and $h:=\psi_{30} / E_{6}^{5} \in\left[\Gamma_{S}, 0, \nu_{2}\right]_{\text {mer }}$. Just as in the case of holomorphic modular forms the vector space of modular functions splits into the eigenspaces of the characters of Γ_{S}. Since some eigenspaces vanish we have

$$
\begin{aligned}
\mathcal{K}\left(\Gamma_{S}^{\prime}\right) & =\left[\Gamma_{S}, 0,1\right]_{\text {mer }} \oplus\left[\Gamma_{S}, 0, \nu_{\pi}\right]_{\operatorname{mer}} \oplus\left[\Gamma_{S}, 0, \nu_{2}\right]_{\text {mer }} \oplus\left[\Gamma_{S}, 0, \nu_{2} \nu_{\pi}\right]_{\text {mer }} \\
& =\mathcal{K}\left(\Gamma_{S}\right) \oplus g \cdot \mathcal{K}\left(\Gamma_{S}\right) \oplus h \cdot \mathcal{K}\left(\Gamma_{S}\right) \oplus g h \cdot \mathcal{K}\left(\Gamma_{S}\right)=\mathcal{K}\left(\Gamma_{S}\right)[g, h] .
\end{aligned}
$$

Due to Theorem 5.18 we have $g^{2}, h^{2} \in \mathcal{K}\left(\Gamma_{S}\right)$, and thus $\mathcal{K}\left(\Gamma_{S}^{\prime}\right)$ is an extension of degree 4 over $\mathcal{K}\left(\Gamma_{S}\right)$.

A. Orthogonal and Symplectic Transformations

We use the notation introduced in Section 2.7. Moreover, we denote the most common elements of the symplectic group $\operatorname{Sp}(2 ; \mathbb{H})$ by

$$
\begin{aligned}
& \operatorname{Trans}(H)=\left(\begin{array}{cc}
I_{2} & H \\
0 & I_{2}
\end{array}\right) \quad \text { for } H \in \operatorname{Her}(2 ; \mathbb{H}), \\
& \operatorname{Rot}(U)=\left(\begin{array}{cc}
\bar{U} & 0 \\
0 & U^{-1}
\end{array}\right) \quad \text { for } U \in \operatorname{GL}(2 ; \mathbb{H}) .
\end{aligned}
$$

According to $[\mathrm{Kr} 85], \operatorname{Sp}(2 ; \mathcal{O})$ is generated by $J_{\mathbb{H}}, \operatorname{Trans}(H), H \in \operatorname{Her}(2 ; \mathcal{O})$, and $\operatorname{Rot}(U), U \in \operatorname{GL}(2 ; \mathcal{O})$ where $U=\left(\begin{array}{cc}\varepsilon & 0 \\ 0 & 1\end{array}\right), \varepsilon \in \mathcal{O}^{\times}=\left\langle\omega \mathrm{i}_{2}, \omega \mathrm{i}_{3}\right\rangle$. Thus the extended modular group

$$
\Gamma_{\mathbb{H}}=\left\langle\{Z \mapsto M\langle Z\rangle ; M \in \mathrm{Sp}(2 ; \mathcal{O}) \text { or } M=\rho I\}, I_{\mathrm{tr}}\right\rangle, \rho=\frac{1+\mathrm{i}_{1}}{\sqrt{2}},
$$

is generated by the following biholomorphic transformations of $H(2 ; \mathbb{H})$:

$$
\begin{aligned}
& Z \mapsto J_{\mathbb{H}}\langle Z\rangle=-Z^{-1}, \\
& Z \mapsto \operatorname{Trans}(H)\langle Z\rangle=Z+H, H \in \operatorname{Her}(2 ; \mathcal{O}), \\
& Z \mapsto \operatorname{Rot}\left(\begin{array}{c}
\varepsilon \\
0 \\
0
\end{array} 1\right)\langle Z\rangle=\left(\begin{array}{cc}
\begin{array}{c}
\tau_{1} \\
(\bar{x}+i \bar{y}) \varepsilon
\end{array} & \bar{\varepsilon}(x+i y) \\
\tau_{2}
\end{array}\right), \varepsilon \in\left\{\omega \mathrm{i}_{2}, \omega \mathrm{i}_{3}\right\}, \\
& Z \mapsto(\rho I)\langle Z\rangle=\operatorname{Rot}\left(\begin{array}{c}
\bar{\rho} \\
0 \\
0
\end{array}\right)\langle Z\rangle=\left(\begin{array}{c}
\tau_{1}{ }_{\rho}(\bar{x}+i \bar{y}) \bar{\rho}
\end{array}{ }_{\rho}^{\rho(x+i y) \bar{\rho}} \tau_{2}\right), \\
& Z \mapsto I_{\mathrm{tr}}(Z)={ }^{t} Z,
\end{aligned}
$$

where $Z=\left(\begin{array}{cc}\tau_{1} & x+i y \\ \bar{x}+i \bar{y} & \tau_{2}\end{array}\right), \tau_{1}, \tau_{2} \in \mathcal{H}, x, y \in \mathbb{H}$.

A.1. The case $S=D_{4}$

The orthogonal half-space $\mathcal{H}_{D_{4}}$ is biholomorphically mapped to $H(2 ; \mathbb{H})$ by

$$
\varphi_{\mathbb{H}}: \mathcal{H}_{D_{4}} \rightarrow H(2 ; \mathbb{H}),\left(x_{1}, u, x_{2}\right)+i\left(y_{1}, v, y_{2}\right) \mapsto\left(\begin{array}{cc}
\frac{x_{1}+i y_{1}}{\iota_{D_{4}}(u)}+i \overline{\iota_{D_{4}}(v)} & \iota_{D_{4}}(u)+i \iota_{D_{4}}(v) \\
x_{2}+i y_{2}
\end{array}\right)
$$

where $\iota_{D_{4}}: \mathbb{R}^{4} \rightarrow \mathbb{H}$ is given by

$$
\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \mapsto x_{1}+x_{2} \mathrm{i}_{1}+x_{3} \dot{\mathrm{i}}_{2}+x_{4} \omega .
$$

This map allows us to identify the corresponding elements of $\Gamma_{\mathbb{H}}$ and $\Gamma_{D_{4}}$ (or more precisely of $\left.\Gamma_{D_{4}} /\left\{ \pm I_{8}\right\}\right)$ considered as subgroup of $\operatorname{Bihol}\left(\mathcal{H}_{D_{4}}\right)$. The following table lists the generators of $\Gamma_{D_{4}} /\{ \pm I\}$ and the elements of $\Gamma_{\mathbb{H}}$ those generators correspond to, and vice versa.

$M \in \Gamma_{D_{4}}$	$\gamma \in \Gamma_{\mathbb{H}}$
J	$J_{\text {HI }}$
$T_{g}, g=\left(g_{1}, \widetilde{g}, g_{2}\right) \in \Lambda_{0}$	$\operatorname{Trans}(H), H=\left(\begin{array}{cc}g_{1} & \iota_{D_{4}}(\widetilde{g}) \\ * & g_{2}\end{array}\right) \in \operatorname{Her}(2 ; \mathcal{O})$
$M_{\mathrm{tr}}=R\left(\begin{array}{cccc} 1 & 0 & 0 & 1 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 0 & 0 & -1 \end{array}\right)$	$I_{\text {tr }}$
$R\left(\begin{array}{cccc}1 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & -1 & -1 \\ 0 & 0 & 2 & 1\end{array}\right)$	$\operatorname{Rot}\left(\begin{array}{cc}\bar{\rho} & 0 \\ 0 & \bar{\rho}\end{array}\right)$
$R\left(\begin{array}{cccc}1 & 0 & -1 & 0 \\ 0 & 0 & -1 & 0 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 2 & 1\end{array}\right)$	$\operatorname{Rot}\left(\begin{array}{cc}\bar{\omega} & 0 \\ 0 & \bar{\omega}\end{array}\right)$
$R^{R}\left(\begin{array}{cccc} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 1 & 0 & 1 \\ -1 & -1 & -1 & 1 \end{array}\right)$	$\operatorname{Rot}\left(\begin{array}{cc}\overline{\omega-\mathrm{i}_{1}} & 0 \\ 0 & \omega-\mathrm{i}_{3}\end{array}\right)$
$R\left(\begin{array}{ccccc}0 & -1 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ 0 & -1 & -1 & -1 \\ -1 & 1 & 1 & 0\end{array}\right)$	$\operatorname{Rot}\left(\begin{array}{cc}\omega \mathrm{i}_{2} & 0 \\ 0 & 1\end{array}\right)$
$R\left(\begin{array}{cccc} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 1 \\ -1 & -1 & -1 & -2 \end{array}\right)$	$\operatorname{Rot}\left(\begin{array}{cc}\omega \mathrm{i}_{3} & 0 \\ 0 & 1\end{array}\right)$

A.2. The case $S=A_{1}^{(3)}$

The orthogonal half-space $\mathcal{H}_{A_{1}^{(3)}}$ is biholomorphically mapped to the submanifold

$$
H\left(2 ; \mathbb{H}_{A_{1}^{(3)}}\right)=\left\{\left(\begin{array}{cc}
\tau_{1} & z \\
* & \tau_{2}
\end{array}\right) \in H(2 ; \mathbb{H}) ; z=z_{1}+z_{2} \mathrm{i}_{1}+z_{3} \mathrm{i}_{2}+z_{4} \mathrm{i}_{3}, z_{4}=0\right\}
$$

of $H(2 ; \mathbb{H})$ by

$$
\begin{aligned}
& \varphi_{A_{1}^{(3)}}: \mathcal{H}_{A_{1}^{(3)}} \rightarrow H\left(2 ; \mathbb{H}_{A_{1}^{(3)}}\right),\left(x_{1}, u, x_{2}\right)+i\left(y_{1}, v, y_{2}\right) \mapsto \\
&\left(\begin{array}{cc}
x_{1}+i y_{1} \\
\iota_{A_{1}^{(3)}(u)}+i \overline{\iota_{A_{1}^{(3)}}(v)} & \iota_{A_{1}^{(3)}}(u)+i \iota_{A_{1}^{(3)}}(v) \\
x_{2}+i y_{2}
\end{array}\right)
\end{aligned}
$$

where $\iota_{A_{1}^{(3)}}: \mathbb{R}^{3} \rightarrow \mathbb{H}_{A_{1}^{(3)}}$ is given by

$$
\left(x_{1}, x_{2}, x_{3}\right) \mapsto x_{1}+x_{2} \mathrm{i}_{1}+x_{3} \mathrm{i}_{2} .
$$

