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Introduction

We consider modular forms for orthogonal gro@p, [ + 2) with particular emphasis on

the casd = 3. Modular forms forO(2, 3) correspond to Siegel modular forms of degree

2. In the 1960’s Igusa [Ig64] used theta constants in order to describe the graded ring of
Siegel modular forms of degrée Using Igusa’s method Freitag [Fr67] was able to deter-
mine the graded ring of symmetric Hermitian modular forms of deg@eer the Gaussian
number fieldQ(y/—1) which corresponds to the case of modular forms®2, 4). Na-

gaoka [Na96], Ibukiyama [Ib99b] and Aoki [AlO5] completed the description the graded
ring in terms of generators and relations. Other cases corresponding to modular forms for
0O(2,4) where dealt with by Dern and Krieg. They determined the graded rings of Her-
mitian modular forms of degreincluding the Abelian characters for the number fields
Q(v—1), Q(v/—2) andQ(+/—3) (cf. [De01], [DKO3], [DK0O4]). Instead of using estima-

tions on theta series as in lgusa’s approach they applied the theory of Borcherds products
(cf. [B098]) in order to obtain Hermitian modular forms with known zeros. Then a similar
reduction process as the one used by Igusa and Freitag yields their structure theorems. The
general case of modular forms fOr2, [ + 2) was studied by Freitag and Hermann [FHOOQ]
from a geometrical point of view. They derived partial results on modular form3far5)

by embedding suitable lattices into the Hurwitz quaternions.

Using similar methods as Dern and Krieg we will characterize the graded rings of or-
thogonal modular forms for two maximal discrete subgroup@ @ 5). Let S be an even
positive definite symmetric matrix of rarikand let

1
0).
0

00 1 00
So = (0—50),51:: (05
100 10

The bilinear form associated t§} is given by (a,b)y = aSyb for a,b € R*? and the
corresponding quadratic formgg = %(-, -)o- The attached half-space is

[=}

Hs = {w =u+iv € C™2; v € Py},

wherePs = {v € R"*2; (v,v)y > 0, (v,e) > 0},e = (1,0,...,0,1). The orthogonal

group
O(S1;R) = {M e Mat(l + 4;R); ‘MS;M = Sy}
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acts onHs U (—Hs) as group of biholomorphic rational transformations via

t

w — M{w) = (—qo(w)b + Aw + ¢) j(M,w)™" for M = (%fg
-

>0 ™

) € O(S; R),

wherej(M,w) = —yqo(w) + dw + 6. The orthogonal modular group is given by
I's = {M S O(Sl;R); M<H5> = Hg, MA, = Al}

An orthogonal modular form of weiglit € Z with respect to an Abelian characteof I'g
is a holomorphic functiorf : Hg — C satisfying

(fleM)(w) := j(M,w)_lC f(M{w)) =v(M) f(w) forallwe Hg, M €Ts.

The vector spacd’s, k, v| of those functions is finite dimensional. ff € [I's, k;, v4],
7 =12, thenflfg € [FS7 k1 + ko, V1V2]. Thus

ATs) = Ps, k1] and AT%) =P P s, kv,

keZ keZ l,ergb

wherel' is the commutator subgroup bf andI'?" is the group of Abelian characters of
I's, form graded rings. Our main goal is the explicit description of those graded rings in
terms of generators for

5:%:(?%2) and S:A§3>:(§§§).

It turns out that in both cases the graded riAds) is a polynomial ring in six (alge-
braically independent) generators while the graded ridgE’) are freeR-modules of

rank2 and4, respectively, where in both casgsis an extension of degree two &f(I's).

In the case ob = A3 we can simply take certain Eisenstein series and Borcherds products
as generators. In the other case we determine the invariant ring of a finite representation
which is given by the action of a subgroup of the quaternionic symplectic group on quater-
nionic theta series. The restrictions of the primary invariants and some Borcherds products
generate the graded rings f6r= A§3>. In both cases Borcherds products play an impor-
tant role. In a first step the explicitly known zeros of the Borcherds products allow us to
reduce the problem of determining the graded ti(@";) of modular forms with Abelian
characters to the problem of determining the graded. AfDs) of modular forms of even
weight with respect to the trivial character. In the next step we use the fact that we already
know the generators of the graded rings of modular forms living on certain submanifolds
of Hs on which suitable Borcherds products vanish of first order. In the caSe-ofi; we

can derive our results from Dern’s result fgf/—3), and in the case of = Af’) we use

the results forQ(v/—1). As an application of our results we describe the attached fields of
orthogonal modular functions.
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We now briefly describe the content of this thesis:

In the first chapter we collect the necessary facts and results about orthogonal groups. In
particular, we explicitly determine generators and Abelian characters of certain orthogonal
modular groups’s, and we introduce the paramodular subgroup @f

In the second chapter we define the main object of our studies, the orthogonal modu-
lar forms, and state some fundamental results. In particular, we show that, unlike elliptic
modular forms, orthogonal modular forms automatically possess an absolutely and locally
uniformly convergent Fourier series due to Koecher’s principle. Moreover, we introduce
the notion of cusp forms and show that, as usual, the subspace of cusp forms can be char-
acterized by Siegel'®-operator. Then we consider a certain differential operator which
allows us to construct non-trivial orthogonal modular forms from a number of algebraically
independent orthogonal modular forms. The next two sections deal with Jacobi forms and
the Maal} space. An explicit formula for the dimension of certain Maal3 spaces is derived
from a dimension formula for spaces of Jacobi forms. Next we take a look at restrictions
of orthogonal modular forms to submanifolds and give a brief introduction into Hermitian
and quaternionic modular forms of degiza/Ne translate the results about graded rings of
Hermitian modular forms of degreefrom the symplectic point of view to our terminol-
ogy, and we define orthogonal Eisenstein series$fer A3 andS = A§3) as restrictions of
quaternionic Eisenstein series. Finally, we considedanensional finite representation of
'\, determine its invariant ring using theAdMA and get five algebraically independent

moldular forms forFA(3> whose restrictions to a certain submanifold generate the graded

ring of orthogonal modular forms of even weight and trivial character corresponding to
Hermitian modular forms over the Gaussian number field.

In the third chapter we recall fundamental facts about vector-valued elliptic modular
forms for the metaplectic groudp(2; Z). We focus on holomorphic vector-valued modu-
lar forms with respect to the Weil representatjgnattached to a certain quadratic module
(A*/A,qg) associated t&. A dimension formula for spaces of holomorphic vector-valued
modular forms is given, and two classes of vector-valued modular forms whose Fourier
expansions can be explicitly calculated are introduced: Eisenstein series and theta series.
Moreover, so-called nearly holomorphic vector-valued modular forms, that is vector-valued
modular forms with a pole in the cusp, are defined.

In the fourth chapter we briefly review the theory of Borcherds products specializing
Borcherds’s results to our setting. Borcherds products are constructed from nearly holo-
morphic vector-valued modular forms of weight /2 with respect to the dual Weil repre-
sentatiorp”s. They are orthogonal modular forms, but in general they are not holomorphic.
The most remarkable property of a Borcherds product is the fact that its zeros and poles
are completely determined by the principal part of the nearly holomorphic modular form
the Borcherds product is constructed from. The zeros and poles lie on so-called rational
quadratic divisors which correspond to embedded orthogonal half-spaces of codimension
1. It is intuitively clear that it is desirable to find holomorphic Borcherds products with as
few zeros of as low order as possible. The existence of nearly holomorphic modular forms
with suitably nice principal part is controlled by the so-called obstruction space, the space
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of holomorphic vector-valued modular forms of wei@ht [ /2 with respect tgs.

In the fifth chapter we derive our main results. Boe= A3 andS = Af’) we start by de-
termining nice Borcherds products. In the first case the obstruction spacknmsensional
and spanned by an Eisenstein series while in the other caskdinsensional and spanned
by an Eisenstein series and two theta series. Nevertheless in both cases the existence of
principal parts of nearly holomorphic modular forms mainly depends only on the Fourier
coefficients of the Eisenstein series. This allows us to construct Borcherds products which
vanish only on one rational quadratic divisor and only of first order. Orthogonal modu-
lar forms with non-trivial character have to vanish on certain rational quadratic divisors.
Since the Borcherds products we constructed vanish of first order we can divide orthogo-
nal modular forms with non-trivial character by suitable Borcherds products. This way we
can reduce all orthogonal modular forms to orthogonal modular forms with respect to the
trivial character. It turns out that in the two cases we consider all non-trivial orthogonal
modular forms with respect to the trivial character are of even weight. Thus it remains to
determine the graded rings of modular forms of even weight and with trivial character. In
the case ob = A3 we show that the ring of orthogonal modular forms of even weight and
with trivial character corresponding to Hermitian modular forms@ox/—3) is generated
by the restrictions of four orthogonal Eisenstein series and the restriction of the square of
a Borcherds product. So by subtracting a suitable polynomial in those functions from an
arbitrary modular form of even weight and with trivial character we get a function which
vanishes on a submanifold corresponding to the Hermitian half-spa€ {dr-3). Again
we can divide by a suitable Borcherds product and by induction we get our main result in
the case o5 = Aj. In the other case we use the five algebraically independent modular
forms we determined in chapter two in order to derive a corresponding result. We conclude
the chapter by a few corollaries including the determination of the algebraic structure of
the fields of orthogonal modular functions.

This thesis was written at the Lehrstuhl A fir Mathematik, Aachen University. The work
was supervised by Prof. Dr. A. Krieg. | am indebted to him for his valuable suggestions
and encouragement. Without his support this work would not have been possible.

Furthermore, | would like to thank Prof. Dr. N. Skoruppa for supporting me during my
stay at Bordeaux and for accepting to act as second referee.

Part of this work was funded by a scholarship of the Graduiertenkolleg “Analyse und
Konstruktion in der Mathematik” of Aachen University. For the granted financial support |
would like to thank the speaker of the Graduiertenkolleg, Prof. Dr. V. Enf3.

Moreover, | thank all my present and former colleagues at the Lehrstuhl A fur Mathe-
matik for many valuable discussions.

Last but not least, | would like to express my deepest gratitude to my parents and my
brother and his wife for their continued support, encouragement, patience and love over all
my years of study.



0. Basic Notation

We use the following notation (for a detailed list see the table of notation on pages 125 ff.):
N is the set of positive integerd], is the set of non-negative intege%js the ring of the
integersQ, R andC are the fields of rational, real and complex numbers, respectively, and
H is the skew field of Hamilton quaternions with standard basis i,, i3 = i;is.

Let R be a suitable ring with unity, i.e., commutative whenever necessaty(n, m; R)
is the group ofn x m matrices overR, Mat(n; R) is the ring ofn x n matrices over
R, GL(n; R) andSL(n; R) are the general linear group and the special linear group in
Mat(n; R), respectivelySym(n; R) denotes the set of symmetric matricHsy (n; R) the
set of Hermitian matrices, ariebs(n; R) C Her(n; R) the ring of positive definite Hermi-
tian matrices inMat(n; R). For H € Her(n; R) we write H > 0 if H is positive definite
and we writeH > 0 if H is positive semi-definitel,, is the identity matrix inMat(n; R).
If the dimension is obvious then we also write simply

For A € Mat(n; R) and B € Mat(n, m; R) we denote the transpose Bfby ‘B, the
conjugate transpose d? by ‘B, and we defined[B] = ‘BAB. For matricesA; €
Mat(n;; R), 1 < j <n, we define

A 0 0
Airx...xA,=10 . 01,
0 0 A,
and fora,,...,a, € R we denote the diagonal matrix with diagonal elementdy

[a, ..., ap).

Let G be a group. Fogy,h € G we define the commutator @f and i by [g, h] =
ghg=th~t. We denote the commutator subgroup(dby G’ and the commutator factor
group of G by G* := G/G’. The latter coincides with the group of Abelian characters
G — C* which we also denote bg@P.

We will sometimes write column vectors as row vectors because row vectors take less
vertical space. In this case we will omit the “transpose” symbol whenever it is clear from
the context what we actually mean.






1. Orthogonal Groups

1.1. Lattices and orthogonal groups

Definition 1.1 A lattice is a freeZ-module of finite rank equipped with a symmeffic
valued bilinear form(-,-). We call a latticeA evenif (A, \) is even for allA € A. The
associated quadratic formis defined by

q(A) = %()\, A) forall A € A.

Let A be a lattice. IfA is even thery obviously takes its values iA.

Henceforth we always assume thiats non-degenerate. We sét:= A ® R. SinceA
contains a basis of tHe-vector spacé’” the bilinear form(-, -) on A x A induces a bilinear
form on V' x V' which we again denote bfy,-). The associated quadratic form is again
denoted by;. Then the paifV/ ) is a quadratic space.

Definition 1.2 For a lattice A with attached bilinear forng-, -) thedual latticeA* is defined

by
AN ={pecV; (u\) € Zforall A € A}.

We obviously have\ c Af. Therefore the following definitions make sense.

Definition 1.3 Let A be a lattice.
a) The finite Abelian group
Dis(A) := A*/A

is called thediscriminant groupf A.
b) Thelevelof the latticeA is defined by

min{n € N; nq(u) € Z for all u € A*}.
c) p € A*is calledprimitive if Qu N A* = Zy, i.e.,max{n € N; L€ A*} =1.