The following table lists elements of the orthogonal modular group $\Gamma_{A_{1}^{(3)}}$ and corresponding elements of $\Gamma_{\mathbb{H}} \cap \operatorname{Bihol}\left(H\left(2 ; \mathbb{H}_{A_{1}^{(3)}}\right)\right)$, i.e., if $M \in \Gamma_{A_{1}^{(3)}}$ then the corresponding element $\gamma \in \Gamma_{\mathbb{H}}$ satisfies

$$
\begin{aligned}
& \gamma\left(\varphi_{A_{1}^{(3)}}(w)\right)=M\langle w\rangle \quad \text { for all } w \in \mathcal{H}_{A_{1}^{(3)}} . \\
& \begin{array}{c|c}
M \in \Gamma_{A_{1}^{(3)}} & \gamma \in \Gamma_{\mathbb{H}} \cap \operatorname{Bihol}\left(H\left(2 ; \mathbb{H}_{A_{1}^{(3)}}\right)\right) \\
\hline J & J_{\mathbb{H}} \\
T_{g}, g=\left(g_{1}, \widetilde{g}, g_{2}\right) \in \Lambda_{0} & \operatorname{Trans}(H), H=\left(\begin{array}{cc}
g_{1} & { }^{\iota} A_{1}^{(3)}(\widetilde{g}) \\
* & g_{2}
\end{array}\right) \in \operatorname{Her}\left(2 ; \mathcal{O}_{A_{1}^{(3)}}\right)
\end{array} \\
& M_{\mathrm{tr}}=R\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & -1 & 0 \\
0 & 0 & -1
\end{array}\right) \\
& R^{\left(\begin{array}{ccc}
-1 & 0 & 0 \\
0 & 0 & 1 \\
0 & 1 & 0
\end{array}\right)} \\
& R^{\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)} \\
& \begin{array}{r}
\operatorname{Rot}\left(\begin{array}{cc}
\left(\mathrm{i}_{2}-\mathrm{i}_{1}\right) / \sqrt{2} & 0 \\
0 & \left(\mathrm{i}_{1}-\mathrm{i}_{2}\right) \\
& \operatorname{Rot}\left(\begin{array}{cc}
\bar{\omega}+\mathrm{i}_{2} & 0 \\
0 & \bar{\omega}+\mathrm{i}_{1}
\end{array}\right)
\end{array},\right.
\end{array}
\end{aligned}
$$

A.3. The case $S=A_{3}$

The orthogonal half-space $\mathcal{H}_{A_{3}}$ is biholomorphically mapped to the submanifold

$$
H\left(2 ; \mathbb{H}_{A_{3}}\right)=\left\{\left(\begin{array}{cc}
\tau_{1} & z \\
* & \tau_{2}
\end{array}\right) \in H(2 ; \mathbb{H}) ; z=z_{1}+z_{2} \mathrm{i}_{1}+z_{3} \mathrm{i}_{2}+z_{4} \mathrm{i}_{3}, z_{3}=z_{4}\right\}
$$

of $H(2 ; \mathbb{H})$ by

$$
\begin{aligned}
& \varphi_{A_{3}}: \mathcal{H}_{A_{3}} \rightarrow H\left(2 ; \mathbb{H}_{A_{3}}\right),\left(x_{1}, u, x_{2}\right)+i\left(y_{1}, v, y_{2}\right) \mapsto \\
& \qquad\left(\begin{array}{cc}
\frac{x_{1}}{\iota_{A_{3}}(u)}+i \overline{y_{1}} & \iota_{A_{3}}(u)+i \iota_{A_{3}}(v) \\
x_{2}+i y_{2}
\end{array}\right)
\end{aligned}
$$

where $\iota_{A_{3}}: \mathbb{R}^{3} \rightarrow \mathbb{H}_{A_{3}}$ is given by

$$
\left(x_{1}, x_{2}, x_{3}\right) \mapsto x_{1}+x_{2} \omega+x_{3} \mathrm{i}_{1} .
$$

The following table lists elements of the orthogonal modular group $\Gamma_{A_{3}}$ and corresponding elements of $\Gamma_{\mathbb{H}} \cap \operatorname{Bihol}\left(H\left(2 ; \mathbb{H}_{A_{3}}\right)\right)$, i.e., if $M \in \Gamma_{A_{3}}$ then the corresponding element $\gamma \in \Gamma_{\mathbb{H}}$ satisfies

$$
\gamma\left(\varphi_{A_{3}}(w)\right)=M\langle w\rangle \quad \text { for all } w \in \mathcal{H}_{A_{3}}
$$

$M \in \Gamma_{A_{3}}$	$\gamma \in \Gamma_{\mathbb{H}} \cap \operatorname{Bihol}\left(H\left(2 ; \mathbb{H}_{A_{3}}\right)\right)$
J	$J_{\text {Hil }}$
$T_{g}, g=\left(g_{1}, \widetilde{g}, g_{2}\right) \in \Lambda_{0}$	$\operatorname{Trans}(H), H=\left(\begin{array}{cc}g_{1} & \iota_{A_{3}}(\widetilde{g}) \\ * & g_{2}\end{array}\right) \in \operatorname{Her}\left(2 ; \mathcal{O}_{A_{3}}\right)$
$M_{\mathrm{tr}}:=R\left(\begin{array}{ccc} 1 & 1 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & -1 \end{array}\right)$	$I_{\text {tr }}=\operatorname{Rot}\left(\begin{array}{cc}\left(\mathrm{i}_{2}-\mathrm{i}_{3}\right) / \sqrt{2} & 0 \\ 0 & \left(\mathrm{i}_{2}-\mathrm{i}_{3}\right) / \sqrt{2}\end{array}\right)$
$R^{\left(\begin{array}{ccc} -1 & -1 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & -1 \end{array}\right)}$	$\operatorname{Rot}\left(\begin{array}{cc}-i_{1} & 0 \\ 0 & i_{1}\end{array}\right)$
$R^{(0)}\left(\begin{array}{ccc}0 & 0 & -1 \\ -1 & 0 & 1 \\ 1 & 1 & 0\end{array}\right)$	$\operatorname{Rot}\left(\begin{array}{cc}\omega-\mathrm{i}_{1} & 0 \\ 0 & \bar{\omega}+\mathrm{i}_{1}\end{array}\right)$

B. Orthogonal and Unitary Transformations

Let \mathbb{K} be an imaginary quadratic number field. We use the following abbreviations for the most common elements of the unitary group $\mathrm{U}(2 ; \mathbb{K})$

$$
\begin{aligned}
& \operatorname{Trans}(H)=\left(\begin{array}{cc}
I_{2} & H \\
0 & I_{2}
\end{array}\right) \quad \text { for } H \in \operatorname{Her}(2 ; \mathbb{K}), \\
& \operatorname{Rot}(U)=\left(\begin{array}{cc}
\bar{U} & 0 \\
0 & U^{-1}
\end{array}\right) \quad \text { for } U \in \operatorname{GL}(2 ; \mathbb{K}) .
\end{aligned}
$$

According to [De01, Lem. 1.4] $\mathrm{SU}\left(2 ; \mathfrak{o}_{\mathbb{K}}\right)$ is generated by J_{Her} and $\operatorname{Trans}(H), H \in$ $\operatorname{Her}\left(2 ; \mathfrak{o}_{\mathbb{K}}\right)$, and $\Gamma(2 ; \mathbb{K})=\mathrm{U}\left(2 ; \mathfrak{o}_{\mathbb{K}}\right)$ is generated by J_{Her}, $\operatorname{Trans}(H), H \in \operatorname{Her}\left(2 ; \mathfrak{o}_{\mathbb{K}}\right)$ and $\operatorname{Rot}(U), U=\left(\begin{array}{c}\varepsilon \\ 0 \\ 0\end{array} 1\right), \varepsilon \in \mathfrak{o}_{\mathbb{K}}^{\times}$. Thus

$$
\Gamma_{\mathbb{K}}=\left\langle\{Z \mapsto M\langle Z\rangle ; M \in \widetilde{\Gamma(2 ; \mathbb{K})}\}, I_{\mathrm{tr}}\right\rangle
$$

is generated by the following biholomorphic transformations of $H(2 ; \mathbb{C})$:

$$
\begin{gathered}
Z \mapsto J_{\mathrm{Her}}\langle Z\rangle=-Z^{-1}, \\
Z \mapsto \operatorname{Trans}(H)\langle Z\rangle=Z+H, H \in \operatorname{Her}\left(2 ; \mathfrak{o}_{\mathbb{K}}\right), \\
Z \mapsto \operatorname{Rot}\left(\begin{array}{l}
\varepsilon \\
0 \\
0
\end{array}\right)\langle Z\rangle=\binom{\tau_{1} \overline{z_{2}} \bar{\varepsilon} z_{1}}{\tau_{2}}, \varepsilon \in \mathfrak{o}_{\mathbb{K}}^{\times} \cap\{ \pm 1, \pm i\}, \\
Z \mapsto I_{\mathrm{tr}}(Z)={ }^{t} Z,
\end{gathered}
$$

where $Z=\left(\begin{array}{cc}\tau_{1} & z_{1} \\ z_{2} & \tau_{2}\end{array}\right) \in H(2 ; \mathbb{C})$.
B.1. The case $S=A_{1}^{(2)}$

Let $\mathbb{K}=\mathbb{Q}(\sqrt{-1})$. Then $\mathfrak{o}_{\mathbb{K}}=\mathbb{Z}+\mathbb{Z} i, S=S^{\mathbb{K}}=A_{1}^{(2)}$ and

$$
w=\left(\tau_{1}, w_{1}, w_{2}, \tau_{2}\right)=\left(x_{1}, u_{1}, u_{2}, x_{2}\right)+i\left(y_{1}, v_{1}, v_{2}, y_{2}\right) \in \mathcal{H}_{A_{1}^{(2)}}
$$

corresponds to

$$
\begin{aligned}
Z & =\left(\begin{array}{cc}
\tau_{1} & \left(u_{1}-v_{2}\right)+i\left(u_{2}+v_{1}\right) \\
\left(u_{1}+v_{2}\right)-i\left(u_{2}-v_{1}\right) & \tau_{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
x_{1} & u_{1}+i u_{2} \\
u_{1}-i u_{2} & x_{2}
\end{array}\right)+i\left(\begin{array}{cc}
y_{1} & v_{1}+i v_{2} \\
v_{1}-i v_{2} & y_{2}
\end{array}\right) \in H(2 ; \mathbb{C}) .
\end{aligned}
$$

The generators of $\Gamma_{A_{1}^{(2)}}$ and $\Gamma_{\mathbb{K}}$

$M \in \Gamma_{A_{1}^{(2)}}$	$M\langle w\rangle$	$\gamma(Z)$	$\gamma \in \Gamma_{\mathbb{Q}(\sqrt{-1})}$
J	$J\langle w\rangle$	$-Z^{-1}$	$J_{\text {Her }}$
$T_{\left(g_{0}, \ldots, g_{3}\right)}$	$w+\left(g_{0}, \ldots, g_{3}\right)$	$Z+H$	$\operatorname{Trans}(H), H=\left(\begin{array}{cc}g_{0} & g_{1}+i g_{2} \\ * & g_{3}\end{array}\right)$
$R_{\left(\begin{array}{ll}0 & -1 \\ 1 & 0\end{array}\right)}$	$\left(\tau_{1},-w_{2}, w_{1}, \tau_{2}\right)$	$\left(\begin{array}{cc}\tau_{1} & i z_{1} \\ -i z_{2} & \tau_{2}\end{array}\right)$	$\operatorname{Rot}\left(\begin{array}{cc}-i & 0 \\ 0 & 1\end{array}\right)$
$M_{\text {tr }}=R_{\left(\begin{array}{ll}1 & 0 \\ 0 & -1\end{array}\right)}$	$\left(\tau_{1}, w_{1},-w_{2}, \tau_{2}\right)$	${ }^{t} Z$	$I_{\text {tr }}$

The Abelian characters of $\Gamma_{\mathbb{K}}$
We have $\mathrm{U}\left(2 ; \mathfrak{o}_{\mathbb{K}}\right)^{\text {ab }}=\left\langle\operatorname{det}, \nu_{\wp}\right\rangle$. We can extend det and ν_{\wp} to $\Gamma_{\mathbb{K}}$ by $\operatorname{defining} \operatorname{det}\left(I_{\mathrm{tr}}\right):=$ $\nu_{\wp}\left(I_{\text {tr }}\right):=1$. Moreover, we define $\nu_{\text {skew }}: \Gamma_{\mathbb{K}} \rightarrow \mathbb{C}$ by $\nu_{\text {skew }}\left(I_{\text {tr }}\right):=-1$ and $\nu_{\text {skew }}(M):=1$ for $M \in \mathrm{U}\left(2 ; \mathfrak{o}_{\mathbb{K}}\right)$. Considering that $M\left\langle I_{\operatorname{tr}}(Z)\right\rangle=I_{\operatorname{tr}}(\bar{M}\langle Z\rangle)$ for all $M \in \mathrm{U}(2 ; \mathbb{C})$ we can easily verify that $\Gamma_{\mathbb{K}}^{\mathrm{ab}}=\left\langle\operatorname{det}, \nu_{\wp}, \nu_{\text {skew }}\right\rangle$.

$\gamma \in \Gamma_{\mathbb{Q}(\sqrt{-1})}$	$\operatorname{det}(\gamma)$	$\nu_{\wp}(\gamma)$	$\nu_{\text {skew }}(\gamma)$
$J_{\text {Her }}$	1	1	1
$\operatorname{Trans}\left(\begin{array}{cc}g_{0} & g_{1}+i g_{2} \\ * & g_{3}\end{array}\right)$	1	$(-1)^{\sum g_{j}}$	1
$\operatorname{Rot}\left(\begin{array}{cc}-i & 0 \\ 0 & 1\end{array}\right)$	-1	1	1
I_{tr}	1	1	-1

B.2. The case $S=A_{2}$

Let $\mathbb{K}=\mathbb{Q}(\sqrt{-3})$. Then $\mathfrak{o}_{\mathbb{K}}=\mathbb{Z}+\mathbb{Z} \omega, \omega=\frac{1}{2}(1+i \sqrt{3}), S=S^{\mathbb{K}}=A_{2}$ and

$$
w=\left(\tau_{1}, w_{1}, w_{2}, \tau_{2}\right)=\left(x_{1}, u_{1}, u_{2}, x_{2}\right)+i\left(y_{1}, v_{1}, v_{2}, y_{2}\right) \in \mathcal{H}_{A_{2}}
$$

corresponds to

$$
Z=\left(\begin{array}{cc}
x_{1} & u_{1}+\omega u_{2} \\
u_{1}+\bar{\omega} u_{2} & x_{2}
\end{array}\right)+i\left(\begin{array}{cc}
y_{1} & v_{1}+\omega v_{2} \\
v_{1}+\bar{\omega} v_{2} & y_{2}
\end{array}\right) \in H(2 ; \mathbb{C}) .
$$

The generators of $\Gamma_{A_{2}}$ and $\Gamma_{\mathbb{K}}$

$M \in \Gamma_{A_{2}}$	$M\langle w\rangle$	$\gamma(Z)$	$\gamma \in \Gamma_{\mathbb{Q}(\sqrt{-3})}$
J	$J\langle w\rangle$	$-Z^{-1}$	$J_{\text {Her }}$
$T_{\left(g_{0}, \ldots, g_{3}\right)}$	$w+\left(g_{0}, \ldots, g_{3}\right)$	$Z+H$	$\operatorname{Trans}(H), H=\left(\begin{array}{cc}g_{0} & g_{1}+\omega g_{2} \\ * & g_{3}\end{array}\right)$
$R_{\left(\begin{array}{cc}1 & 1 \\ -1 & 0\end{array}\right)}$	$\left(\tau_{1}, w_{1}+w_{2},-w_{1}, \tau_{2}\right)$	$\left(\begin{array}{cc}\tau_{1} & \bar{\omega} z_{1} \\ \omega z_{2} & \tau_{2}\end{array}\right)$	$\operatorname{Rot}\left(\begin{array}{cc}\omega^{2} & 0 \\ 0 & \omega\end{array}\right)$
$M_{\mathrm{tr}}=R_{\left(\begin{array}{ll}1 & 1 \\ 0 & -1\end{array}\right)}$	$\left(\tau_{1}, w_{1}+w_{2},-w_{2}, \tau_{2}\right)$	${ }^{2} Z$	$I_{\text {tr }}$

The Abelian characters of $\Gamma_{\mathbb{K}}$

We have $\mathrm{U}\left(2 ; \mathfrak{o}_{\mathbb{K}}\right)^{\text {ab }}=\langle\operatorname{det}\rangle \cong C_{3}$. Because of $M\left\langle I_{\operatorname{tr}}(Z)\right\rangle=I_{\operatorname{tr}}(\bar{M}\langle Z\rangle)$ for all $M \in$ $\mathrm{U}(2 ; \mathbb{C})$ we have

$$
\left[I_{\mathrm{tr}}, \operatorname{Rot}\left(\begin{array}{cc}
\omega & 0 \\
0 & 1
\end{array}\right)\right]=I_{\mathrm{tr}} \circ \operatorname{Rot}\left(\begin{array}{cc}
\bar{\omega} & 0 \\
0 & 1
\end{array}\right) \circ I_{\mathrm{tr}} \circ \operatorname{Rot}\left(\begin{array}{cc}
\omega & 0 \\
0 & 1
\end{array}\right)=\operatorname{Rot}\left(\begin{array}{cc}
\omega^{2} & 0 \\
0 & 1
\end{array}\right) \in \Gamma_{\mathbb{K}}^{\prime} .
$$

Since we also have $\operatorname{Rot}\left(\begin{array}{cc}\omega^{3} & 0 \\ 0 & 1\end{array}\right)=\operatorname{Rot}\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right) \in \Gamma_{\mathbb{K}}^{\prime}$ we get $(Z \mapsto M\langle Z\rangle) \in \Gamma_{\mathbb{K}}^{\prime}$ for all $M \in \mathrm{U}\left(2 ; \mathfrak{o}_{\mathbb{K}}\right)$, and thus $\left[\Gamma_{\mathbb{K}}: \Gamma_{\mathbb{K}}^{\prime}\right] \leq 2$. We define $\nu_{\text {skew }}: \Gamma_{\mathbb{K}} \rightarrow \mathbb{C}$ by $\nu_{\text {skew }}\left(I_{\text {tr }}\right):=-1$ and $\nu_{\text {skew }}(M):=1$ for $M \in \mathrm{U}\left(2 ; \mathfrak{o}_{\mathbb{K}}\right)$. Due to $M\left\langle I_{\mathrm{tr}}(Z)\right\rangle=I_{\text {tr }}(M\langle Z\rangle)$ for all $M \in$ $\mathrm{U}(2 ; \mathbb{C})$ we get $\Gamma_{\mathbb{K}}^{\text {ab }}=\left\langle\nu_{\text {skew }}\right\rangle$.