Proposition 1.4 Let A be an even lattice. Then the map: Dis(A) — Q/Z which is
induced by; onDis(A), i.e., which is given by

qu+A)=qp)+2

for all . € Af, is well defined.
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PROOF Lety+ A = 1/ + A € Dis(A). Theny' = o+ X for somel € A and

q(1') —q(p) = q(p+A) —q(p) = (1, A) + q(N) € Z.
Thusg(y' + A) =q(p+ A). n

Now letl € N, A = Z,V = A®@R = R, and letS € Sym(/;R) N GL(/;R) be
a nonsingular real symmetric matrix. We define the symmetric bilinear farjy on V'
associated t6' by (z,y)s = 2 Sy for z,y € V, and we denote the corresponding quadratic

form by ¢s, i.e.,
1

a5(x) = 3, 2)5 = 3 5la]

for z € V. If itis clear to which matrixS the bilinear form(-, -)s and the quadratic form
qs correspond to then we simply write -) andq respectively.

If S € Sym(l;Z) N GL(l;R) is a nonsingular integral symmetric matrix th&rnogether
with (-, -)s is a lattice of rank, the lattice associated & Obviously we have\ = S—1A,
and thus the discriminant grodpis(A) is of orderdet S. We call S aneven matrixf the
associated lattice is an even lattice.

Definition 1.5 LetS € Sym(/; R)NGL(/; R) be a nonsingular real symmetric matrix. The
real orthogonal group(S; R) with respect toS is defined by

O(S;R) :={M € Mat(l;R); S[M]| =S}
= {M € Mat(l;R); gs(Mz) = qs(z) for all z € R'}.

Remark 1.6 Up to isomorphism the real orthogonal grodpS; R) only depends on the
signature(b™, b~) of S. Therefore one often writgs(b*, b~) for O(S;R). Moreover, note
thatdet(S[M]) = det S yieldsdet M = +1 for all M € O(S;R).

Definition 1.7 Suppose that € Sym(l/; Z)NGL(l; R) is a nonsingular integral symmetric
matrix. LetA be the lattice associated t®. The stabilizer of\ in O(S; R) is denoted by
O(A), i.e., we have

O(A) ={M € O(S;R); MA = A}.

Remark 1.8 The conditionM A = A is equivalent toM € GL([;Z). ThusO(A) is a
subgroup ofGL(l; Z). In fact we have)(A) = O(S;R) N GL([; Z).

One easily verifies that we have@A* = Af for all M € O(A). ThusO(A) acts on the
discriminant grou®is(A) of A which leads to the following definition.

Definition 1.9 Let A be the lattice associated to a nonsingular integral symmetric matrix
S. Thediscriminant kernelO4(A) of O(A) is the kernel of the action db(A) on the
discriminant groupDis(A).

Finally we define a property of lattices which will be crucial for the existence of a nice
system of generators of the corresponding modular group.
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Definition 1.10 Let A be the lattice associated to a positive definite symmetric matrix
We callA Euclideanif for all z € R! there exists\ € A such that

gs(x+ ) < L.

1.2. O(2,1 + 2) and the attached half-space

We are particularly interested in certain integral symmetric matrices of sign@ture 2),
[ € N. Let S € Pos(l; R) be a positive definite even matrix. We set

0O 0 1 0 0 1
S() =10 =S 0 and5’1 =10 S(] 0].
1 0 0 1 0 0

Then S, is of signaturg(1,/ + 1) and.S; is of signature(2,! + 2). We use the following
abbreviations for the associated bilinear forms and quadratic forms:

() = (s, q = qs,
()0 = (-, )05 qo = qSy»
(=0 )s, @ =gs,

Moreover, we set := (1,0,...,0,1) € R"*? and define
He = {w =u+iv € C"? v € P},
where

7)5 = {U € RlJrz; QO(U> > 07 (U7e)0 > 0}
= {(vo, ¥, v111) € R x R x R; vyvy41 > gs(7), vo > 0}

ThenPg is the domain of positivity of a certain Jordan algebra with unit eleragantdH 5
is a Hermitian symmetric space of type (IV) in Cartan’s classification and a Siegel domain
of genusl (cf. [PS69]) and corresponds to the grabf2, [ + 2) (cf. [Kr96]).
Note that we have
Hg C H x (Cl X H

whereH = {r € C; Im(7) > 0} denotes the complex upper half plane. Therefore we will
usually write the elements 6{s in the formw = (11,2, 7), 71,72 € H, 2z € C,
In the orthogonal context we write a matiX € Mat(l + 4; R) always in the form

a ‘a B
M=1b A c|,whereAd € Mat(l +2;R).
v od o6
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Then we havel/ € O(S;;R) if and only if
2ay + So[b) ald+ BSyA+~a ad + BSyc+ [y 0 0 1
ad+ 'ASgb+~va  a'd+ So[A] +d'a Bd+ 'ASoc+da | =10 Sy 0. (1.1)
ad + BSoc+ By Bld+ ©SgA+da 2386 + Splc] 1 0 0

The real orthogonal group(S;; R) acts transitively ort{® := Hs U (—Hs) as a group
of biholomorphic automorphisms via

wi— M(w) = (—go(w)b+ Aw + ) (M{w}) ™,

where
M{w} = —yqo(w) + ‘dw + 6

(cf. [BU96],[Kr96]). In fact all biholomorphic automorphisms &f° have this form,
and they either induce an automorphisni§ (and —Hg) or they permute the two con-
nected componentds and —Hgs of H*. A matrix M € O(S;;R) acts trivially on*

if and only if M lies in the centeiCent(O(S1;R)) = {£I} of O(S;;R). Thus the
group of biholomorphic automorphisms &f°, denoted byBihol(H*), is isomorphic to
PO(S1;R) := O(S1; R) /{£1}.

Definition 1.11 We define
OF(S1;;R) :={M € O(S;R); M(Hs) = Hs}
as the subgroup dd(.5;; R) stabilizingHs.

Remark 1.12 O*(S;; R) acts transitively or{s as a group of biholomorphic automor-
phisms (cf. [BU96, Satz 2.17]) and we have

Bihol(Hs) = PO*(Sy; R) := OF(Sy; R)/{*I}.

Proposition 1.13 LetM = (&5 ) € O(S1;R), C, D € Mat(2;R). Then

M € O*(S;;R) if and only if det (C’ <(1) (1]) + D) > 0.

PROOF For all M € O(S;;R) we have eithet/ (Hs) = Hg or M(Hs) = —Hg. Thus
M € O*(S1;R) holds if and only ifM (ie) € Hg whereie = 4i,0,...,0,i) € Hg. For
details confer [BU96, Satz 2.15]. n
1.3. The orthogonal modular group

LetA =Z, Ag =Z x A xZandA; = Z x Ay x Z. A, Ay andA; are even lattices
with respect ta5, S, andS;, respectively. The corresponding dual lattices/&re- S—'Z!,
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A =7Z x At x ZandA} = Z x Ay x Z = Z x 7 x A* x Z x 7, respectively. Thus we
obviously haveDis(A) = Dis(Aq) = Dis(A;) where the isomorphisms are given by

DIS(A) — DiS(Ao), )\ + A — (O, )\, 0) + Ao,
DIS(AQ) — DiS(Al), )\0 + A— (O, )\0, 0) + Al.

Moreover, note that
q()\ + A) = qO((()? /\7 O) + AO) = 61((07 07 )\a 07 0) + Al) forall A € Aﬁ

Because of this we will often use the three discriminant groups interchangeably, and, by
abuse of notation, we will often simply writeinstead of(0, A, 0) or (0,0, A, 0, 0).

Definition 1.14 Theorthogonal modular groups with respect taS is defined by
FS = O(Al) N O+<Sl, R)

In Section 1.1 we already saw thafA;) acts on the discriminant groupis(A, ). Thusl's
also acts ois(A). We can say even more about this action.

Proposition 1.15 I's acts on the sets of elementd®f(A;) with the same value a@f . For

* ok %k

M=|x A x| elg,

whereA € Mat(l; Z), both, the action of s on Dis(A;) and the action of's on the sets of
elements oDis(A;) with the same value @f,, only depend omnl.

ProoF For all M € I'g we have
QM (p+ M) =0 (Mp+ M) =a(Mp) +Z=q(p) + Z=q(p+ A1)

SinceDis(A;) = {0+ Z} x {0+ Z} x Dis(A) x {0+ Z} x {0+ Z} itis clear that both
actions only depend oA. -

Proposition 1.16 The following matrices belong 0s:

(1) :I:[l+4,
0 0 -1 ) 0 0 —1
@J=(0 J 0 |,whereJ=| 0 I, 0 |,
-1 0 0 -1 0 0

1 =Sy —qo(g)
(3) T,=1(0 14 g . g € Ao,
0 0 1
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1 00 N 1 S g())
@ Uv=1(0 U, 0], whereUy= [0 [, X |,X€A,
1 1

0 0

1 0 0 N 1 0 0
B U=(0 U 0],where,U = A I, 0],XeA,
0 1 gA) S 1

eg 00 B .
6) Ry = | 0 R, 0], whereR, = (Ii;o — g49'950)J, if g € Ao such thate, =
0 0 g
q(g) = %1,

N (00 1
9 P=(1)xPx(1),whereP= {0 I, 0],
1 00

fon

0 0
10 Rs=[0 A 0], Ac0).
00

S

PROOF In [BU96, Prop. 2.27] Bihler proved that matrices of the forms (1)—(7) belong to
I's. For the remaining matrices one easily verifies that they beloy{®;; R) by using

the definition ofO(S;;R) and the characterisation 6§ (S;;R) (Proposition 1.13). It
remains to be proved that A; = A, for those matrices. According to the remark following
Definition 1.14, this is equivalent td/ € GL(I + 4;Z) which follows immediately from

det My, =det ((27) x (% ) x L) =1for D= (27) € SL(2;Z), det P = —1 and

det Ry = det A = £1for A € O(A) C GL(I; Z). .
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The above elements ofs act as follows onv = (71, 2, 72) € Hs:

‘]<w> = _q0<w)_1(7—27 _277—1)7
Ty(w) =w +g, for g € Ay,
Ux{w) = (11 + NSz + q(A\)T2, 2 + A2, Ta), for A € A,
Ry(w) = qo(g) Rgw, for g € Ay with go(g) = £1,
vq(2) z  an+f > (a 6)
M = — , , , for D = € SL(2;7),
p{w) Tl Yo+ 0 YT + 0 YT + 0 v 0 ( )

at + z vq(2) a 3
M (w) = = for D = L(%7Z
p{w) (’yﬁ+5”m+5’72 o or . € SL(2;Z),

= Tl,AZ,TQ), fOI’AE O(A)

1.4. Generators of certain orthogonal modular
groups

In this section we will show that for certait the orthogonal modular groups is nicely
generated. We will consider the following matrices:

D4: aA3:

2

1

0
@ _ (20 (21 (20
A _<0 2)’A2_(1 2)> 2= 0 4)

The quadratic spaces associated to those matrices are isomorphic to subspaces of the
Hamilton quaternion&l. Since we will later make use of this fact we now fix some concrete
isomorphisms. We denote the canonical basig by 1,1, iy, i3. Thenforz = z; + z31; +
231y + 2413 € H with z; € R the conjugate of is given byz = z; — 2,11 — 231y — 24i3 and
the norm ofz is given byN(z) = 2z = 2} + 23 + 23 + z}. The Hurwitz order is denoted
by

S NN O
N OO
— N =
N — O

(1.2)

_— o O N
_— O N O
— NN OO
N — = =

O =7Z+7i + Zis + Zw, w= %(1+11+12+13).
Proposition 1.17 Let S be one of the matrices listed in (1.2), and ldde the rank ofS.
Then the quadratic spad®’, ¢5) with lattice A = Z! is isomorphic to the quadratic space
(Hg, Ng) with lattice Os whereHy is a subspace of the Hamilton quaternidiisN; is the
restriction of the normV to Hg, andOg = O N Hg is the sublattice of the Hurwitz order
O in Hg. The following list contains the subspadés, the corresponding lattice®s, one
possible isomorphismy, : R! — Hg and the quadratic formgs = Ng o ¢g.
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a) Hp, =H, Op, = O,
tp, : RY = H, (21, 29, 23, 14) > 1 + Toiy + X3is + 240,
qp,(T) = 3 + 1124 + T3 + ToTy + T2 + 1374 + 27,
Dis(A) = ((3,3,0,0) + A, (3,0,3,0) + A) =2 Zy x Zs.
b) HA@ = {z € H; x4, =0}, OA<13) =7+ Ziy + Zis,
NCE R3 — H y, (@1, T2, x3) — 1 + Toly + X3ia,
G (r) = o] + 25 + 23,
Dis(A) = ((3,0,0) + A, (0,3,0) + A, (0,0,3) + A) = Zy X Zy X Zs.
C) Ha, = {x € H; 3 =24}, Oa, = Z + Zw + Ziy,
vay R —= Ha,, (21, 72, 13) = @1 + Tow + w31,
qas(7) = xF 4 2129 + T3 + 2223 + 13,
Dis(A) = (.5, 1)+ A) 2 Z,.
d) HAgz) ={zeH z3=umu4 :0},(’3A§2) = 7 + Ziy,
LA R? — ]HIAgz), (1, 22) — 1 + iy,
g0 () = 2% + 7
Dis(A) = ((3,0) + A, (0,3) + A) = Zy x Zs.
e) Hy, = {x € H; 2y =23 =24}, On, = Z + Zw,
La, : R? — Hy,, (11, 12) — 21 + 2w,
qa,(x) = 2% 4+ 1129 + 23,
Dis(A) = ((3,3) + A) = Zs.
f) Hg, = {z € H; 29 = x3, x4 =0}, Og, = Z + Z(i1 + i2),
ts, : R? — Hsg,, (11, 22) — 1 + 22(iy + i2),
qs,(v) = 2% + 223,

Dis(A) = ((,0)+ A, (0,1) +A) = Z, x Z,.