$\gamma \in \Gamma_{\mathbb{Q}(\sqrt{-3})}$	$\nu_{\text {skew }}(\gamma)$
$J_{\text {Her }}$	1
$\operatorname{Trans}\left(\begin{array}{cc}g_{0} & g_{1}+\omega g_{2} \\ * & g_{3}\end{array}\right)$	1
$\operatorname{Rot}\left(\begin{array}{cc}\omega^{2} & 0 \\ 0 & \omega\end{array}\right)$	1
$I_{\text {tr }}$	-1

B.3. The case $S=S_{2}$

Let $\mathbb{K}=\mathbb{Q}(\sqrt{-1})$. Then $\mathfrak{o}_{\mathbb{K}}=\mathbb{Z}+\mathbb{Z} i \sqrt{2}, S=S^{\mathbb{K}}=S_{2}$ and

$$
w=\left(\tau_{1}, w_{1}, w_{2}, \tau_{2}\right)=\left(x_{1}, u_{1}, u_{2}, x_{2}\right)+i\left(y_{1}, v_{1}, v_{2}, y_{2}\right) \in \mathcal{H}_{S_{2}}
$$

corresponds to

$$
\begin{aligned}
Z & =\left(\begin{array}{cc}
\tau_{1} & \left(u_{1}-\sqrt{2} v_{2}\right)+i\left(v_{1}+\sqrt{2} u_{2}\right) \\
\left(u_{1}+\sqrt{2} v_{2}\right)+i\left(v_{1}-\sqrt{2} u_{2}\right) & \tau_{2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
x_{1} & u_{1}+i \sqrt{2} u_{2} \\
u_{1}-i \sqrt{2} u_{2} & x_{2}
\end{array}\right)+i\left(\begin{array}{cc}
y_{1} & v_{1}+i \sqrt{2} v_{2} \\
v_{1}-i \sqrt{2} v_{2} & y_{2}
\end{array}\right) \in H(2 ; \mathbb{C}) .
\end{aligned}
$$

The generators of $\Gamma_{S_{2}}$ and $\Gamma_{\mathbb{K}}$

$M \in \Gamma_{S_{2}}$	$M\langle w\rangle$	$\gamma(Z)$	$\gamma \in \Gamma_{\mathbb{Q}(\sqrt{-2})}$
J	$J\langle w\rangle$	$-Z^{-1}$	J_{Her}
$T_{\left(g_{0}, \ldots, g_{3}\right)}$	$w+\left(g_{0}, \ldots, g_{3}\right)$	$Z+H$	$\operatorname{Trans}(H), H=\left(\begin{array}{cc}g_{0} & g_{1}+i g_{2} \\ * & g_{3}\end{array}\right)$
$R_{\left(\begin{array}{ll}-1 & 0 \\ 0 & -1\end{array}\right)}$	$\left(\tau_{1},-w_{1},-w_{2}, \tau_{2}\right)$	$\left(\begin{array}{cc}\tau_{1} & -z_{1} \\ -z_{2} & \tau_{2}\end{array}\right)$	$\operatorname{Rot}\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$
$M_{\mathrm{tr}}=R_{\left(\begin{array}{ll}1 & 0 \\ 0 & -1\end{array}\right)}$	$\left(\tau_{1}, w_{1},-w_{2}, \tau_{2}\right)$	${ }^{t} Z$	$I_{\text {tr }}$

The characters of Γ_{S} and $\Gamma_{\mathbb{K}}$

We have $\mathrm{U}\left(2 ; \mathfrak{o}_{\mathbb{K}}\right)^{\text {ab }}=\left\langle\nu_{\wp}\right\rangle$. We can extend ν_{\wp} to $\Gamma_{\mathbb{K}}$ by defining $\nu_{\wp}\left(I_{\mathrm{tr}}\right):=1$. Moreover, we define $\nu_{\text {skew }}: \Gamma_{\mathbb{K}} \rightarrow \mathbb{C}$ by $\nu_{\text {skew }}\left(I_{\text {tr }}\right):=-1$ and $\nu_{\text {skew }}(M):=1$ for $M \in \mathrm{U}\left(2 ; \mathfrak{o}_{\mathbb{K}}\right)$. Considering that $\left.M\left\langle I_{\operatorname{tr}}(Z)\right\rangle=I_{\mathrm{tr}} \bar{M}\langle Z\rangle\right)$ for all $M \in \mathrm{U}(2 ; \mathbb{C})$ we can easily verify that $\Gamma_{\mathbb{K}}^{\mathrm{ab}}=\left\langle\nu_{\wp}, \nu_{\text {skew }}\right\rangle$.

$\gamma \in \Gamma_{\mathbb{Q}(\sqrt{ }-2)}$	$\nu_{\wp}(\gamma)$	$\nu_{\text {skew }}(\gamma)$
$J_{\text {Her }}$	1	1
$\operatorname{Trans}\left(\begin{array}{cc}g_{0} & g_{1}+i \sqrt{2} g_{2} \\ * & g_{3}\end{array}\right)$	$(-1)^{g_{0}+g_{1}+g_{3}}$	1
$\operatorname{Rot}\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$	1	1
$I_{\text {tr }}$	1	-1

C. Eichler Transformations

We want to show that a group which is nicely generated in the sense of Definition 1.18 is also nicely generated in the sense of Freitag/Hermann [FH00, Def. 4.7]. We use the notation we introduced in Chapter 1. Freitag/Hermann call a subgroup Γ of $\mathrm{O}\left(S_{1} ; \mathbb{R}\right)$ nicely generated if it is generated by the group $\mathrm{EO}(\Lambda)$ of Eichler transformations and by the group $\mathrm{O}(\Lambda)$ considered as subgroup of $\mathrm{O}\left(S_{1} ; \mathbb{R}\right)$ via the embedding $A \mapsto R_{A}$. The group $\mathrm{EO}(\Lambda)$ is generated by all Eichler transformations of the form $E\left(f_{j}, v\right), 1 \leq j \leq 4$, where the pairs $\left(f_{1}, f_{2}\right)$ and $\left(f_{3}, f_{4}\right)$ span the two hyperbolic planes which are contained in Λ_{1} and where $v \in \Lambda_{1}$ is orthogonal to f_{j}. In our terminology we have

$$
f_{1}=e_{2}, f_{2}=e_{l+3}, f_{3}=e_{1}, f_{4}=e_{l+4}
$$

where $\left(e_{j}\right)_{1 \leq j \leq l+4}$ is the standard basis of $V_{1}=\mathbb{R}^{l+4}$. With this choice we obviously have

$$
\Lambda_{1}=H_{1} \oplus H_{2} \oplus \Lambda,
$$

where $H_{1}=\mathbb{Z} f_{1}+\mathbb{Z} f_{2}$ and $H_{2}=\mathbb{Z} f_{3}+\mathbb{Z} f_{4}$ are two integral hyperbolic planes, that is

$$
q_{1}\left(x_{1} f_{1}+x_{2} f_{2}\right)=x_{1} x_{2} \quad \text { and } \quad q_{1}\left(x_{3} f_{3}+x_{4} f_{4}\right)
$$

The Eichler transformations $E\left(f_{j}, v\right)$ are then defined for all $v \in \Lambda_{1}$ which are orthogonal to f_{j} by

$$
E\left(f_{j}, v\right)(a)=a-\left(a, f_{j}\right)_{1} v+(a, v)_{1} f_{j}-q_{1}(v)\left(a, f_{j}\right)_{1} f_{j} \quad \text { for all } a \in V_{1}
$$

In order to see how they act on \mathcal{H}_{S} we have to apply them to $a=\left[\left(-q_{0}(w), w, 1\right)\right] \in \mathcal{K}^{+}$ (cf. Section 4.2). Then for $w=\left(\tau_{1}, z, \tau_{2}\right)$ and $h=(0,0, \lambda, 0,0), \lambda \in \Lambda$, we get

$$
\begin{array}{rlrl}
E\left(f_{1}, f_{3}\right)(w) & =\left(\tau_{1}+1, z, \tau_{2}\right) & & =T_{e_{1}}\langle w\rangle, \\
E\left(f_{1}, f_{4}\right)(w) & =\left(-q_{0}(w)+\tau_{1}, z, \tau_{2}\right)\left(-\tau_{2}+1\right)^{-1} & & =\left(J T_{e_{l+2}} J\right)\langle w\rangle, \\
E\left(f_{2}, f_{3}\right)(w) & =\left(\tau_{1}, z, \tau_{2}+1\right) & & =T_{e_{l+2}}\langle w\rangle, \\
E\left(f_{2}, f_{4}\right)(w) & =\left(\tau_{1}, z,-q_{0}(w)+\tau_{2}\right)\left(-\tau_{1}+1\right)^{-1} & & =\left(J T_{e_{1}} J\right)\langle w\rangle, \\
E\left(f_{1}, h\right)(w) & =\left(\tau_{1}-{ }^{t} \lambda S z+q(\lambda) \tau_{2}, z-\lambda \tau_{2}, \tau_{2}\right) & & =U_{-\lambda}\langle w\rangle, \\
E\left(f_{2}, h\right)(w) & =\left(\tau_{1}, z-\lambda \tau_{1}, \tau_{2}-{ }^{t} \lambda S z+q(\lambda) \tau_{1}\right) & & =\left(J U_{\lambda} J\right)\langle w\rangle, \\
E\left(f_{3}, h\right)(w) & =\left(\tau_{1}, z-\lambda, \tau_{2}\right) & & =T_{(0,-\lambda, 0)}\langle w\rangle, \\
E\left(f_{4}, h\right)(w) & =\left(\tau_{1}, z+q_{0}(w) \lambda, \tau_{2}\right)\left(-q(\lambda) q_{0}(w)-{ }^{t} \lambda S z+1\right)^{-1} & =\left(J T_{(0, \lambda, 0)} J\right)\langle w\rangle .
\end{array}
$$

Since

$$
E\left(f_{j}, f_{i}\right)=E\left(f_{i}, f_{j}\right)^{-1}
$$

for $i=1,2$ and $j=3,4$, and

$$
E\left(f_{j}, v_{1}+v_{2}\right)=E\left(f_{j}, v_{1}\right) \circ E\left(f_{j}, v_{2}\right)
$$

for $1 \leq j \leq 4$ and all $v_{1}, v_{2} \in \Lambda_{1} \cap f_{j}^{\perp}$ we see that the above eight Eichler transformations generate the group $\mathrm{EO}(\Lambda)$. We conclude that a subgroup Γ of $\mathrm{O}\left(S_{1} ; \mathbb{R}\right)$ which is nicely generated in the sense of Freitag/Hermann is also nicely generated in the sense of Definition 1.18. On the other hand, we have

$$
J\langle w\rangle=\left(E\left(f_{1}, f_{3}\right) \circ E\left(f_{2}, f_{4}\right) \circ E\left(f_{2}, f_{3}\right) \circ E\left(f_{1}, f_{4}\right) \circ E\left(f_{2}, f_{3}\right) \circ E\left(f_{1}, f_{3}\right)\right)(w) .
$$

Thus the converse is also true. In fact we have shown even more, namely that the subgroup $\left\langle J, T_{g} ; g \in \Lambda_{0}\right\rangle$ of Γ_{S} considered as subgroup of $\operatorname{Bihol}\left(\mathcal{H}_{S}\right)$ is isomorphic to the group $\mathrm{EO}(\Lambda)$.

D. Discriminant Groups

E. Dimensions of Spaces of Vector-valued Modular Forms

In the following tables we list the dimensions of the spaces $\left[\operatorname{Mp}(2 ; \mathbb{Z}), k, \rho_{S}\right]$ of vectorvalued modular forms for some positive definite matrices S. For weights $k \in \frac{1}{2} \mathbb{Z}$ which do not occur in the tables the dimension is 0 . We write $d(k):=\operatorname{dim}\left[\operatorname{Mp}(2 ; \mathbb{Z}), k, \rho_{S}\right]$.

$S=A_{3}$								
k	$\frac{1}{2}$	$\frac{5}{2}$	$\frac{9}{2}$	$\frac{13}{2}$	$\frac{17}{2}$	$\frac{21}{2}$	$\frac{25}{2}$	$2 n+\frac{1}{2}, n \geq 7$
$d(k)$	0	0	1	0	1	1	1	$d(k-12)+1$
k	$\frac{3}{2}$	$\frac{7}{2}$	$\frac{11}{2}$	$\frac{15}{2}$	$\frac{19}{2}$	$\frac{23}{2}$	$\frac{27}{2}$	$2 n+\frac{3}{2}, n \geq 7$
$d(k)$	1	1	2	2	3	3	4	$d(k-12)+3$
$S=A_{1}^{(3)}$								
k	$\frac{3}{2}$	$\frac{7}{2}$	$\frac{11}{2}$	$\frac{15}{2}$	$2 n+\frac{3}{2}, n \geq 4$			
$d(k)$	1	3	4	5	$d(k-6)+4$			
$S=D_{4}$								
k	0	2	4	6	81	12	2	$2 n, n \geq 7$
$d(k)$	0	1	1	3	2	4	4 d	$(k-12)+4$

Bibliography

[AI05] H. Aoki, T. Ibukiyama, Simple graded rings of Siegel modular forms, differential operators and Borcherds products. Int. J. Math. 16 (2005), 249-279.
[Ap90] T. M. Apostol, Modular functions and Dirichlet series in number theory. 2nd ed. Graduate Texts in Mathematics 41, Springer-Verlag, New York etc., 1990.
[Ar92] T. Arakawa, Selberg zeta functions and Jacobi forms. Adv. Stud. Pure Math. 21 (1992), 181-218.
[BB66] W. Baily, A. Borel, Compactification of arithmetic quotients of bounded symmetric domains. Ann. Math. 84 (1966), 442-528.
[BCP97] W. Bosma, J. Cannon, C. Playoust, The Magma algebra system. I: The user language. J. Symb. Comput. 24 (1997), 235-265.
[BK01] J. H. Bruinier, M. Kuss, Eisenstein series attached to lattices and modular forms on orthogonal groups. Manuscr. Math. 106 (2001), 443-459.
[Bo98] R. E. Borcherds, Automorphic forms with singularities on Grassmannians. Invent. Math. 132 (1998), 491-562.
[Bo99] R. E. Borcherds, The Gross-Kohnen-Zagier theorem in higher dimensions. Duke Math. J. 97 (1999), 219-233.
[Bo00] R. E. Borcherds, Reflection groups of Lorentzian lattices. Duke Math. J. 104 (2000), 319-366.
[Br02] J. H. BRuinier, Borcherds products on $O(2, l)$ and Chern classes of Heegner divisors. Lecture Notes in Mathematics 1780, Springer, Berlin-Heidelberg-New York, 2002.
[Bü96] F. BÜHLER, Modulformen zur orthogonalen Gruppe. Diplomarbeit, RWTH Aachen, 1996.
[De01] T. Dern, Hermitesche Modulformenen zweiten Grades. Ph.D. dissertation, RWTH Aachen, 2001.
[DK03] T. Dern, A. Krieg, Graded rings of Hermitian modular forms of degree 2. Manuscr. Math. 110 (2003), 251-272.
[DK04] T. Dern, A. Krieg, The graded ring of Hermitian modular forms of degree 2 over $\mathbb{Q}(\sqrt{-2})$. J. Number Theory 107 (2004), 241-265.
[ES95] W. Eholzer, N.-P. SKoruppa, Modular invariance and uniqueness of conformal characters. Commun. Math. Phys. 174 (1995), 117-136.
[FH00] E. Freitag, C. F. Hermann, Some modular varieties of low dimension. Adv. Math. 152 (2000), 203-287.
[Fr67] E. Freitag, Modulformen zweiten Grades zum rationalen und Gaußschen Zahlkörper. Sitzungsber. Heidelb. Akad. Wiss., Math.-Naturwiss. Kl. (1967), 3-49.
[Fr83] E. Freitag, Siegelsche Modulfunktionen. Grundlehren der Mathematischen Wissenschaften 254, Springer, Berlin-Heidelberg-New York, 1983.
[FSM] E. Freitag, R. Salvati Manni, Some modular varieties of low dimension II. preprint.
[GAP05] The GAP Group. GAP - Groups, Algorithms, and Programming, Version 4.4, 2005. (http://www.gap-system.org).
[Ib99a] T. Ibukiyama, On differential operators on automorphic forms and invariant pluri-harmonic polynomials. Comment. Math. Univ. St. Pauli 48 (1999), 103118.
[Ib99b] T. IbukiYama, A remark on the Hermitian modular forms. Osaka University Research Reports Math. 99-19 (1999).
[Ig64] J.-I. IgUSA, On Siegel modular forms of genus two (II). Am. J. Math. 86 (1964), 392-412.
[Kra] A. KriEg, The graded ring of quaternionic modular forms of degree 2. Preprint, Aachen 2005, to appear in Math. Z.
[Krb] A. Krieg, Theta series over the Hurwitz quaternions. Preprint, Aachen 2005.
[Kr85] A. Krieg, Modular forms on half-spaces of quaternions. Lecture Notes in Mathematics 1143, Springer, Berlin-Heidelberg-New York, 1985.
[Kr87] A. Krieg, The Maaß-space on the half-space of quaternions of degree 2. Math. Ann. 276 (1987), 675-686.
[Kr90] A. Krieg, The Maaß space and Hecke operators. Math. Z. 204 (1990), 527-550.
[Kr91] A. Krieg, The Maaß space on the Hermitian half-space of degree 2. Math. Ann. 289 (1991), 663-681.
[Kr96] A. Krieg, Jacobi forms of several variables and the Maaß space. J. Number Theory 56 (1996), 242-255.
[KW98] A. Krieg, S. Walcher, Multiplier systems for the modular group on the 27dimensional exceptional domain. Commun. Algebra 26 (1998), 1409-1417.
[Le64] J. Lehner, Discontinuous Groups and Automorphic Functions. Mathematical Surveys 8, American Mathematical Society, 1964.
[Na96] S. NAGAOKA, A note on the structure of the ring of symmetric Hermitian modular forms of degree 2 over the Gaussian field. J. Math. Soc. Japan 48 (1996), 525-549.
[O’M78] O. T. O’Meara, Symplectic Groups. Mathematical Surveys 16, American Mathematical Society, Providence, R.I., 1978.
[Pf53] W. Pfetzer, Die Wirkung der Modulsubstitutionen auf mehrfache Thetareihen zu quadratischen Formen ungerader Variablenzahl. Arch. Math. 4 (1953), 448454.
[PS69] I. I. PYATETSKII-SHAPIRO, Automorphic Functions and the Geometry of Classical Domains. Mathematics and its Applications 8, Gordon and Breach Science Publishers, New York-London-Paris, 1969.
[Sh73] G. Shimura, On modular forms of half integral weight. Ann. Math. 97 (1973), 440-481.
[Sk84] N.-P. Skoruppa, Über den Zusammenhang zwischen Jacobiformen und Modulformen halbganzen Gewichts. PhD thesis, MathematischNaturwissenschaftliche Fakultät der Rheinischen Friedrich-WilhelmsUniversität Bonn (1984); Bonn. Math. Schr. 159, 163 S. , 1984.