PROOF Explicit calculations show that the quadratic forms are preserved under the iso-

morphisms, i.e., thats = Ng o ¢s. n

Next we will show in several steps that the orthogonal modular groups associated to the
above matrices are nicely generated. We start by defining what we mean by “nicely gener-

ated”.
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Definition 1.18 The orthogonal modular groups is nicely generated it is generated by
the inversion/, the translationsl;, g € Ay, and the rotationg? 4, A € O(A).

Remark I'gs is nicely generated in the above sense if and only if the corresponding group
in the terminology of [FHOO] is nicely generated in the sense of [FHOO, Def. 4.7] (cf.
Appendix C).

In a first step, using results from [BU96], we reduce the problem of determining generators
of I's € O(A,) to the problem of determining generators of a certain subgroay &f).

Proposition 1.19 I'g is generated by

1 0 0
J, T, (g9 € Ao), and { (0 A o) L Ae o+(AO)} NTg,
00 1

whereOT (Ag) := {A € O(Ag); A-Hs=Hs}.

PROOF According to [BU96, Satz 2.311,s is generated by

o gt

1
Jandl“&o = {M elg; M= (0
0

il

So letM = € T'so. Then by virtue of (1.1) we have = —'ASyc, 5 =

o O =
S g

g
c
1

—qo(c) andSy[A] = Sy, and thus, in particulatd € O(Sp; R) N GL(I + 2;Z) = O(Ay).
By multiplication with7"! = T"_. we get

1 %Sy —qolc) 1 —%SgA —qolc) 1 00
T M=10 I, —c 0 A c =10 A 0].
0 0 1 0 0 1 0 0 1

Finally (1) x A x (1) € OT(S1;R) yieldsHs = ((1) x A x (1))(Hs) = A-Hs. Hence
A € O (Ag). This completes the proof. -

Next we show that the lattice’s associated to the above matrices are Euclidean. This will
allow us to reduce the problem of determining generators of a subgroOp/af) to the
problem of determining generators of the finite grotygs.).

Proposition 1.20 a) Givena € Hy,, there existy € O4, such that

o

3
. 1
a—g= b1 + baiy —|—b3(12+13) with |b]| < 5, 1< ] < 3, and Z |b]| <
j=1
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b) Givena € H 4, there existg € O 4, such that

9

NA3(a - g) < E

PROOF a) Leta = aj + asi; +a3(iz +13) € Hy,. Because of. + Zi; + Z(is +i3) C O,
we may assumi;| < 1forl < j<3.1f 37 |q;] > 2 thenwe choosg; = 1signa;
for1 < j < 3. Theng = g1 + goi1 + g3(i2 +13) € Oa, With |a; — g;| = % — la;] < %

. 3 3
for1 <j< 3andz]‘:; |aj _9j| = % - Zj:l |aj| < %-
b) Because of a) it remains to be shown that

9
©(b1, b, b3) := N, (by + boiy + b(ip +1i3)) = b] + b3 + 2b3 < o

whenever(by, by, bs) € A = {(bi,by,b3) € R% 0 < b; < 2, 570 b < 3} We
chooseby, by, b3) € A such thatp(by, be, bs) is maximal. Since we have(by, b, b3) =
©(ba, by, b3) we may assumeé, > b;. Furthermore, due to the choice @f, b,, b3) we
have0 < ¢(by, by, bs) — (b1, bs, by) = b3 — b3 which impliesb; > b,. Thusb, < 2.

If b, > 0thenb, < g and there exists > 0 such thab; — ¢ > 0 andb, + ¢ < % Then
gO(bl — &, b2 + ¢, bg) — (p(bl, bg, bg) = 25(62 — bl) + 252 >0

yields a contradiction to the choice @f;, b, b3). Henceb; = 0.
If b, > 1 thenb; < 5 and there exists > 0 such thab, — ¢ > 0 andb; + ¢ < 5. Then

©(b1,by — €,b3 +€) — (b1, b2, b3) = 2e(2b5 — ba) + 3¢? >0

yields a contradiction to the choice @f;, b2, b3). Henceby, < }1
Therefore
(by, b b)<0+1+2 S
max — D=2
(bl,bg,bg)eASO LT = 16 4 16 -

Proposition 1.21 Let S be one of the matrices listed in (1.2), and lebe the associated
lattice. Then for alk: € R! there exists\ € A such that

gs(z + A) < ¢(9),

wherec(D,) = ¢(AP) = 5. c(A3) = = andc(AY)) = ¢(S,) = c(Ay) = 2. In particular,
A'is Euclidean.

PROOF Letz = /(xy,...,7;) € R'. Because of\ = Z' we may assumér;| < 3 for

1 <j <1l Thenfors € {A® AP 5, A,} the assertion is obvious. By virtue of
Proposition 1.17, foS = D, the assertion follows from [Kr85, 1.7] and f&F = Aj it
follows from Proposition 1.20. m
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Proposition 1.22 Let

0 0
fs = M€O+(A0); M 0)els,.
0 1
N a a B
I's = b A ¢c] €0ONy); v+0>0,.
v od s

In particular, the following matrices are elementslgf:

O O =

a) We have

P, U, (A € A), and

o O
T )
—_ o O

) (A€ O(A)).

b) Suppose that is Euclidean. Then given, € Ag with go(10) = 0 there existsM €
<ﬁ, Uy; N € A> < T'g such thatM g = (m, 0, ..., 0) for somem € Z.
c) Suppose thak is Euclidean. Thelh's is generated by

1 0 0
P,Uy(AeA),and{ [0 A 0]: Ac0O)}.
0 0 1
a fa B ) 1 0 0
PROOFa) LetM=|b A c¢| €Tls.Then[0 M 0] €T's € OT(Sy;R) yields
v oo 0 0 1

(G -6 D)

P,U,forall A € Aand(1) x A x (1) for all A € O(A) obviously satisfy this condition
and are thus elements bf..

b) Letpy = (m,u,n) € A}, i.e.,m,n € Zandu € A’ Without restriction we may
assume thaltz| < |m| (otherwise we consideP). go(1) = 0 impliesmn = q(u).
So if 4 = 0 thenn = 0 and thusuy = (m,0,...,0). Otherwise, sincé is Euclidean
there exists\ € A such thay(u + n\) = nq(2p + A) < n?. We consider

N m+ ASp + ng(N) m/
Uspo = [+ nA =¥ -
n n

Due tol, € O(Ao) we havell, iy € A% andgo(Us o) = qo(10) = 0. Thusm’ € Z and
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m'n = q(p 4+ n\) < n?. This yields|m’| < |n|. Therefore, after finitely many steps we
get the matrix\/ € I's we are looking for.
a 'a N
c) LetM = | b A c| €T's. ThenSy, = Sy[M] yieldsay = ¢(b). Therefore, by
v d 5
virtue of b), there exists ahl € <J5, Uy € A> < I's such that

/

- o k%
M=MM=|0 A «x
0o a ¢

Due toM’ € O(Ay) we haved’ = 0 andA’ € O(A) (and thus alsel’~! € O(A)). Then

1 0 0 o k%
M'=(0 A~ ol M=|0 I ¢
0 0 1 0 0 ¢

Now M" € O(Ay) yieldsa/d’ = 1 with o/, € Z and a) yieldsy > 0. Therefore

o/ = ¢" = 1. Multiplying with U_.» we get

1ty ﬁ//
M"=U M"={0 I 0
0 0 1
Finally " = 0 and” = 0 follow from M" € O(Sp; R). n

Corollary 1.23 If S is one of the matrices listed in (1.2) th€g is nicely generated.

PrRoOF Due to Proposition 1.2\ = Ag is Euclidean. Therefore, Proposition 1.19 and
Proposition 1.22 yield thdtg is generated by

J, Ty (g € No), P, Uy (A€ A), andR4 (A € O(A)).

According to [Kr96, p. 249f][J, and R, can be written as product of andTj, for certain
h € Ay. Furthermore, we hav® = _R(O,I,O,...,O)Mtr = R(l,O,...,O,fl)R(fll)R(O,l,O,...,O)Mtr
with M,, = M as defined below in (1.3). Thus onl T,, g € Ay, andR4, A € O(A),
are needed to generdig. m

Finally we determine some properties of the finite orthogonal gréyps) associated to
the matrices listed in (1.2).
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Proposition 1.24 a) LetS = D,. ThenO(A) is generated by

1 0 0 1 10 -1 O 10 —-120 10 0 0
0O -1 0 0 01 -1 0 00 -1 20 0O 1 0 O
o o0 -1 0f¢fo0 -1 =101 -1 0Pt 1 1 0 1
0 0 0 -1 00 2 1 00 2 1 -1 -1 -1 -1

SO(A) = O(A) N SL(4;Z) is generated by the last three matrices. The commutator
subgroupO(A)’ is generated by the last two matrices. The commutator factor group
O(A)? is isomorphic ta”, x C, whereC, denotes the cyclic group of order The first

two matrices are representatives for the generator® of ). The discriminant kernel
Oq(A) is generated by the first, the square of the second and the last matrix, and the
factor groupO(A)/Oq(A) is isomorphic taS(3), the symmetric group of degrée

b) LetS = A%, ThenO(A) is generated by
-1 1 0 0 -1 0 1
. | o o =1 o). | o 0| and 0]
0 0 0 -1 0 —1 0

SO(A) is generated by the last four matrices and is isomorphi§ (). The commuta-
tor subgroupO(A)’ is generated by the last three matrices and is isomorphig(to),
the alternating group of degree The commutator factor group(A)=" is isomorphic
to Cy x Cy. The first two matrices are representatives for the generatof¥ afi*>. The
discriminant kernelD4(A) is generated by the three diagonal matrices, and the factor
groupO(A)/O4(A) is isomorphic taS(3).

c) LetS = A;. ThenO(A) is generated by

—1 -1 0 1 1 0 ~1 -1 0 0 0 —1
o 1 of, (o -1 o], 0 1 0 and [-1 0 1 |.
0 0 1 0 0 -1 0 -1 —1 1 1 0

SO(A) is generated by the last three matrices and is isomorphig(t. The commu-
tator subgroupO(A)’ is generated by the last two matrices and is isomorphid td).
The commutator factor group(A)?* is isomorphic toC, x C,. The first two matri-
ces are representatives for the generator©¢f)**. The discriminant kerneD4(A) is
generated by the first and the last two matrices, and the factor gtup /Oq4(A) is
isomorphic toCs.

d) LetS = A®. ThenO(A) is generated by

1 0 and 0 —1

0 —1 1 0
and is isomorphic taDg, the dihedral group of ordeB. SO(A) is generated by the
second matrix and is isomorphic &@,. The commutator subgroup(A)’ is generated

_ O O
O = O
O = O
O = O
_— o O
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by —I, and is isomorphic ta’,. The commutator factor group(A)*" is isomorphic
to Cy x Cy. The two matrices are representatives for the generato3(df)**. The
discriminant kerneD4(A) is generated by- I, and the first matrix, and the factor group
O(A)/O4(A) is isomorphic taCs.

e) LetS = A,. ThenO(A) is generated by

(o) = (4

and is isomorphic td);,. SO(A) is generated by the second matrix and is isomorphic
to Cs. The commutator subgroup(A)’ is generated by the square of the second matrix
(i.e., by( % 1)) and is isomorphic taCs. The commutator factor grouP(A)2 is
isomorphic toC; x C,. The two matrices are representatives for the generators of
O(A)?. The discriminant kerneD4(A) is generated by the first and the square of the
second matrix, and the factor groWp(A)/Oq4(A) is isomorphic taCs.

f) LetS = S,. ThenO(A) is generated by

-1 0
<0 1) and — I,

and is isomorphic t@’'; x Cy. SO(A) is generated by- I, and is isomorphic t@’;. The
commutator subgroup(A)’ is the trivial group. The commutator factor groap A)2

is isomorphic toC; x Cy. The two matrices are representatives for the generators of
O(A)?. The discriminant kerneDy(A) is generated by the first matrix, and the factor
groupO(A)/Oq4(A) is isomorphic taCs.

PROOF The generators were explicitly calculated. The rest of the assertions was verified
with GAP ([GAPO05]). n

All of the above group$)(A) contain an element which corresponds to the conjugation on
the corresponding subspadég of H (cf. Proposition 1.17), i.e., for all matriceslisted

in (1.2) there is amg € O(A) such thats(Agig'(2)) = z for all z € Hg. We denote the
corresponding rotationB 4, by M or, if it is clear whichS is meant, simply by\/,,. We
have

3
AP

I STV

OO

1 0 9
-1 0 )
1 0 -1

(1.3)
_ Ax S __
My' =FRaoy,  Me®=Raay, My =Raoy
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1.5. The commutator subgroups of certain
orthogonal modular groups

In this section we proof an estimation for the index of the commutator subgrpupI's
for the matricesS listed in (1.2). In the next section we show that the inequalities are in
fact equalities.

Proposition 1.25a) If S € {4, AP S,} then['g : T’] < 8.
b) IfS e {D4,A3,A2} then[FS : FZS'] <4,

PROOF a) Firstwe will show thafl's : I's] < 8 for all of the matricesS listed in (1.2). So
let S be one of those matrices. We start by calculating a few commutators\ Eak
andg = (g()u ga gl-‘rl) € AO we get

[Ux; Tyl = Tiasg+a a1, 20141.0)-

Thus for the standard badis, . . ., ¢;) of A we get

T(270’1’0) |f S - SQ and] - 2,

Ue‘vT =T €;),ej = .
[ J (07 ,0,1)] (q( J)’ J70) {T(Le].’o) OtherWISe

and
[Ueys T(0,61,0)) = T(2q(e1),0....0) = T2,0....0)-
Furthermore,
[R0,e1,00: T(0,...01)] = T(1,0,....0,-1)-
Because of ,T}, = T, forall g, h € A, this yields

l
. S
Tg S ng for all g = t(g()’ L 7gl+1> € Ay with go + giy1 + E Ejgj =0 (mod 2),
Jj=1

wheres; € 2Z, 1 < j <[, are the diagonal entries 6 So modulad™s all matricesT,
with g € A, are equivalent either th_ 4 or to7{y 9,_o). Moreover,(JT(1 0, 01))° = 1
yields J = J? € T'y, and, due tdk 4 Rp = Rap andR,' = Ry forall A, B € O(A),
we haveR, € I'; forall A € O(A)'.

According to Corollary 1.23, each elementl®f can be written as a product df 7,
g € Ay, andRy4, A € O(A). Since, by virtue of Proposition 1.2&,(A)* = Cy x C,
for all S we are considering we hayEg : I'y] < 8.

b) If S € {D,, A, A2} then

[R(0,e,,0)> T(0,e1,0)] = T(0,—2¢14¢,,0;

wheree; is the vector which is mapped to under the isomorphisms in Proposition
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1.17,ie.,j =4if S = Dyandj = 2if S € {A;, Ay}. ThereforeT, e I' for all
g € Ny, and thugl's : '] < 4. -

1.6. Abelian characters of the orthogonal modular
groups

The Abelian characters of the orthogonal modular grbymre in one-to-one correspon-
dence to the elements of the corresponding commutator factor giguBecause of this
correspondence we denote the group of Abelian charactérsalfo byl'2>. According to
Proposition 1.25, for alb listed in (1.2) the commutator factor groups are finite (Abelian)
groups of orded or 8, and thus at most three different characters (and their products) occur.

1.6.1. The determinant

The determinant occurs in all cases as character of the orthogonal modular roUje
determinant is-1 for R, if A is the first generator dd(A) given in Proposition 1.24, and
itis1for J,T,, g € Ag,andR4, A € SO(A).

1.6.2. The orthogonal character(s)

According to Proposition 1.19]s acts on the sets of elementsiofs(A;) with the same

value ofg,, and for
* kX
M=|*x A x| eIy
* ok %k

the action only depends aa € Mat(l;Z). The signs of the permutations of non-trivial

sets of elements dbis(A,) with the same value of, are Abelian characters fs. In all

cases we are considering exactly one such character occurs. We denote this character by
v.. Itis —1for R4 if Aisthe second generator Of A) given in Proposition 1.24, and it is

1for J,T,,g € Ao, andR 4 if A is one of the other generators©fA) given in Proposition

1.24.

1.6.3. The Siegel character

LetS € {A§3>,A§2),SQ}. ThenS = 0 (mod 2). In this case another character occurs. It
corresponds to the non-trivial character of the Siegel modular group of d&gree

Proposition 1.26 If S = 0 (mod 2) then the map

a ok
_ . a B\|H O _ (HaH Hp
¢ : g — Sp(2; Fy), (i I z) — (7 6)[0 ]2] mod 2 = ( VH 8 ) mod 2,

ey
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whereq, 3,v,0 € Mat(2;Z), H = (9}) andSp(2;F,) is the symplectic group of degree
2 over the fieldF; of two elements, is a surjective homomorphism of groups.

PROOF Let S =0 (mod 2) and
a; a;
Mj = bj Aj ¢ | € I,
viodp 05

Whel’eaj,ﬁj,'yj,éj € Mat(2,Z), aj7dj S Mat(Q,l,Z), bj,Cj S Mat(l,Q,Z), Aj S
Mat(l;Z) for j € {1,2}. If a1 = a2 = d; = dy =0 (mod 2) then

aray+ By 0 aife+ Bid;
MM, = * Ay A * (mod 2).

Y10 + 01772 0 mBy+ 0102

Since the assumption is true for the generathrg,, g € Ay, andR4, A € O(A), of T'g
we finda; = d; = 0 (mod 2) for all M; € I's. An easy calculation shows that the images
of the generators df s undery are inSp(2;Fy). Together with

HOélOéQH + Hﬂl’YgH HOélﬂg + Hﬂ1(52>
M M) = d2
(M M) ( Yoo H + 617 H Y152 + 0102 o

. HOélH Hﬁl HOCQH Hﬁz
_(71]‘[ 01 )<V2H 02 )mon

= (M) p(M,)

for all M;, M, € T'g this yields thatp is a homomorphism of groups. Finally, the surjectiv-
ity of this homomorphism follows from the fact thi&p(2; IF,) is generated by the following
four matrices

_ (0 I _ (2 9% _ (2 89 _ (2 438
90(‘])_(]2 0)7§0(T61)_(0 12 790(T62)_ 0 12 7@(U61)_ 0 ]2

(cf. [Fr83, A 5.4)). n

According to O’Meara [O'M78, 3.1.5bp(2;F,) is isomorphic to the symmetric group
S(6). By Igusa [Ig64, p. 398] we can explicitly describe the isomorphisi®pd®; F5) and
S(6) in the following way: Let

Cy = {(Z), a,b € F5, ‘ab=1 (mod 2)}

be the set of odd theta characteristics ofip(2; F5) acts on this set via

())& )6+ ()
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for M = (& B) € Sp(2;F,), wherediag(7) is the column vector consisting of the diagonal
entries of a matrix". SinceC, contains exactly elements the mapping

M— (Cy—Cy, (5)— M{%})

defines a homomorphism : Sp(2;F,) — S(6) (which is an isomorphism according to
Igusa). The non-trivial character 8p(2; F,) is then given by the sign of the permutation
n(M) for M € Sp(2;Fs).

By combining the epimorphism : I's — Sp(2;F5) from Proposition 1.26, the isomor-
phismSp(2;Fy) — S(6) and thesign map, i.e., by

sign

Py —— Sp(2;Fy) —— S(6) —— {£1},

we get an explicit description for the Siegel character of the orthogonal modular Ggoup
if S =0 (mod 2). We denote this character bby. Obviously, allR4, A € O(A), lie

in the kernel ofp and therefore also in the kernel @f. Moreover, the kernel contains of
course the commutator subgrolif and thus, in particulat/. According to the proof of
Proposition 1.25, all matriceg, with g = (go, ..., gi+1) € Ao are moduldy equivalent
to 1,4 whenevergy + g1 + Zé.:l s;9;/2 = 0 (mod 2) where thes;, 1 < j <, are the
diagonal entries of € {Ag?’), A§2), Sy }. Otherwisel, is equivalent tdl,, moduloIy. An
easy calculation shows thai(7.,) = —1, and so we have

+1 .
(-D=ow it S e (AP, AP,

1.4
(_1)90+91+93 if S = 5’2' ( )

vo(Ty) = (—1)g°+g’“+23:15i97/2 - {

By applying the above description directly I for arbitraryg = (go, g, gi+1) € Ao We
get a nicer and more general formula, namely

Vo (Tigo ggier)) = (—1)0Fomsita@), (1.5)

The value ofv,(Mp), D € SL(2;Z), can also be explicitly calculated using the above
description. We get

vo(Mp) = (—1)*PH 057 for all D = <?; ?) € SL(2;Z). (1.6)

Using representations in terms of the above matrices we can now easily determine the
value of, (M) for some of the other matrice from Proposition 1.16. For the vectors
g="g90,---,9111) € Ao with go(¢9) = £1 we define

9" ==J(9) = q0(9)" (gir1.—91,- - -, —91. o) € Ao.
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According to [Kr96, p. 249f\R, = T,JT,-J1,J for everyg € Ay with ¢o(g) = £1, and
thus
va(Rg) = vo(TgJTye JTyJ) = va(Ty) = 1a(T).

Moreover, for all\ € A we have

Uy = MpTox0Mp-,

whereD = (_01 é) andD* = <(1) _01) Sincevy(Mp) = vo(Mp+) we get

va(Un) = va(Tioney) = (—1)7. (1.7)

Using the estimation for the index of the commutator subgBjin I's (Proposition
1.25) and the explicit knowledge of the characterf @fve can now derive the structure of
rab.

Proposition 1.27 a) If S € {A®), A® S,} thenT®P = (det, vy, v3) =2 Cy x Cy X Cs.
b) IfS e {D4,A3,A2} thenr%b = <det, V7r> =y x Cs.

Moreover, using the explicit knowledge about the generatorS(df) we can determine
which rotationsR4, A € O(A), are necessary to generate the commutator subdroup
the discriminant kernéD,(A;) N I's and the full modular group's.

1
If S = D, thenl' is generated by, T, g € Ao, and the rotationR 4, A = <8
0

b) The discriminant kernéD4(A;) N T's is generated by, T, g € Ay, and— M.

c) I's is generated by, T,, g € Ay, the rotationsR g, whereB runs over the representa-
tives of the generators @¥(A)2°, and, in case of = A§3) or S = Dy, additionally by
the rotationR 4 from a).

PROOF a) We use5AP ([GAPO05]) to calculate the subgroupof G = (R4; A € O(A))
which is generated by alk,, - R,, with g; = (0,\;,0) € Ao such thaty(g;) = —1,

j = 1,2. In case ofS € {AﬁQ),AQ, Sy, A3} we getH = G which implies our claim.
If S = Af’) or S = D, then H is a subgroup of inde® of G andG = (H, R,).
SinceJ andT}, g € A, act trivially onDis(A;) while R4 does not we obviously have
Ry ¢ (J,T,; g € Ap). This completes the proof.

b) It is easy to check that additionally tband7,, g € Ao, the matrix—M,, also acts
trivially on Dis(A;). Note that—M,, is not contained inJ,T,; g € Ay) because of
det(—M;,) = —1. Itremains to be verified that the given matrices gendpate\; )NI's.
This can be done similarly to the proof of part a) since by Proposition 1.24 we explicitly
know Oq4(A).
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c) This follows from part a) and the fact thdtand7,, ¢ € Ao, act trivially on Dis(A;)
and have determinart =

1.7. Parabolic subgroups

An important subgroup oD (.S;; R) is the parabolic subgroup

D* x x
Ps(R) := 0 x x| eO"(S;R); DeSL(2;R)
0 0 D

whereD* = (94) D~ (94) = (2 ) for D = (245) € SL(ZR). It plays an impor-
tant role in the theory of Jacobi forms (cf. Section 2.3). According to [BU96, Prop. 2.5]
Ps(R) is generated by the matricédp, D € SL(2;R), R4, A € O(S;R), Uy, A € R/,
andT{o .0, # € R’ In fact we have the following

Proposition 1.29 Each elemend/ of the parabolic subgroup’s(R) can be written in the
form
M = MDRAU)\T(I-C,/J,,O)

with A € O(S;R), D € SL(2;R), A\, u € R' andx € R. This representation is unique.

D* % %
PROOFLetM = | 0 A *) € Ps(R). By virtue of [BU96, Prop. 2.4], we have
0 0 D

A € O(S;R) and get

I WS -k q(p)
, 2 05 q(\) kHASK l
M= Ry-Mp-M=10 1 A , M pueR,) keR.

0 O I

Now
I t;éS —Off a(p)

U_AM/ =10 I 0 p = T('%M@)'

0 0 I

The uniqueness of the representation is obvious. m

The subgroug? = {U,T\ .0); A € R, k € R} of Pg(R) is normal inPs(R) and the
center ofPs(R) as well as the center éf are both given by the subgrogi..o.0); = € R}.
Due to the preceding proposition, we have

Ps(R)/H = SL(2;R) x O(S;R),
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and thus
Ps(R) = (SL(2;R) x O(S;R)) x H.

The structure oPs(RR) and the above unique representation of elements @R) inspire

the representation d?s(R) in a different form. Let
Js(R) :={[D, A, (\, ), k]); D€ SL(2R), A€ O(S;R), \,u € R', k € R}.
Then, by virtue of the preceding proposition the map
Js(R) — Ps(R), [D, A, (A, i), k] = MpRAUNT (12— Sy, 10,0) (1.8)

is bijective. If we define the composition law 0g(R) by

9192 = [D1Dy, A1 As, Ny i) + (g, i), Kt + ko — NSpn + NiSTi + 20 Spao
for g; = [Dj, Aj, (N, 1), k5] € Js(R) where (M, i) = Az' (A1, i) D; then Jo(R)
becomes a group and the above migfiR) — Ps(R) becomes an isomorphism of groups.
We call J5(R) the Jacobi group. The Heisenberg group

Hs(R) := {[(A, p), 6]; A, u €R', € R}
with composition law
(A1, 1), a][(Aa, 2), o] = [(Aas ) + (Ao, pi2), K1 + kg + 2 A1 S o]

for [(\;, 145), k;] € Hs(R) is obviously a subgroup ofs(R). It is isomorphic to the sub-
groupH of Ps(R) and thus we have

Js(R) 2 (SL(2;R) x O(S;R)) x Hs(R).
Since we can canonically identify any eleméntof SL(2;R), A of O(S;R), (A, p) of
R! x R! andx of R with the element$D, I, (0,0), 0], [I2, A, (0, 0), 0], [I2, I;, (A, i), 0] and

[I2, I, (0,0), k] of Jg(R), respectively, we will often simply writéD], [A], [\, p] or [x]
instead of the corresponding element/ofR).