Notation

$M\langle Z\rangle$	$=(A Z+B)(C Z+D)^{-1}($ pp. 53, 57)
$M\langle\tau\rangle$	$=(a \tau+b) /(c \tau+d)$
$M\langle w\rangle$	$=\left(-q_{0}(w) b+A w+c\right)(M\{w\})^{-1}(\mathrm{p} .10)$
$M\{w\}$	$=-\gamma q_{0}(w)+{ }^{t} d w+\delta(\mathrm{p} .10)$
$M \geq 0$	M is positive semi-definite
$M>0$	M is positive definite
$a \geq 0$	$a \in \overline{\mathcal{P}_{S}}$ (p.31)
$a>0$	$a \in \mathcal{P}_{S}$ (p.31)
$\lambda_{0}>0$	See p. 83
(\cdot, \cdot)	A bilinear form, usually $(\cdot, \cdot)_{S}$ (p.9)
$(\cdot, \cdot)_{0}$	$=(\cdot, \cdot)_{S_{0}}$, the bilinear form associated to $S_{0}(\mathrm{p} .9)$
$(\cdot, \cdot)_{1}$	$=(\cdot, \cdot)_{S_{1}}$, the bilinear form associated to $S_{1}($ p. 9)
$(x, y)_{S}$	$={ }^{t} x S y$, the bilinear form associated to S (p.8)
$\lfloor\cdot\rfloor$	The greatest integer function
$\sqrt{ }$	The principal branch of the square root
[g, h]	The commutator $g h g^{-1} h^{-1}$ of g and h
$G^{\text {ab }}$	The commutator factor group G / G^{\prime} of G
G^{\prime}	The commutator subgroup of G
$H \leq G$	H is a subgroup of G
$A_{1} \times \ldots \times A_{n}$	The block diagonal matrix with diagonal elements A_{1}, \ldots, A_{n}
$\left[a_{1}, \ldots, a_{n}\right]$	The diagonal matrix with diagonal elements a_{1}, \ldots, a_{n}
$A[B]$	$={ }^{\bar{t}} \bar{B} A B$
${ }^{t} M$	The transpose of M
${ }^{t} \bar{M}$	The conjugate transpose of M
$\left\{f_{1}, \ldots, f_{n}\right\}$	A certain Rankin-Cohen type differential operator (p. 36)
$\mid \Phi$	Siegel's Φ-operator (p. 33)
$\mid X$	Restriction of a function to a subspace or subgroup X
$\left.\right\|_{k}$	The Petersson slash operator of weight k (pp. 29, 54, 57, 66)
$\left.\right\|_{k, m, S}$	The slash operator of weight k and index (m, S) (p.40)

$\left(\frac{\partial F}{\partial z}\right)$	$=\left(\frac{\partial\left(F_{1}, \ldots, F_{n}\right)}{\partial\left(z_{1}, \ldots, z_{n}\right)}\right)$, the Jacobian matrix of $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ (p. 35)
$\operatorname{det}\left(\frac{\partial F}{\partial z}\right)$	$=\operatorname{det}\left(\frac{\partial\left(F_{1}, \ldots, F_{n}\right)}{\partial\left(z_{1}, \ldots, z_{n}\right)}\right)$, the Jacobian (determinant) of $F: \mathbb{C}^{n} \rightarrow \mathbb{C}^{n}$ (p. 35)
[$\Gamma, k, \nu]$	The space of modular forms of weight k with respect to Γ and ν (p. 29)
$\left[\Gamma_{S}, k, \nu\right]_{0}$	The subspace of cusp forms in [$\left.\Gamma_{S}, k, \nu\right]$ (p.33)
[Γ, k]	$=[\Gamma, k, 1]$
$\left[\Gamma_{\mathbb{H}}, k, \chi\right]$	The space of quaternionic modular forms of weight k with respect to χ (p. 58)
$\left[\Gamma_{\mathbb{K}}, k, \chi\right]$	The space of Hermitian modular forms of weight k with respect to χ (p.54)
$\left[\Gamma_{\mathbb{K}}, k, \chi\right]_{0}$	The subspace of cusp forms in $\left[\Gamma_{\mathbb{K}}, k, \chi\right]$ (p. 54)
$\left[\Gamma_{S}, k, \chi\right]_{\text {mer }}$	The space of meromorphic modular forms of weight k with respect to χ (p. 97)
$[\mathrm{Mp}(2 ; \mathbb{Z}), k, \rho]$	The space of modular forms of weight k with respect to ρ (p.66)
$[\operatorname{Mp}(2 ; \mathbb{Z}), k, \rho]_{0}$	The subspace of cusp forms of $[\operatorname{Mp}(2 ; \mathbb{Z}), k, \rho]$
$[\operatorname{Mp}(2 ; \mathbb{Z}), k, \rho]_{\infty}$	The space of nearly holomorphic modular forms of weight k (p. 68)
$[\mathrm{SL}(2 ; \mathbb{Z}), k]$	The space of elliptic modular forms of weight k
$A(n)$	The alternating group of degree n
$\mathcal{A}(\Gamma)$	$=\bigoplus_{k \in \mathbb{Z}}[\Gamma, k, 1]$, the graded ring of modular forms with respect to Γ (p .30$)$
$\alpha(x)$	$=\left(1, \ldots, x^{l-1}\right)(\mathrm{p} .81)$
$\alpha_{f}(\mu)$	The Fourier coefficients of the orthogonal modular form f
B_{n}	A Bernoulli number
$\operatorname{Bihol}(X)$	The group of biholomorphic automorphisms on the space X
C	$=\left(\left(\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right), i\right)$, the generator of the center of $\operatorname{Mp}(2 ; \mathbb{Z})$
\mathbb{C}	The complex numbers
$\mathbb{C}\left[\Lambda^{\sharp} / \Lambda\right]$	The group ring of the discriminant group $\Lambda^{\sharp} / \Lambda$
$\mathbb{C}\left[X_{1}, \ldots, X_{n}\right]$	The polynomial ring in n variables
$c_{\mu}(n)$	The Fourier coefficients of a vector-valued modular form
C_{n}	The cyclic group of order n
χ	An Abelian character of Γ_{S}
D_{n}	The dihedral group of order n
$\delta\left(\lambda^{\perp}\right)$	The discriminant of λ^{\perp} (p. 84)
det	The determinant map or the determinant character of a modular group
$\operatorname{diag}(M)$	The column vector consisting of the diagonal elements of the matrix M
Dis(Λ)	The discriminant group $\Lambda^{\sharp} / \Lambda$ of Λ (p. 7)
e	$={ }^{t}(1,0, \ldots, 0,1) \in \mathbb{R}^{l+2}$ (p. 9)
e_{j}	An element of the standard basis $\left(e_{1}, \ldots, e_{l}\right)$ of \mathbb{R}^{l}
$E_{k}(\tau ; v, S)$	A vector-valued Eisenstein series of weight k (p. 73)
$E_{k}^{A_{1}^{(3)}}$	The normalized orthogonal Eisenstein series of weight k for $\Gamma_{A_{1}^{(3)}}(\mathrm{p} .60)$

$E_{k}^{A_{3}}$	The normalized orthogonal Eisenstein series of weight k for $\Gamma_{A_{3}}$ (p. 60)
$E_{k}^{D_{4}}$	The normalized orthogonal Eisenstein series of weight k for $\Gamma_{D_{4}}$ (p. 60)
$E_{k}^{\text {H/ }}$	The normalized quaternionic Eisenstein series of weight k for $\Gamma_{\mathbb{H}}$ (p. 58)
$E_{k}^{\mathbb{K}}$	The normalized Hermitian Eisenstein series of weight k for $\Gamma_{\mathbb{K}}$ (p. 54)
$E_{k}^{S_{\mathrm{K}}}$	The normalized orthogonal Eisenstein series of weight k for $\Gamma_{S^{\mathbb{K}}}(\mathrm{p} .56)$
e_{μ}	An element of the standard basis $\left(e_{\mu}\right)_{\mu \in \Lambda^{\sharp} / \Lambda}$ of $\mathbb{C}\left[\Lambda^{\sharp} / \Lambda\right]$
η	The Dedekind eta function (p.67)
\mathbb{F}_{q}	The field of two elements
f_{8}, f_{10}, f_{12}	Certain cusp forms for $\Gamma_{A_{3}}$ and/or $\Gamma_{A_{1}^{(3)}}$ (pp. 94, 104)
f_{μ}	A component of a vector-valued modular form f
G_{k}	The normalized elliptic Eisenstein series of weight k (p.45)
Γ	A subgroup of finite index of Γ_{S}
$\Gamma(2 ; \mathbb{K})$	$=\mathrm{U}\left(2 ; \mathfrak{o}_{\mathbb{K}}\right)$, the Hermitian modular group
$\Gamma(2 ; \mathbb{K})$	A certain subgroup of $\Gamma(2 ; \mathbb{K})($ p. 54)
$\Gamma_{\text {H }}$	The extended quaternionic modular group (p. 57)
Γ_{∞}	$=\left\{\left(\begin{array}{cc}1 & n \\ 0 & 1\end{array}\right) ; n \in \mathbb{Z}\right\} \leq \mathrm{SL}(2 ; \mathbb{Z})$
$\widetilde{\Gamma}_{\infty}$	$\left.=\left\{\left(\begin{array}{cc}1 & n \\ 0 & 1\end{array}\right), 1\right) ; n \in \mathbb{Z}\right\} \leq \operatorname{Mp}(2 ; \mathbb{Z})$
$\Gamma_{\mathbb{K}}$	The extended Hermitian modular group (p. 54)
Γ_{S}	$=\mathrm{O}\left(\Lambda_{1}\right) \cap \mathrm{O}^{+}\left(S_{1} ; \mathbb{R}\right)$, the orthogonal modular group with respect to S (p. 11)
$\Gamma_{S}^{\text {ab }}$	The group of Abelian characters of Γ_{S} (p. 22)
$\mathrm{GL}(n ; R)$	The group of invertible $n \times n$ matrices with elements in R
$h\left(\Delta_{\mathbb{K}}\right)$	Class number of an imaginary quadratic number field with discriminant $\Delta_{\mathbb{K}}$
$H(2 ; \mathbb{C})$	The Hermitian half-space of degree 2 (p.53)
$H(2 ; \mathbb{H})$	The half-space of quaternions of degree 2 (p. 57)
\mathbb{H}	The Hamilton quaternions
\mathbb{H}_{S}	A subspace of \mathbb{H} (p. 13)
\mathcal{H}	The complex upper half plane $\{\tau \in \mathbb{C} ; \operatorname{Im}(\tau)>0\}$
\mathcal{H}_{S}	The (orthogonal) half-space associated to S (p.9)
$H_{0}(\mu, n)$	A certain subset of \mathcal{P}_{S}^{1} (p. 78)
h_{k}	Certain modular forms of weight $k \in\{4,6,8,10,12\}$ for $\Gamma_{A_{1}^{(3)}}(\mathrm{p} .62)$
$H_{S}(\mathbb{R})$	The Heisenberg group (p. 27)
$\operatorname{Her}(n ; R)$	The set of Hermitian $n \times n$ matrices with elements in R
I	An identity matrix
$\mathrm{i}_{1}, \mathrm{i}_{2}, \mathrm{i}_{3}$	The canonical non-real basis elements of \mathbb{H}
I_{n}	The identity matrix in $\operatorname{Mat}(n ; R)$
$I_{\text {tr }}$	The involution on $H(2 ; \mathbb{C})$ or $H(2 ; \mathbb{H})$ mapping Z to ${ }^{t} Z$