For dealing with Jacobi forms we introduce another Jacobi group, namely the one defined
by Arakawa in [Ar92]. Itis given by

G :={(D,(\, ), p); D €SL(ZR), \,ueR', peSym(;R)}
with the composition law

9192 = (D1Da, (A1, 1) Do + (A2, pi2), p1+ p2 — 1 A1+ tXl + Xl ‘s + 1o tXl)
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for g; = (Dj, (\j, 1), pj) € G’ Where(xbljl) = (A1, p1)D,. The map
G7 — Js(R), (D, (A ), p) = [D, I, (A, ), trace(Sp)] (1.9)

is obviously a homomorphism of groups. By abuse of notation we will also often jijte
and|), u] instead of the corresponding elements:df
Next we consider the parabolic subgroug@f Let

Ps(Z) = Ps(R) N FS = PS(R) N Mat(l + 4,Z)

Then the corresponding Jacobi grolg(Z), defined as preimage @¥s(Z) under the iso-
morphism 1.8, is given by

Js(Z) ={[D, A, (A, p), k]; D € SL(2;Z), A€ O(A), A\, p €A, k €2Z}
and Arakawa’s discrete Jacobi group is given by
I’ = {(D,(\,p),p); D €SL(ZZ), \,p€Z', p e Sym(;Z)}.

Note that the image df’ under the above homomorphisiY — Js(R) lies in J5(Z).

Finally we take a look at the action of the paramodular subgrouf{en Let w =
(r1.2,72) € Hg and M = MpRAU\T(xj2- o) € Ps(R), D = (27) € SL(Z;R),
A€ O(S;R),\, u € R, k € R. Then

vazt A+ p) 2t At
YTy + 0 ’ Yo+

M{w) = <n + NSz + g\ + K/2 — <72>)

(1.10)
whereD(ry) = ‘jg—if is the usual action d31.(2; R) on the upper half plang/. Since the
second and third component &f (w) only depend on the second and third component of
w = (x, 2,72 the action ofPs(R) onH; induces an action ofs(R) onH x C! which is
given by

(D, A, (A ), K(7, 2) = <D(T>,A—Z ?:‘1; M) .

This action is compatible with the action of Arakawa’s Jacobi grétipnH x C' ([Ar92,
(3.2)]) via the homomorphism (1.9).

(1.11)



2. Modular Forms

2.1. Orthogonal modular forms
Let.S be an even positive definite matrix of degie&lote that
j:O%(S;;R) x Hg — C*, (M,w) — M{w},

is a factor of automorphy (cf. [BU96, La. 2.10]), i.¢(,M, -) is holomorphic for allM €
O*(S1;R), andj satisfies the cocycle condition

j(MlMg,w) = j(M17M2<’LU>) j(Mg,w) for all Ml,MQ € O+(51,R) (21)

Givenf : Hg — C, M € O*(S1;R) andk € Z we define a functiorf|,M : Hs — C
by
(flxM)(w) := j(M,w) ™ f(M(w)) forallw e Hg.

Then f|, M is holomorphic whenevef is holomorphic, and, moreover,
(f|kM1)|kM2 :f|k(M1M2) for all Ml,Mg € O+(51,R)

Thus(M, f) — f|xM defines an action dd*(S;; R) on the set of holomorphic functions
onHyg.

Definition 2.1 Let k € Z, I a subgroup ofl's of finite index and, € I'*> an Abelian
character ofl” of finite order. A holomorphic functiofi: Hg — C is called an ¢rthogona)
modular form of weight (onHs) with respect td” andv if it satisfies

fleM =v(M)f forall M € T. (2.2)

We denote the vector space of (orthogonal) modular forms of wéighth respect td”
andv by [I', k,v]. If v = 1 then we sometimes simply writé, £|. Moreover, we write
(I, k, 1] or [I', k] for the vector space of all modular forms of weighwvith respect td,
i.e.,

Ik = k1) = @[T kv,

velrab

wherel is the group of Abelian characters bf

The constant functions are obviously modular forms of wefghith respect to the trivial
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character. Moreover, given two modular forths [, k, v] andg € [I', k', /| we have
fge [l k+ K, v/].

Thus the modular forms with respect to the trivial character and some subigi@iups of
finite index form a graded ring (which is graded by the weight). We denote this graded ring

by
AT) =EPIr. &, 1).

kEZ

If —I € T"then we get a first necessary condition for the existence of non-trivial modular
forms.

Proposition 2.2 If —1 € T'andv(—1) # (—1)* then[T', k, v] = {0}.
PROOF This follows immediately frony|,(—1) = (—=1)*f and (2.2). n

This result allows us to derive some conditions on the weight and/or the characters for the
existence of non-trivial modular forms in the cases we are mainly interested in.

Corollary 2.3 Letk,l,m,n € Z.

a) IfS e {D4,A§2)} andk is odd therl's, k, v] = {0} for all Abelian characters € I'3P.
b) [FA<13), k,det' vmuy] = {0} if k+1 =1 (mod 2).

C) [Tay, k,det' v = {0}if k+14+m =1 (mod 2).

d) [Ca,,k,det' v = {0} if k+m =1 (mod 2).

e) [Ts,, k, det' vv3] = {0} if k +m =1 (mod 2).

Since our modular forms with respect to the full modular gréypand the trivial char-
acter are also modular forms in the sense of [Kr96] we can apply some of Krieg’s results.

Theorem 2.4 Letv € T'% be an Abelian character dfs of orderh, and letk € Z. Then

Ts,0,v] = C, !f v=1,
o), fo£l,

and

. l
Ls, k,v]={0}, ifk< o’ kE#0,

wherel is the rank ofS.

PROOF If f € [I's,0,1] then f is a modular form of weight in the sense of Krieg, and
thus a constant function by virtue of [Kr96, Cor. 4]. Ufe T'? is of orderh > 1 and
f € [ls,0,v] thenf" € [['s,0,1] = C and hence alsg € C. Due tov # 1 there is an
M e T'ssuchthav(M) # 1. Thenf = f|oM = v(M)f yields f = 0.



2.1. Orthogonal modular forms 31

Now letk € Z, k < 1/(2h), k # 0, and letf € [I's, k, v|. In case of the trivial character
f = 0 follows immediately from [Kr96, Cor. 4]. Otherwise, we again have to consider
f" € [Ts, hk, 1] = {0}, m

Lemma 2.5 Letk € Z, I' a subgroup of s of finite index and’ € I'*" an Abelian charac-
ter of " of finite order. Then eaclfi € [T, k, v| possesses an absolutely convergent Fourier
expansion of the form

flw) = Z ap(p) 2mtmsow/h forall w € Hg

#
HEAG

for someh € N which depends oh and the order of.
If M € OF(Ap) such thatM = (1) x M x (1) € T then we have

ap(Mp) = v(M)ag(n)  forall pe Ab.

PrRoOOF Sincel is of finite index inI"g andv is of finite order there is & € N such that
T} = Thy € T andy(T)') = v(T,)" = 1forall g € Ag. Then

f(w) = (flxThg)(w) = f(w + hg) forall g € Ag
yields the existence of an absolutely convergent Fourier expansion of the form
flw) =" ay(u) e #ov/h forallw € Hs.
ueAg

The property of the Fourier coefficients follows froftM w) = (f |, M )(w) = v(M) f(w)
and the uniqueness of the Fourier expansion. n

Definition 2.6 For a € R!*2 we writea > 0, if a belongs tgPg, and we writea > 0, if a
belongs to the closure

Ps={v=(vo,...,u41) € R go(v) >0, vy >0}
of Ps. Moreover, giver, b € R*2 we define as usual

a>b < a—b>0,
a>b <= a-0b>0.

A few properties of positive and semi-positive element®0f are given in the following

Proposition 2.7 Letu, v € R*2 withu > 0 andv > 0.

a) There existd/ € O (Sp; R) such thatMv = (v, 0, v, ) with vj, v;,; > 0.
b) There existd/ € O*(Sy; R) such thatMu = {(uj), 0, v ;) with ug, uj,, > 0.
c) If u # 0 then we haveéuSyv > 0.



32 2. Modular Forms

PROOF Letu = (ug, @, u;41) > 0 andv = (vg, v, v41) > 0.

a) Due tov > 0 we havev,.; > 0. Therefore, with\/ = ﬁ,g/ml € O1(Sp; R) we get
Muv = v, 0,v;,,) > 0 which, in particular, impliesy,, v}, , > 0.

b) If ug = 0 oru,, = 0thenu = 0. So we only have to consider the caggu;,; > 0. In
this case we can just as in a) chodde= U_g,,,,,, € O*(Sy; R).

c) By virtue of b) we can find/ € O*(Sy; R) such thatM v = (u, 0, u;, ;) =: v’. Then

wSov = M SoMv = ' So(Mv) = ugvy,; + uj,1vp

whereMv = (vg, *,v;,,) > 0. Nowu # 0 impliesu, > 0 oru;,, > 0. This yields the
assertion. -

Theorem 2.8 (Koecher’s principle)Let k € Z, v € T3 an Abelian character of s of
orderh € Nand f € [I's, k, »] a modular form with Fourier expansion

Flw) =" ay(u) e mov/h forall w € Hg.

,LLEAg

Thenay () = 0 unless > 0. Furthermore, giver > 0 then f is bounded in the domain
{w € Hg; Im(w) > Pe}, wheree = {(1,0,...,0,1), and its Fourier series converges
uniformly in this domain.

PrROOF Buhler proved this for = 1 in [BU96, Satz 3.7]. The proof can easily be extended
to the case of non-trivial characters. Le€ I'%” be a non-trivial character of ordére N.
Then, due to Lemma 2.5, we have

ar(mUpo) = v(mU)ag(po) = v(U")ag (o) = ap(pe) — forall X € A, ug € Af,

If one now replacegU by ,,\U in Buhler's proof then the assertion follows, i.e., we have

flw) = Z ay(pg) €2 HoSow/h forallw € Hs.

MOGA?)
1o0=>0

Since the Fourier series convergesuinr= i%ﬂe € Hy there exists: > 0 such that

—wB(mtn)/h <

)RSt = o ()| e <

|04f(ﬂo

for all yy = (m,p,n) € Ag, po > 0. If v > Be anduy > 0 then 4ugSov > uoSofBe =
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B(m + n). Thus forw = u + v € Hg with v > Fe we have

|f(w)| < Z |Oéf(,u0)| 6_27rtlt()5'0v/h

1o EA%
Ho=>0

<c Z 6—7r,6(m+n)/h.

#OGA%
Ho=>0
In order to further estimate this sum we determine an upper bound for the number of vectors
pio = (m,p,n) € A with gy > 0 andm +n = t € Ny. Due toS~!' > 0 there exists an
r > 0suchthats~t —rI; > 0. If X € A = Z' with ||\|| > t?/r then fory = S71A
we haveS[u] = S7HA] > rAX > 2. Butuy = (m,pu,n) > 0yields S[u] < 2mn <
(m +n)? = 2. Thus there are at mo& [¢2/r| + 1)' vectorsyy = (m, p,n) € Al with
1o > 0 andm + n = t. The convergence of the series

[e') t2 l
> ()
r
t=0

completes the proof. -

Definition 2.9 A modular formf € [I'g, k, v] with Fourier expansion

flw) = Z ap(p) e nsow/h forall w € Hg

,uEAﬁO
u=0

is called an ¢rthogona) cusp formif a.¢ (1) # 0 impliesy > 0. We denote the subspace of
cusp formsinl's, k,v] by [, k, v]o.

In the theory of symplectic modular forms the space of cusp forms is sometimes defined
as kernel of a certain operator, namely SiegéFsperator (cf. [Kr85]). We can define
Siegel's®-operator also for orthogonal modular forms, and\ 16 Euclidean, then just as
in the symplectic theory the space of cusp forms turns out to be the kernel of this operator.

Proposition 2.10 Letv € I'%" be an Abelian character dfs such that/(7,) = 1 for all
g € Ag. Then fork € Z the map

® . I, k,v] — [SL(Z,Z), k], [+ [|2,
(1®)(r) i= lim f(iy,0,7) forr e H,

where[SL(2; Z), k] is the space of elliptic modular forms of weightis a homomorphism.
We call this maibiegel’sd-operator
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If A is Euclidean then we have
[Cs, k,v]p = ker ®,

i.e., f €[l k,v]is acusp form if and only if |& = 0.

PROOF Due to the condition on the character gl [I's, k, v] have a Fourier expansion
of the form ‘
flw) = Z ag(prg) €2 HoSow forallw € Hg.

uoeAg
10=>0

Since the Fourier series is locally uniformly convergent we have

lim f(iy,0,7) = Z as(p) €™M lim e 2™
y—00 y—00
MOZ(mz,LLG)EA(u)
#0=>0
= Z ay(m,0,0) ™™,
meENy

Thus f|® is well-defined. The linearity ob is obvious, andf|® € [SL(2;Z), k] follows
from f|,Mp = v(Mp)f = fforall D € SL(2;Z). Note that/(Mp) = 1 is a consequence
of v(T,) = 1.

If fis a cusp form them(m,0,0) = 0 for all m € N, yields f|® = 0. Conversely,
f|® = 0 implies as(m,0,0) = 0 for all m € N,. Now suppose thah is Euclidean.
Then, by virtue of Proposition 1.22, for eaph € A with ¢o(0) = 0 there exists an
M € O*(Ag) suchtha{l) x M x (1) € I'sandM g = {(m,0,...,0). Due to|as(uo)| =
lap(Mpo)| = 0 we conclude that is a cusp form. n

Using the above characterization of cusp forms and common knowledge about elliptic mod-
ular forms we can show that the subspace of cusp forms often coincides with the space of
modular forms.

Corollary 2.11 Suppose thas$ is one of the matrices listed in (1.2). Lete T'%> be an
Abelian character of ' such that/(7,) = 1 for all g € Ay, and letk € N,. If & is odd or
k =2orv # 1then

[Fs, k’, I/] = [Fs, l{, V]()-

PROOF Let f € [I's,k,v|. If kis odd ork = 2 then f|® € [SL(2;Z),k] = {0}, and
thus f is a cusp form. Ifv # 1 then because of the condition orthere existsA € O(A)
such thatv(R4) = —1. Thenay(uo) = ar(Rapo) = v(Ra)ayr(po) = —ar(uo) for all
o = (m,0,0), m € Ny, yields f|® = 0. Hencef is a cusp form. n
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2.2. Rankin-Cohen type differential operators

In this section we introduce a certain holomorphic differential operator for orthogonal mod-
ular forms. The interesting property of this differential operator is that it produces a new
modular form from several given modular forms. In the case of Siegel modular forms dif-
ferential operators with this property were studied by Ibukiyama in [Ib99a]. We restrict
ourselves to considering the equivalent of the Rankin-Cohen type differential operator that
was used by Aoki and Ibukiyama in [AIO5].

Let S be an even positive definite matrix of degie&Ve writew € Hg either, as usual,
in the formw = (7,2, 7), 7,7 € H, z = (21,...,%) € C!, or simply in the form
w = (wo, ..., w1). First determine the Jacobian of the modular transformations. Recall
that the Jacobian (determinant) of a function C* — C™ is given by

P F... .F o= Oz

det (8_) = det (—8( LLARAE n)> =det | .0
0z (3(21, ces >Zn) oF, oF,
o ... %

Proposition 2.12 LetI's be nicely generated. Then

w

det <8J\g(w)> = (det M) - j(M,w)™'7?

forall M e I'sand allw € Hg.

PROOF Let M, M, € I'g. Due to the chain rule we have

o (LAY _ g (PO o (25

Moreover,;j satisfies the cocycle condition (2.1). Therefore it suffices to prove the assertion
for generators/, T, g € Ay, andR4, A € O(A), of ['s. For the translations the assertion
is trivial, and for the rotationst4, A € O(A), we have

det (aRg‘W)) = det (a( O(n, Az 72) ) — det A = (det Ra) - j(Ra, w) 2.

w T1y 21y« ey 21, T2)

It remains to prove the assertion fof = J. Instead we show the assertion M<o 1)
10

andM?, _, .. We have
(1%)
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Therefore
1 x* * * *
8M(o _1)<w> 0t 0 0 =«
det (B—l%) =det |0 0 .0 x| =7 = (Mo —y,w) T
0 0 0 7' =x !
00 0 0 7°

and analogously

OM7y 1\ (w)
det( (1 0 ) ) :TI—Z—Q :](M*? 1),UJ)_l_2.

ow (

In view of det M((l) -y = det Mg(l) - =1landJ = M((l) _01>M€(1) 1) this completes the

proof. -

0

Now we define the differential operator.

Definition 2.13 LetI" be a subgroup of s of finite index. Givem+ 3 orthogonal modular
formsf; € [T, k;, x;] of weightk; with respect to an Abelian charactgr € I'**, 1 < j <
[ + 3, and with respect td', we define a functioffy, ..., fi13} : Hs — C by

Eifi - Ekigsfiys
oh . Ofits
9 F)
{fi,- o frsy =det | °° L
of1 L Ofit3
w41 Ow11

Under certain conditions this function turns out to be a modular form. We restrict our
considerations to nicely generated modular groups.

Proposition 2.14 Let I's be nicely generated. Givefy € [['s, k;, x;] with k; € Z and
x; € I'®, 1 < j <1+ 3, the function{fi,..., fiz3} is @ modular form of weight; +
...+ ki3 + [ + 2 with respect td"s and the Abelian charactey = x1x2 - - - 143 det. If
fi,-.., [irs are algebraically independent, thétf;, ..., f;. 3} does not vanish identically.

PROOF We closely follows the proof of [AIO5, Prop. 2.1]. Far< n < [+ 3 we define
functionsF, by F,, := f* /fi~ Let M € T's. Then

JOMLw) )" (fl, MM (w)

_ feMw) (

Fn(M(w))  ((M,w)=0)" (fili M)™ (w)
(M) )
(M) )
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Hence theF;, are modular functions, that is meromorphic modular forms of welght
with respect to the Abelian charactefs := " y;*". Next we consider the Jacobian of

(Fy, ..., Fi,3). We set
F = det <3(F2"”’E+3)) :

A(wo, - - -, Wi41)

Then forM € I's we have
F(w) = det <8(F;E;”3)’ - ’Zigw)))
o (2 O0) (M), iy (M) Fa(M ()
A(wo, ..., wi41)
—de O(Fo(M(w)), ..., Frs(M{w)))
- t( oM {w))or - (M {w))ir) ) g

x det (8((M<w>)o,...,(]\/[ )it ) ﬁ
)

a(wg,.. le
= F(M(w)) - (det M) - j(M,w)™" "% (XoX3 - X1y3) (M

ThusF is a meromorphic modular form of weight- 2 with respect td"s and the Abelian
charactery := Y2Xs - - - X143 det. (Note thatdet M = det™' M for all M € I's). More-
over, we have

8F k1 kn . k1—1 kn afn k1 kn—1 af
s (BT = B S g g S0
_ frlfl_l afn . knfn . afl
B f" ow; kifi Ow; .
This yields
ki fi 0 . 0
on ok .. OFgs | 43 fhn
Owg Owg Owg
{fla"'7fl+3}:det : : . H lkl 1
of1 OFy ... OFi4s
Owip1  Owigy Owi4q
N O(Fy,...,Fiys s f1"
_k1f1det(a(w07.”7wl+l) H k1 T

kot 4k 3+1
1

— - F
kl1+1(f2 P (A L
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InsertingM (w), M € T's,in{fi,..., firs} we get

— (fr(M (w)))™>t-thett | )
{fi, ) fras (M (w)) = k'llJrl (fo(M(w)) ...~ fl+3<M<w>))k1_1 F(M{w))
— (4(M, kl)k2+"'+kl+3+1 I
(G(M,w)kz - ..« (M, w)kees) ! ;

k2+...+kl+3+1

x amr (M) -X(M) - {frs- - fras} (w)
(X2X3 " Xi43)

— ](M, w)k1+...+kl+3+l+2x

X (X1x2 - xipadet) (M) - {fi, ..., fiss}(w).

We conclude thaffi, ..., fir3} is a holomorphic modular form of weight +. . . + k. 5+
[ + 2 with respect td's and the Abelian character= x1x- - - - x;43 det.

The second part of the assertion, thafi§, ..., fizs} # 0if fi,..., fi.3 are alge-
braically independent, follows just as in the proof of [AIO5, Prop. 2.1]. m

g

We will use this differential operator in order to give an alternative realization for some of
the generators of the graded rings of modular forms.

2.3. Jacobi forms

Let .S be an even positive definite matrix of degfeds usual we will writew € Hg in the
formw = (7, 2,m), 71,7 € H, 2 € C'. According to [Kr96, Th. 2] eaclf € [I's, k, 1],
k € Z, possesses a Fourier-Jacobi expansion of the form

F) =Y n(r,2) @™ forw = (ry,2,7) € Hs (2.3)
m=0
where .
Pm(T, 2) = Z Z ag(n, p,m) 2T S2) (2.4)
n=0 HeAﬁ
q(p)<mn

This result can easily be generalized to orthogonal modular forms with respect to an
Abelian character of finite order. We restrict our considerations to the cases we are mainly
interested in.So for the rest of this section we assume that is one of the matrices
listed in (1.2).

Proposition 2.15Letk € Z, v € T2 and f € [Tg, k,v]. If § € {4? AP $,} and
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v € vy - (Vg det) then f possesses a Fourier-Jacobi expansion of the form

flw) = Z Om(To, 2) 27T forw = (1,2, m) € Hg

TTLE%-I—NO

where

em(r2)= D D ag(n,pm) ETOTHRSD (2.5)

n€l+No pey+A?
q(p)<mn

with v = S~ diag(S)/4 wherediag(S) is the column vector consisting of the diagonal
entries ofS. Otherwise the Fourier-Jacobi expansionjois of the form (2.3).

PROOF If v € (v,,det) then f(w + g) = f(w) for all ¢ € Ay. Thusf has a Fourier
expansion of the form
f(w) — Z a/f(,uO) eQm Lo Sow

#OGA’i0
Ho=>0

and consequently a Fourier-Jacobi expansion of the form (2.3). On the other h&nd, if
{AP AP sy andy € vy - (v, det) thenf(w + 2g) = f(w) forall g € Ay. Hencef has
a Fourier expansion of the form

flw) =" ay(pg) ™ Hosow,

#06%/\%
10=>0

Now f(w + g) = 1.(T,) f(w) forall g € Ag yieldsay(uy) = 0 for uy € %Ag whenever
wn(T,) # e2mi'10S09 for someg € Ao. In view of 2%u,Syg = (m, pu,n)Sog = ngo +

(91, 9N + mgiyy for 2ug = (m,p,n) = Syt(n,\,m) € AL = S;'A, andg =
(g0, ---,9141) € Ao the claim follows from (1.4). m

Remark 2.16 Note thaty, (7, 2) is independent of. In fact we have
po(r,2) = Y ay(n,0,0) ™" = (f|®)(r) forreH, zeC
n=0

So ifv € I'¥> with v(T,) = 1 for all g € A, and if additionallyA is Euclidean thery is a
cusp form if and only if theé-th Fourier-Jacobi coefficient vanishes.

The functionsp,, : H x C! — C which occur in the Fourier-Jacobi expansion are so called
Jacobi forms. We will give a formal definition a bit further down. First we show how the
action of O*(S1; R) on the set of holomorphic functions Gs induces an action of the
Jacobi group/s(R) on the set of holomorphic functions @6 x C'.
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Let o : H x C' — C be a holomorphic function. Then for eagh € Q, m > 0, we
define the functiop?, : Hg¢ — C by

2mimTy

@;(717277-2) =e€ @(7—272)7

and for eachk € Z, m € Q, m > 0, andg € Js(R) we define the functiorp|y ,,, 59 :
H x C' — C by .

(@lkm,s9) (T, 2) = €2 () M) (7', 2, 7)
wherel/, is the element ofs(IR) which corresponds tg andr’ is an arbitrary element of

H.Forg =D, A, (\p),s] € Js(R), D = ( 7Y, we haveMy = MpRaUT (/2 tr8y0.0)
and the above translates to

(@lkm,59) (1, 2) = €27 (y7 4 6) For (My((7, 2,7)))

= ¢ (1 4 6) R, (T’ + NSz +q(N)7+ 5 — W(ZWJ;:\SW)’AZ?:EM’ D<T>>

= (7 + §) "k e2mim(ASz AT+ /2= a(+ AT /(7 48)) ( D) AM—TW> _
B )

In particular, we see that the definition@f; ., s¢ is independent of the choice of € H.

Moreover, due to the definition the map, g) — ¢|i.m.sg Obviously defines an action
of J5(IR) on the set of holomorphic functions @ x C' and

jk,m,s(g, (7_’ Z)) _ (’)/7' + 5)ke—2m'm( ASz+q(N)T+k/2—yq(z4+AT+p) /(vT+6))

defines a factor of automorphy ols(R) x (H x C'). Note that by virtue of (1.9)jx .5
corresponds to the factor of automorphy%ms onG’ x (H x C') defined by Arakawa in

[Ar92]. In view of (1.11), the action ofig(IR) on a holomorphic functiop : H x C! — C
can also be written in the form

(lem.s9) (T, 2) = Jrms(g, (1.2)) 7" o(g(T, 2)).

Now we define Jacobi forms di x C.

Definition 2.17 Letk € Z, m € Q, m > 0, andv € ' an Abelian character of 5. A
holomorphic functionp : H x C! — C is called aJacobi form of indexm, S) and weight
k with respect ta if it satisfies the following conditions:
(i) Forall g € J5(Z) we have
Pliym,s9 =v(9) ¢ (2.6)

wherev is considered as character of(Z) via the correspondence 0k (Z) and
Ps(Z).
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(i) ¢ has a Fourier expansion of the form

=0 > aplnp) @S 2.7)

neQ ,LLEAQ
n20 g(p)<mn

whereAg = A ®z Q.
If a,(n, 1) = 0 whenever(;) = mn then we callp a Jacobi cusp form
We denote the space of Jacobi forms of inex.S) and weightt with respect tas by
Ji(m, S,v) and the corresponding space of Jacobi cusp formgityn, S,v). If v = 1
then we simply write/;.(m, S) and J2(m, S).

As we already mentioned above the functigns m > 0, appearing in the Fourier-Jacobi
expansion of a modular form are Jacobi forms.