ι_{S}	The isomorphism $\mathbb{R}^{l} \rightarrow \mathbb{H}_{S}(\mathrm{p} .13)$
ι_{T}^{S}	An isometric embedding of Λ_{T} in Λ_{S} (p. 45)
$\operatorname{Im}(z)$	The imaginary part of $z \in \mathbb{C}$
J	A certain element of Γ_{S}, or the element $\left(\left(\begin{array}{cc}0 & -1 \\ 1 & 0\end{array}\right), \sqrt{\tau}\right) \in \operatorname{Mp}(2 ; \mathbb{Z})(\mathrm{p} .11)$
$j_{k, m, S}(g,(\tau, z))$	A factor of automorphy on $J_{S}(\mathbb{R}) \times\left(\mathcal{H} \times \mathbb{C}^{l}\right)($ p. 40)
$j(M, w)$	$=M\{w\}$, the factor of automorphy on $\mathrm{O}^{+}\left(S_{1} ; \mathbb{R}\right) \times \mathcal{H}_{S}(\mathrm{p} .29)$
\tilde{J}	A certain element of $\mathrm{O}\left(\Lambda_{0}\right)($ p. 11)
$J_{\text {HI }}$	$=\left(\begin{array}{cc}0 & -I_{2} \\ I_{2} & 0\end{array}\right)$
$j_{\text {HI }}(M, Z)$	A factor of automorphy on $\left\langle\operatorname{Sp}(2 ; \mathcal{O}), \rho I_{4}\right\rangle \times H(2 ; \mathbb{H})(\mathrm{p} .59)$
$J_{\text {Her }}$	$=\left(\begin{array}{cc}0 & -I_{2} \\ I_{2} & 0\end{array}\right)$
$j_{\text {Her }}(M, Z)$	A factor of automorphy on $\widetilde{\Gamma(2, \mathbb{K})} \times H(2 ; \mathbb{K})($ p. 55)
$J_{k}(m, S)$	$=J_{k}(m, S, 1)$
$J_{k}(m, S, \nu)$	The space of Jacobi forms of index (m, S) and weight k with respect to ν (p.41)
$J_{k}^{0}(m, S)$	$=J_{k}^{0}(m, S, 1)$
$J_{k}^{0}(m, S, \nu)$	The subspace of Jacobi cusp forms in $J_{k}(m, S, \nu)($ p. 41)
$J_{S}(\mathbb{R})$	The Jacobi group (p. 27)
$J_{S}(\mathbb{Z})$	The integral Jacobi group (p. 28)
\mathbb{K}	An imaginary quadratic number field (p.53)
\mathcal{K}	$=\left\{[Z] \in \mathcal{N} ;(Z, \bar{Z})_{1}>0\right\}$ (p. 83)
$\mathcal{K}\left(\Gamma_{S}\right)$	The field of orthogonal modular functions for Γ_{S} (p. 97)
\mathcal{K}^{+}	A component of \mathcal{K} (p. 84)
l	A positive integer, usually the rank of S
Λ	A lattice, usually \mathbb{Z}^{l} and even of signature ($0, l$)
λ	Usually an element of Λ or Λ^{\sharp}
Λ_{0}	$=\mathbb{Z} \times \Lambda \times \mathbb{Z}$
Λ_{1}	$=\mathbb{Z} \times \Lambda_{0} \times \mathbb{Z}$
$\Lambda_{\mathbb{Q}}$	$=\Lambda \otimes_{\mathbb{Z}} \mathbb{Q}$
Λ_{T}	The lattice associated to T (p. 45)
λ^{\perp}	A rational quadratic divisor (p. 84)
Λ^{\sharp}	The dual lattice of Λ (p. 7)
$\mathcal{M}\left(\Gamma_{\mathbb{H}}, k\right)$	The Maaß space in $\left[\Gamma_{\mathbb{H}}, k, 1\right]$ (p.58)
$\mathcal{M}\left(\Gamma_{S}, k\right)$	$=\mathcal{M}\left(\Gamma_{S}, k, 1\right)$
$\mathcal{M}\left(\Gamma_{S}, k, \nu\right)$	The Maaß space in $\left[\Gamma_{S}, k, \nu\right]$
M_{D}	A certain element of Γ_{S} (p.12)
M_{D}^{*}	A certain element of Γ_{S} (p.12)
$M_{\text {tr }}$	A certain element of Γ_{S} (a rotation) (p. 20)
μ	Usually an element of Λ^{\sharp} or $\Lambda^{\sharp} / \Lambda$

μ_{0}	An element of Λ_{0}^{\sharp} or $\Lambda_{0}^{\sharp} / \Lambda_{0}$
$\operatorname{Mat}(n, m ; R)$	The group of $n \times m$ matrices with elements in R
$\operatorname{Mat}(n ; R)$	The ring of $n \times n$ matrices with elements in R
$\operatorname{Mp}(2 ; \mathbb{R})$	The metaplectic cover of SL(2; \mathbb{R}) (p.65)
$\operatorname{Mp}(2 ; \mathbb{Z})$	The integral metaplectic group (p.65)
$\operatorname{Mp}(2 ; \mathbb{Z})[N]$	The principal congruence subgroup of $\mathrm{Mp}(2 ; \mathbb{Z})$ of level N
$N(z)$	$=z \bar{z}$, the norm on \mathbb{H} (p.13)
\mathbb{N}	The natural numbers $\{1,2,3, \ldots\}$
\mathbb{N}_{0}	$=\mathbb{N} \cup\{0\}$
\mathcal{N}	The zero-quadric in $P\left(V_{1}(\mathbb{C})\right)$ (p. 83)
ν	An Abelian character of Γ_{S}
ν_{2}	The Siegel character of Γ_{S} (p.24)
ν_{η}	The character of the Dedekind eta function (p. 67)
ν_{\wp}	The Siegel character of $\Gamma_{\mathbb{K}}(\mathrm{p} .55)$
ν_{π}	The orthogonal character of Γ_{S} (p. 22)
ν_{ρ}	A certain Abelian character of $\Gamma_{\mathbb{H}}$ (p. 59)
$\nu_{\text {skew }}$	The symmetry character of $\Gamma_{\mathbb{K}}$ (p. 55)
$\nu_{\text {tr }}$	A certain Abelian character of Γ_{H} (p. 59)
$\mathrm{O}\left(b^{+}, b^{-}\right)$	The real orthogonal group of signature (b^{+}, b^{-}) (p. 8)
$\mathrm{O}(\Lambda)$	The orthogonal group of Λ (p.8)
$\mathrm{O}_{\mathrm{d}}(\Lambda)$	The discriminant kernel of $\mathrm{O}(\Lambda)$ (p. 8)
$\mathrm{O}^{+}\left(\Lambda_{0}\right)$	$=\left\{A \in \mathrm{O}\left(\Lambda_{0}\right) ; A \cdot \mathcal{H}_{S}=\mathcal{H}_{S}\right\}$ (p. 15)
$\mathrm{O}(S ; \mathbb{R})$	The real orthogonal group with respect to S (p. 8)
$\mathrm{O}^{+}\left(S_{1} ; \mathbb{R}\right)$	The connected component of the identity of $\mathrm{O}\left(S_{1} ; \mathbb{R}\right)(\mathrm{p} .10)$
\mathcal{O}	The Hurwitz order (p. 13)
\mathcal{O}_{S}	$=\mathcal{O} \cap \mathbb{H}_{S}$ (p.13)
$\mathfrak{o}_{\text {K }}$	The ring of integers of the imaginary quadratic number field \mathbb{K} (p. 53)
ω	$=\frac{1}{2}\left(1+\mathrm{i}_{1}+\mathrm{i}_{2}+\mathrm{i}_{3}\right)$
P	A certain element of Γ_{S} (a rotation) (p. 12)
$P\left(V_{1}(\mathbb{C})\right)$	The projective space of $V_{1}(\mathbb{C})$
\widetilde{P}	A certain element of $\mathrm{O}^{+}\left(\Lambda_{0}\right)($ p. 12)
\mathcal{P}_{S}	The positive cone associated to S (p.9)
\mathcal{P}_{S}^{1}	$=\left\{v \in \mathcal{P}_{S} ; q_{0}(v)=1\right\}$ (p.77)
$\overline{\mathcal{P}_{S}}$	The closure of \mathcal{P}_{S} (p.31)
$P_{S}(\mathbb{R})$	The parabolic subgroup of $\mathrm{O}^{+}\left(S_{1} ; \mathbb{R}\right)$ (p.26)
$P_{S}(\mathbb{Z})$	$=P_{S}(\mathbb{R}) \cap \Gamma_{S}(\mathrm{p} .28)$
Φ	Siegel's Φ-operator (p. 33)