Proposition 2.18 Letk € Z, v € % and f € [['s, k, v] with Fourier-Jacobi expansion

- Z O (To, 2) 2TMT forw = (1,2, m) € Hs.
meQ

Theny,, € Jix(m,S,v) forall m € Q, m > 0.

PROOF Let g = [D, A, (), p), 5] € Js(Z), D = (27). Then the corresponding element
of Ps(Z) is given byM, = MpRAU\T{,./2— tasp,u0) @Nd we have

V(M) f(w) = (fleMy)(w) = j(Myg, w)™ f(Mg(w)) = (y72 + 8) 7" f(My{w))

forw = (m, 2,7) € Hg. Replacingf by its Fourier-Jacobi expansion, using (1.10) and
taking into account the uniqueness of the Fourier expansignwth respect tar;, we get

. (z4+Amo+p)
V(Mg)QOm(TQ,Z) _ (,77_2 + 6)—k€2mm(t)\Serq()\)Tern/?,W rHhry I )me (D( > A%)
= Jkam,s (9, (12,2)) " m(g(72, 2))

= ((pm’k,m,sg) (7—27 Z)

for (r,2) € H x C'. Moreover, by virtue of Proposition 2.15, the, have a Fourier
expansion of the form (2.7). This completes the proof. n

In view of the structure of/s(Z), a functiony : H x C! — C satisfies (2.6) if and only if
it satisfies the following conditions:

() v([D)]) o(r,2) = (yr+6) e 2™ w(m ), )forauD (2%) e SL(%7),

(i) v([A]) (7, 2) = @(r, Az) forall A € O(A),
(i) v([\ 1) o(T,2) = 2T mAS=HaNT) (1 2 4 Ar 4 ) forall A, u € Z,
(iv) v([K]) o(7,2) = ™™ (T, 2) for all k € 27Z.
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In particular, we see that in case of[2]) = v(7,,) = 1 there are non-trivial Jacobi
forms only if m € Z. Moreover, ifk € N, m € Nandv € T'% with v(g) = 1 for all
g = [*, I, (x,%),%] € Js(Z) then the elements of,(m, S,v) are elements of the space
JQ?S;"%SL(Q; Z))) of Jacobi forms foSL(2; Z) of index$m.S and weight in the sense of

Arakawa ([Ar92]) and also elements of the spdﬁéeg(Zl, oms) Of Jacobi forms of weight
k with respect tqZ!, o,,5) in the sense of Krieg ([Kr96]). Conversely, as we will later see,

for S € {A? A,, 5,5, A3} we have

JZ o) = JEESMASL(2: Z)) @Jk (1,5,v)

where the sum runs over all Abelian characters (v,,det) < I'2". Thus we can apply
Arakawa’s results in order to determine the dimensions of certain spaces of Jacobi cusp
forms.

Proposition 2.19 LetS = As. If £ > 4 then

r__
ek
| I—

—1 ifkiseven
| if kisoddk Z9 (mod 12),
|+1 ifkisoddk =9 (mod 12).

Z dim J(1,5,v) = < |

ab
vel'y L

wl”‘ Slw

PROOF Apply [Ar92, Thm. 5.2]. m

2.4. Maal} spaces

In this section we introduce the Maal3 space which consists of modular forms with particu-
larly nice Fourier expansion. Létbe an arbitrary even positive definite matrix of degree

Definition 2.20 Letk € Z andv € I'% an Abelian character of's. A modular form
f € [I's, k,v] is called aMaal formof weightk with respect ta if its Fourier expansion

- 5 s

MoeAg
#0=>0

satisfies

ap(po) = Z d*ap(mn/d?, p/d, 1) forall 0 # po = (m,p,n) € Ah.  (2.8)
d | ged(Sopo)

The subspace oF s, k, v| consisting of Maal? forms is called tMaal3 spaceWe denote it
by M(Tg, k,v). If v = 1 then we simply writeM (T'g, k).



2.4. MaaB spaces 43

The Maal3 space considered by Krieg in [Kr96] corresponds to the s‘p&i‘h? k) where

Iy = (J,T,; g € Ap) is the subgroup of ¢ which is generated by the inversionand the
translationsl;, g € A,. Note that for allS in (1.2) we havd's = I's N O4q(A1) N SO(A,).

If I's is nicely generated andy is a subgroup of's then we can decompose the space
M(T's, k) into a direct sum of certain spaced(I's, k,v). By virtue of Corollary 1.28
these conditions are fulfilled § < {A§2), Ay, So, As}.

Proposition 2.21 Suppose thal s is nicely generated and that, is a subgroup of'y =
(J,T,; g € Ag). Then

M(Ts,k) = P M(Ts, k,v)

for all £ € Z where the sum runs over all Abelian charactersf Iy for whichfs < ker v.

PROOF LetG := {v € I'®"; T's < kerv}. If v € G then we obviously havé (T's, k, v) C
M(Ls, k). It remains to be shown that afle M(L's, k) can be written as a linear combi-
nation of functionsf, € M(I's, k,v), v € G.

G is an Abelian group. Therefore there existe G, 1 < j < r, such thatG =
[I;-, (v;). Lets; be the order of; and let(; € C be a primitives;-th root of unity for
1 < j5 < r. Sincel'ys is generated bfs and the rotationg?4, A € O(A), and since
fs < kerv;, 1 < j < r, we actually haver = O(A)*". Therefore we find4,,..., A, €
O(A) such thatv;(Ra;) = ¢ andy;(Ry,) = 1forall1 < 4,5 < r, i # j. Note that
Ps=(Ts,Ra,,...,Ra,).

Now let f € M(T's,k) andA € O(A). If f has Fourier coefficients(s), 1o € A,
thenf|, R4 has Fourier coefficientsy, ,, (m, 1, n) = ay(m, Ap,n), (m, u,n) € A%. One
easily checks that the Fourier coefficientsf¢f R 4 satisfy the Maaf3 condition. Moreover,
we havef|,R4 € [I's, k] becauseR,, commutes moduld”y with all elements of'g so
that for all M e I's we have(f|,R4)[xM = (f|«M")| R4 with some)M’ € I'g and thus
(flRA) M = f|pR4forall M € I's. SoforallA € O(A) we havef|, Ry € M(Ts, k),
and, in particularf|, R4, € M(fs, k),1<j<r.

We define functiong;, 0 < i < s; — 1, by

90 1 P 1 /
g1 xg N | fleRa,
s1—1 s1—1 s1—1 s1—1
951—1 xO x]_ T :Csl—l f‘kRAl

wherez; = ¢i,0 < i < s; — 1. Obviously, we have; € M(T's, k) forall1 <i < s, — 1.
Furthermore, those functions satisfy

81—1 81—1

gileRay =Y (G FlRS = ¢V 4+ 3 TV kR, = Gl = v (Ray) g
s=1

s=0
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so that we actually have € M((Ts, R4, ), k,v;%), 0 < i < s, — 1. Note thatf is re-
coverable as linear combination of thesince the transformation matrix is a Vandermonde
matrix and thus invertible.

In the second step we use the functignsistead off as input and get functions

so—1

B = 3G ileR, € M((Ts, Ray, Ra), kv 'v;7),

s=0

for0 <i <s;—1,0 < j < sy — 1. After r iterations we finally get functiong, €
M(Tg,k,v), v € G. Due to the construction we havye € span{f,; v € G}. This
completes the proof. n

We can now prove that certain spaces of Maal3 forms are isomorphic to certain spaces of
Jacobi forms.

Corollary 2.22 Suppose thdf s is nicely generated and that, < Iy = (J,Ty; g € Ao).
Givenk € N and an Abelian character of I'g with I's < ker v the map

Mg, k,v) — Jp(1,S,v), fr—pi(f),

wherey, (f) is the first Fourier-Jacobi coefficient ¢gf is an isomorphism of vector spaces.

PROOF We consider the following commutative diagram:

P MTs, kv L=l (T k)
(fu)uH(@l(fu))uJ lchm(f)

B, (1. 8,y) L R o)

The right map and the upper map are isomorphisms of vector spaces according to [Kr96,
Thm. 3] and Proposition 2.21, respectively. Consequently, the lower map has to be sur-
jective. Since the lower map is the canonical injection it is also injective and thus an
isomorphism. Therefore the left map also has to be an isomorphism. This completes the
proof. m

Note that the above isomorphism obviously maps cusp forms to cusp forms. Moreover, by
considering the Fourier-Jacobi expansion of Maal3 forms we can show that the dimension
of the Maal? space is at most one greater than the dimension of the space of Maal3 cusp
forms. This will allow us to calculate the exact dimension of certain Maal3 spaces using
Arakawa’s formulas for the dimension of spaces of Jacobi cusp forms.

Corollary 2.23 Suppose that < {A§2),A2,SQ,A3}. Givenk € N and an Abelian char-
acterv of I'g with v(7,) = 1 for all g € A, we have

dim JP(1, S, v) if kisoddork =2orv # 1,

dim M(I'g, k,v) = i i
im M(T's, &, v) {dimJ,S(l,S,y)+1 if k> 2is evenand = 1.
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PROOF If kis odd ork = 2 or v # 1 then according to Corollary 2.11 all Maal3 forms are
cusp forms, and thereforet(T's, k,v) = J2(1, S, v). Now suppose thdt > 2 is even and
thaty = 1. Assume we have two non-cusp forrig) € M(T's, k, 1). Letpo(f) andg(g)

be the0-th Fourier-Jacobi coefficient of andg, respectively. According to the proof of
[Kr96, Thm. 3] we havep,(f) = -as(e1)Gy andypo(g) = --ay(e1)G), where

V&

is the normalized elliptic Eisenstein serieg$ih.(2; Z), k] for k > 2 even. Nowoy,(eq) f —
ag(er)g € [I's, k, 1]o implies

dim M(Ts, k,1) < dim JP(1,5,1) + 1.

ForS € {Aﬁ”, Ay, So} the existence of a non-cusp forfne M(I's, k, 1) for k£ > 4 even
follows from [DK03, Thm. 1] (cf. Section 2.6). F& = A3 non-cusp forms are given by
the Eisenstein serieB;® € M(T'4,,k, 1), k > 4 even, which will be defined in Section
2.5. n

Since the preceding result is applicable in casg ef A; we get

Corollary 2.24 LetS = Aj. If £ > 4 then

5] if k is even
dim M(Ts, k) = Y dim M(Ts, k,v) = 4 | &] if kisoddk #9 (mod 12),
k

vers |[£]+1 ifkisoddk=9 (mod 12).

1

[\

PROOF Apply Proposition 2.19 and Corollary 2.23. n

2.5. Restrictions of modular forms to submanifolds

In this section we examine the restrictions of orthogonal modular forms livingf @mo
submanifolds of{;.

2.5.1. The general case

Let A = Z! with bilinear form(-, -)s be the lattice associated to an even positive definite
matrix S of rank/ > 2. Suppose thal; = ZY with bilinear form (-, )7 is the lattice
associated to an even positive definite mafrinf rank!’ < [ which can be considered as
sublattice ofA via an isometric embedding

5 Ap — A, Ap — M3 Ap,
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with M2 € Mat(l,1’; Z) satisfying(a,b)r = (13(a),13(b))s for all a,b € Ay (and by
C-linearity also for alla,b € C"). This embedding obviously induces an embedding of
Ag, = Z'+* with bilinear form(-, -)7, in A; = Z!** with bilinear form(-, -);. Analogously,
the corresponding half-spaéé, can be embedded iH¢ as submanifold. (Actually those
embeddings are induced by the embeddind\gf in A;; cf. Section 4.2.) By abuse of
notation we denote those induced embeddings©fin A; and of Hy in Hgs also by.3.
Now those elements dfs which stabilize the embedded lattice( A, ) can be viewed as
elements of'7. This yields a homomorphism

©r Stabps(bjsw(ATl)) — FT.

A priori, it is not clear whether this homomorphism is surjective, bilitsifandI'; are both
nicely generated then we only have to check whether

Stabo(a) (¢13(A7)) — O(A7)

is surjective (cf. also [FHOO, Sec. 4]). This can be easily verified (at least for the cases we
are interested in). In some casesis not injective. In those cases.' (/) contains non-

trivial elements of's of the formR 4, A € O(A). Those non-trivial elements can be used

to show that certain modular forms Gty vanish on the submanifolt{. Moreover, we

will see that in those cases not all Abelian characteissodire the continuation of Abelian
characters of 7.

Now we consider the restriction of modular forms.

Theorem 2.25 Let S andT be two even positive definite matrices of rdnk 2 and rank
I' < [, respectively, such that an isometric embeddjfag: Ar — A A — Blp, of

Ar = 7 with bilinear form(-,-)z in A = Z' with bilinear form(-, )¢ exists. Moreover,
suppose thal's andI'; are both nicely generated and that is surjective.

Letk € Z. If y € T'%" is the continuation of an Abelian character bf and f €
[F57 ka X] then
fIHr € [Tr, k, x|T'r].

If f has Fourier expansion

= XX aglmn) crten et

mneNg el
qs(n)<mn

for w = (7, 2z, ») € Hgs then the Fourier expansion ¢iH is given by

(f|HT)(U}T) = Z Z 6f(m, wr, n) 627ri(m—1+m7'2—(uT,zT)T)

m,n€Np MTGAgﬂ
gr (pr)<mn
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for wr = (1, 21, 2) € Hr Where

By (m, pr,n) = Z ag(m, pu,n)

T~ 'BSu=pr

form,n € Ngandur € AﬁT with g7 (ur) < mn.