ϕ_{4}	A Borcherds product of weight 4 for $\Gamma_{A_{1}^{(2)}}(\mathrm{p} .56)$
ϕ_{9}	A Borcherds product of weight 9 for $\Gamma_{A_{2}}$ (p. 56)
ϕ_{10}	A Borcherds product of weight 10 for $\Gamma_{A_{1}^{(2)}}(\mathrm{p} .56)$
ϕ_{30}	A Borcherds product of weight 30 for $\Gamma_{A_{1}^{(2)}}(\mathrm{p} .56)$
ϕ_{45}	A Borcherds product of weight 45 for $\Gamma_{A_{2}}$ (p.56)
$\varphi_{\text {H }}$	A certain biholomorphic isomorphism from $\mathcal{H}_{D_{4}}$ to $H(2 ; \mathbb{H})(\mathrm{p} .58)$
$\varphi_{\mathbb{K}}$	A certain biholomorphic isomorphism from $\mathcal{H}_{S^{\mathrm{K}}}$ to $H(2 ; \mathbb{C})(\mathrm{p} .54)$
φ_{m}	A Fourier-Jacobi coefficient of index m (p.38)
ψ_{3}	A Borcherds product of weight 3 for $\Gamma_{A_{1}^{(3)}}$ (p. 100)
ψ_{8}	A Borcherds product of weight 8 for $\Gamma_{A_{3}}$ (p. 92)
ψ_{9}	A Borcherds product of weight 9 for $\Gamma_{A_{3}}$ (p. 92)
ψ_{18}	A Borcherds product of weight 18 for $\Gamma_{A_{1}^{(3)}}$ (p. 100)
ψ_{20}	A Borcherds product of weight 20 for $\Gamma_{A_{1}^{(3)}}$ (p. 100)
ψ_{30}	A Borcherds product of weight 30 for $\Gamma_{A_{1}^{(3)}}$ (p. 100)
ψ_{54}	A Borcherds product of weight 54 for $\Gamma_{A_{3}}$ (p.92)
ψ_{k}	A Borcherds product of weight k (p. 85)
$\mathrm{PO}\left(S_{1} ; \mathbb{R}\right)$	$=\mathrm{O}\left(S_{1} ; \mathbb{R}\right) /\{ \pm I\}$ (p.10)
$\mathrm{PO}^{+}\left(S_{1} ; \mathbb{R}\right)$	$=\mathrm{O}^{+}\left(S_{1} ; \mathbb{R}\right) /\{ \pm I\}$ (p. 10)
$\operatorname{Pos}(n ; R)$	The ring of positive definite Hermitian $n \times n$ matrices with elements in R
q	$e^{2 \pi i \tau}$ for $\tau \in \mathcal{H}$, or a quadratic form and then usually q_{S} (p.9)
$\bar{q}(\mu+\Lambda)$	$=q(\mu)+\mathbb{Z}$ (p .7$)$
\mathbb{Q}	The rational numbers
q_{0}	$=q_{S_{0}}$, the quadratic form associated to S_{0} (p. 9)
q_{1}	$=q_{S_{1}}$, the quadratic form associated to S_{1} (p.9)
$q_{S}(x)$	$=\frac{1}{2}(x, x)_{S}$, the quadratic form associated to S (p. 8)
\mathbb{R}	The real numbers
R_{A}	A certain element of Γ_{S} (a rotation) (p. 12)
R_{g}	A certain element of Γ_{S} (a rotation) (p. 12)
ρ	$=\left(1+\mathrm{i}_{1}\right) / \sqrt{2}$, or a finite representation of $\operatorname{Mp}(2 ; \mathbb{Z})$
ρ_{S}	The Weil representation attached to ($\left.\Lambda^{\sharp} / \Lambda, q_{S}\right)(\mathrm{p} .68)$
ρ_{S}^{\sharp}	The dual representation of ρ_{S}
ρ_{S}^{-}	The induced Weil representation on $\left\{e_{\mu}-e_{-\mu} ; \mu \in \Lambda^{\sharp} / \Lambda\right\}$ (p. 71)
ρ_{S}^{+}	The induced Weil representation on $\left\{e_{\mu}+e_{-\mu} ; \mu \in \Lambda^{\sharp} / \Lambda\right\}$ (p. 71)
ϱ	A component of $\varrho_{f}(W)$
ϱ_{f}	The Weyl vector of f
$\varrho_{f}(W)$	The Weyl vector associated to W and f (p. 79)

$\varrho_{z_{0}}$	A component of $\varrho_{f}(W)$
$\varrho_{2}{ }_{0}$	A component of $\varrho_{f}(W)$
$\operatorname{Re}(z)$	The real part of $z \in \mathbb{C}$
$\operatorname{Rot}(U)$	$=\left(\begin{array}{cc}\bar{U} & 0 \\ 0 & U^{-1}\end{array}\right)$ for $U \in \mathrm{GL}(2 ; \mathbb{H})$ or $U \in \mathrm{GL}(2 ; \mathbb{K})$
S	A nonsingular real symmetric matrix, usually even
$S(n)$	The symmetric group of degree n
S_{0}	An extension of $-S$ of signature ($1, l+1$)
S_{1}	An extension of S_{0} of signature ($2, l+2$)
$S^{\mathbb{K}}$	The even matrix associated to the imaginary quadratic field \mathbb{K} (p. 54)
sign	The sign function
$\mathrm{SL}(n ; R)$	The group of $n \times n$ matrices with elements in R and determinant 1
$\mathrm{SO}(\Lambda)$	The special orthogonal group of Λ (p.19)
$\mathrm{Sp}(2 ; \mathbb{H})$	The symplectic group of degree 2 over \mathbb{H} (p. 57)
$\mathrm{Sp}(n ; R)$	The symplectic group of degree n over R
$\operatorname{Stab}_{G}(X)$	$=\{g \in G ; g x \in X$ for all $x \in X\}$, the stabilizer of X in G
$\mathrm{SU}(2 ; \mathbb{K})$	$=\mathrm{U}(2 ; \mathbb{K}) \cap \mathrm{SL}(4 ; \mathbb{K})$, the special unitary group of degree 2 over $\mathbb{K}(\mathrm{p} .53)$
$\operatorname{Sym}(n ; R)$	The set of symmetric $n \times n$ matrices with elements in R
T	$=\left(\left(\begin{array}{ccc}1 & 1 \\ 0 & 1\end{array}\right), 1\right) \in \operatorname{Mp}(2 ; \mathbb{Z})$
T_{g}	A certain element of Γ_{S} (a translation) (p. 11)
$\Theta\left(\tau ; S, p_{r}\right)$	A vector-valued theta series (p. 75)
Θ_{a}	A quaternionic theta series (p.60)
$\theta_{\mu}\left(\tau ; S, p_{r}\right)$	A component of $\Theta\left(\tau ; S, p_{r}\right)$
τ, τ_{1}, τ_{2}	Usually elements of \mathcal{H}
trace(M)	The trace of the matrix M
Trans(H)	$=\left(\begin{array}{cc}I_{2} & H \\ 0 & I_{2}\end{array}\right)$ for $H \in \operatorname{Her}(2 ; \mathbb{H})$ or $H \in \operatorname{Her}(2 ; \mathbb{K})$
$\mathrm{U}(2 ; \mathbb{K})$	The unitary group of degree 2 over \mathbb{K} (p.53)
U_{λ}	A certain element of Γ_{S} (a rotation) (p. 12)
${ }_{\lambda} U$	A certain element of Γ_{S} (a rotation) (p.12)
\widetilde{U}_{λ}	A certain element of $\mathrm{O}^{+}\left(\Lambda_{0}\right)($ p. 12)
V	$=\Lambda \otimes \mathbb{R}$, usually \mathbb{R}^{l}
$V(\mathbb{C})$	$=V \otimes \mathbb{C}$
$v(x)$	$=\left(1,-x^{2} \alpha(x), x\right)(\mathrm{p} .81)$
V_{0}	$\Lambda_{0} \otimes \mathbb{R}$
V_{1}	$\Lambda_{1} \otimes \mathbb{R}$
$v_{1}(x)$	$=v(x) / \sqrt{q_{0}(v(x))}$
w	Usually an element of \mathcal{H}_{S} of the form $\left(\tau_{1}, z, \tau_{2}\right)$
W_{f}	The Weyl chamber of f (p. 82)

Y_{1}, \ldots, Y_{6}	Certain quaternionic theta series (p. 60)
Z	An element of $H(2 ; \mathbb{C})$ or $H(2 ; \mathbb{H})$
z	Usually an element of \mathbb{C}^{l}
\mathbb{Z}	The integers

Index

automorphism
biholomorphic, 10
bilinear form, 7
Borcherds product, 85
Borcherds products, 77
character
orthogonal, 22
Siegel, 22
characters
Abelian, 22
cocycle condition, 29
commutator subgroup, 21
cusp form, 33
Hermitian, 54
Jacobi, 41
vector-valued, 66
Dedekind eta function, 67
determinant, 22
differential operator, 35
dimension formula, 70
discriminant, 84
discriminant group, 7
discriminant kernel, 8
divisor
rational quadratic, 84
dual lattice, 7
Eisenstein series
elliptic, 45
Hermitian, 54
orthogonal, 56, 60
quaternionic, 58
vector-valued, 73
embedding
isometric, 45
Euclidean lattice, 9
even
lattice, 7
matrix, 8
factor of automorphy, 29
Fourier expansion, 31
Fourier-Jacobi expansion, 38
graded ring, 30
half-space, 9
Hermitian, 53
of quaternions, 57
Heisenberg group, 27
index, 40
Jacobi cusp form, 41
Jacobi form, 40
Jacobi forms, 38
Jacobi group, 27
Jacobian, 35
Koecher's principle, 32
lattice, 7
dual, 7
Euclidean, 9
even, 7
level
of a lattice, 7
Maaß form, 42
Maaß space, 42,58
metaplectic group, 65
modular form
Hermitian, 54
meromorphic, 97
nearly holomorphic, 68
orthogonal, 29
quaternionic, 57
skew-symmetric, 54
symmetric, 54
vector-valued, 66
modular forms
Hermitian, 53
vector-valued, 65
modular function, 97
modular group
Hermitian, 53
extended, 54
orthogonal, 10, 11
quaternionic, 57
nicely generated, 15
obstruction space, 87
operator
differential, 35
order
Hurwitz, 13
orthogonal group, 7, 8
parabolic subgroup, 26
Φ-operator, 33
polynomial
spherical, 74
primitive, 7
principal part, 68
quadratic form, 7
quadratic space, 7
representation
dual, 68
Weil, 68
restriction, 45
Siegel's Φ-operator, 33
slash operator, 66
special unitary group, 53
spherical polynomial, 74
symplectic group, 57
theta series, 74,75
unitary group, 53
special, 53
Weil representation, 68
Weyl chamber, 78, 82
Weyl vector, 79, 82