PROOF Let f € [I's, k, x]. We have to show that|H transforms like a modular form for
I'7. Since we only consider characterslgf for which the restriction td' exists we only
have to check that

M), i (w) = (M, w) (2.9)

for all w € Hy and allM € Ty where M) € ¢'(M) is an element of's which
corresponds td/. Sincep,' (Iy,4) only contains elements dfs of the form R4, A €
O(A), we note thatj(M)3(w)) is independent of the choice of the preimagé®) of

M. Moreover,pr is a homomorphism, and thus it suffices to verify (2.9) for the generators
of I'r. ForT,, g € Ar,, andR4, A € O(A7), this is trivial, and forM/ = J the fact that

is an isometric embedding implies

JUID, 3 (w)) = s, (7 (W) = gz (w) = j(J,w)

forall w € Hy. So for allM € I'r and allw € Hr we have

((fIH) M) (w) = (M, w) ™" (f[Hz) (M (w))
= j(M, 3(w)) ™" f(ME (G (w)))
=(f |k:M BN (7 (w))
X(MP) f(i3(w))
= (X[Tr) (M) (f[Hr)(w)

where)M %) is an arbitrary preimage off in I's. Hencef|Hy € [I'r, k, x|T'7)].

Since. is an isometric embedding we haVe= ‘BSB. Givenyu € A* we observe that
(1, 13(27))s = (T~1'BSu, zr)r for all z € C". Moreover, ifu € A then(u,\)s € Z
for all A\ € A. So, in particular(y, t3(\r))s = (T 1'BSu, A\r)r € Z forall \p € Ay
which impliesyy = T 1'BSu € AﬁT. It remains to be shown that (i) < mn whenever
qs(p) < mn. Obviously, it suffices to show

qs(i) — qr(pr) = w(S — SBT''BS)u > 0 forall . € A*.

Let u € A%. There existt € Ar ® R andy € 3(Ar)* (the orthogonal complement of
13(A7) in Ag ® R) such that

p=13(x)+y=Bzr+y.
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Then

(S — SBT''BS)u
= (Bx +y)(S — SBT*'BS)(Bz +vy)
= 2('BSB — 'BSBT''BSB)x + 2((Bz)Sy — (Bx)SBT " 'BSy)
> \ / > )
=T—TT-1T7=0 =0 — {(Bz)Sy=0
+ Sy — WSBT ' 'BSy
~—— ——

=0 =0

= ySy >0

because due to the choiceofve have(Bz)Sy = 0 forall x € Ar®R and thus'BSy = 0.
This completes the proof. m

Since we explicitly know how the Fourier expansion of the restriction of a modular form
arises from the Fourier expansion of the restricted modular form we can easily show that
restrictions of Maal3 forms are Maal3 forms.

Corollary 2.26 LetS, T, 3, B andy be given as in the preceding theorem. Moreover, let
ke N If f e M(Ts,k,x) thenf|Hy € M(T'r, k, x|T'r).

PROOF Let f € M(I's, k, x). In view of Theorem 2.25 it remains to be shown that the
Fourier coefficients of |Hr satisfy the Maal3 condition (2.8). Let# (m, ur,n) € A?FO

with m,n € Ny anduy € A% such thay, (i) < mn. We sety = ged(m, Tur, n). Note
thatged(m, Su, n) dividesg whenever'BSu = Tur becausel| Sy impliesd| ‘BSy due to
B € Mat(l,1'; Z). Thus we have

6f(ma,uT>n) = Z Oéf<m7ﬂ> 77,)

HEAF g5 (p)<mn
T~'"BSu=pr

= Z Z ap(m, p,n)

tlg ueAt qs(p)<mn
T~ *BSu=pr
ng(m>S;u'7n):t

= Z Z de_laf(mn/dQ,u/d,l)

tlg peAdgs(p)<mn dlt
T~ BSu=pr
ged(m,Sp,n)=t

= de’l Z ap(mn/d?, pu/d,1)

dlg peM g5 (p)<mn
T~ 'BSu=pr
d| ged(m,Sp,n)
= Z dk_lﬁf(mn/d27 :U/T/dv 1)
dlg

Hencef|Hr € M(Tr, k, x|T'1). -
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2.5.2. Restrictions of modular forms living on Hp,

We consider restrictions of modular forms living &ty to the submanifoldg<,, and
HA@. ForT € {As, AP} the lattices\; = Z3 with bilinear form(-, -); can be viewed as
sublattices of\ = Z* with bilinear form(-, -)p, via the isometric embeddings

A, = A, (21,2, 3) — (21,23, 0, 22),

D
LAE‘S) : AA§3> — A, (z1,29,23) — (21, 22, 23,0).
1

Correspondingly, the half-spacks,, andH , ) can be considered as submanifold$4,
via the embeddings

Dy |
LA;L . HAg — HD47 (T17217ZQ7Z377—2) = (717Z1723707227TQ)7

Dy .
LA?B) . HA?) i HD47 (Tla 21722723772) = (7—17 21, Z27Z370v7—2)'
1

First we consider restrictions # 4, .

Proposition 2.27 Letk € 27Z.

a) If f € [['p,, k, x] with x € {v,det} then f vanishes orH 4,.

b) If f € [[p,,k, (Vs det)™],m € {0,1}, thenf|Ha, € [[a,, k, (vx det)™].
c) If fe M(I'p,,k,1) thenf|Ha, € M4, k, 1).

PROOF Let M = R /1910y € I'p,. Forallw € .} (H.4,) we havew = M (w).
i

a) Letf € [I'p,,k, x|, x € {vr,det}. Duetox(M) = —1we havef(w) = (f|xM)(w) =
X(M) f(w) = —f(w) forall w € }*(Ha,). Thusf vanishes ort 4,.

b) Lety = (v det)™ € %y, m € {0,1}. We have to show thaf|T 4, = (v det)™ € T'%.
It is easy to check that the above mattikis the only non-trivial element df ,, acting
trivially on .*(H4,). Due tox(M) = 1 the restriction ofy to I'4, is well defined.
By explicit calculation of some character values we can verify thBt, = (v, det)™
holds.Thus we can apply Theorem 2.25 which proves the assertion.

c) Apply Corollary 2.26. -
Next we show similar results for restrictions of modular form%ﬂg@.

Proposition 2.28 Letk € 27Z.

a) If f € [['p,, k, vy det], m € {0,1}, thenf vanishes orH ).

b) If f € [I'p,,k,v"],m € {0,1}, thenf|HA(13> € [I‘Ags),k,y;?].

c) Iffe M(I'p,,k,1) thenf|HA53> € M(FAS:)’)’ k,1).

) € I'p, acts trivially omi’gg) (H A<3>). Now the assertions can
1 1

1

1
1
2
o Proposition 2.27.
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2.5.3. Restrictions of modular forms living on Ha,

Now we look at restrictions of modular forms living df 4, to the submanifold$<,

T € {A?), Ay, Sp}. The lattices\y = Z? with bilinear form(-, -)r can be considered as
sublattice ofA = Z?* with bilinear form(, -) 4, via the isometric embeddings

A=A () 0,
Liz : AA2 — A, (:El,ivg) = (531,517270)7
[,’g; : A52 — A, (.1'1,1’2) — (.1'1 — 1’2,21'27 —1‘2).

The corresponding embeddings of the half-spaéesn H 4, are given by

As
LA§2) . HA?) - HA37 (T17217Z27T2> — (7-1721707 2277-2)7
As .
LA; . HA2 - HA37 (7—1’2172277—2) = (7_172172%077—2)7
A-
LSS . HSQ - HAsa (Tla 2172277—2> = (7-1721 — 22, 2227 _2277—2>'

ForT ¢ {Af), Sy} each element of 7 is restriction of two elements df 4, while in
case of]' = A, each element of r is restriction of exactly one element bf,,, i.e., the
homomorphismp 4, is injective. This allows us to derive a first

Proposition 2.29 Letk € Z.
a) If kis odd andf € [y, k, 1] then f vanishes orH ).

b) If k£ is odd andf € [['4,, k,det] or k is even andf € [['4,, k, v, det] then f vanishes
onHs,.

PROOF a) Letf € [I"),,k, 1], k odd. Thenf = f, + fa for somef, € [['4,,k, x]
since[l"y,, k, 1] = [['a;, k, vx] ® [[4,, k, det] according to Corollary 2.3. For alh €
Li?) (M 4) we have

w:M<w> fOfMZR( —118>’
11

OO

and thus fory € {v,,det}
Sew) = (kM) (w) = x(M) fy(w) = = f(w) forallw e Lj?m (Hyo)-
b) Letf € [Ta,.k, x|, x = vET! det. Then for allw € 15*(Hs,) we have

w:M<w> fOfM:R(é(l)l(O)l),

and thus

flw) = (fliM)(w) = x(M) f(w) = —f(w) forallw € 15 (Hs,)- n
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Now we examine how the Abelian characterd’af andl'; are related to each other since
this is important to identify the characters of the restrictions of the orthogonal modular
forms.

Proposition 2.30 The following table shows far {A?), Ay, Sy} which Abelian charac-
ters ofl'r the nontrivial Abelian characters @f4, correspond to. Those Abelian characters
of I'; which do not occur in this table do not possess a continuatiohi,gn

X €T | XIT @ | XITa, | XITs,
Vrp - Vg Vr
det - v, det -

v, det v, det det -

PROOF This can be verified by explicit calculation. In particular, note that the restriction
of x to 'y does not exist if the value of is not independent of the choice of the preimage
of M € I'pinTy,. m

Finally we take a look at the restrictions of orthogonal modular forms.

Theorem 2.31 Letk € Z andm € {0, 1}.

a) Ifkisevenand € [[4,, k, v det™] thenf[H ) € [I' ),
1 1

b) If f € [[a,, k, v det™ ¥ thenf|H4, € [[a,, k, vF det™ "]

€) If f € [Ty, k,v4] thenf[Hs, € [T, k. vA].

k, v det™].

PROOF Apply Theorem 2.25 and Proposition 2.30. m

2.5.4. Restrictions of modular forms living on H 4o
1
Finally we look at the restrictions of modular forms living o, to the submanifolds
1

Hr, T € {A?), Sy}. The latticesAr = Z?* with bilinear form(-, -)r can be considered as

sublattice ofA = Z? with bilinear form(-, -) ,» via the isometric embeddings
1

A
L8

NOE AA§2> — A, (z1,22) = (21,22,0),
1

Lg‘;’ cAs, = A, (21,72) — (21, X2, T2).
The corresponding embeddings of the half-spag¢esn H 4, are given by
Li‘?) : HA?) — Has, (T1,21,29,T2) — (71, 21, 22,0, T2),
Léj : Hs, — Has, (11,21, 22, T2) ¥ (T1, 21, 22, 22, T2).

Each element of 1 is restriction of two elements (ITA(3>. Therefore we get
1

Proposition 2.32 Letk € Z andm € {0, 1}.
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a) If kis odd andf € [F’A@), k, 1] then f vanishes ort ).
1 1
b) If k£ is odd andf € [[',s),k, 15" det] or k is even andf € [[' ), k, 15", then f
vanishes orHg,.

(3)
PROOF a) Letf € [FA<13), k, x|, k odd,x € FZ‘33). For allw € Lj}Q)(HAf)) we have
1 1

O))
0
-1

w = M(w) forM:R<

OO
oo

and thus

F(w) = (FEM)(w) =X (M) f(w) = —f(w) forallw € 1} (K o)

whenevery - det € (v, V). On the other hand, if - det ¢ (s, v;) then, according to
Corollary 2.3,f vanishes identically omA<3 Hencef vanishes or‘HA(2>

Now let f € [F;l(g),k;,l]. Then there eX|s§“X T,k xl x € Fa@), such that
1 1

f= ZX fx- Due to the above alf, vanish or+ and consequentlf/ also vanishes.

A(2)’
b) Letf € [T e,k x|, x = vy'vit det*, m € {0,1}. Forallw € LS (HSQ) we have

0)7
1
0

w = M(w) forM:R<

OO
OO

and thus
f(w) = (fleM)(w) = x(M) f(w) = = f(w) forallwe Ls " (Ms,).
Hencef vanishes orHg,. ]

Next we examine how the Abelian character§9f3> andI'7 are related to each other.
1

Proposition 2.33 The following table shows faF € {A{”, 5,} which Abelian characters
of I'r the Abelian characters df ,s) correspond to#; stands for an arbitrary power of
v3). Those Abelian characters (ﬁfp which do not occur in this table do not possess a
continuation o

3)
AP
ab
X € FA(E!) X|FA§2) X|FSQ
1
* * *
vy vy V3
* * -
Vs U Vs U
vy det - -
Vv, det - VilUp

PROOF This can be proved analogously to Proposition 2.30. m
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Finally we again take a look at the restrictions of orthogonal modular forms.

Theorem 2.34 Letk € Z andm,n € {0, 1}.
a) Ifkisevenand € [[' ), k,v5'vy] thenf[H ) € [
1 1

" k,vivr.

A(12) ) T

b) If f € [T, k, 5wk det*] then f|Hs, € [Ts,, k, v5"vE].

PROOF Apply Theorem 2.25 and Proposition 2.33. m

2.6. Hermitian modular forms of degree 2

The orthogonal modular forms which live dis, S € {A§2),A2, S}, can also be con-
sidered as Hermitian modular forms. Since we will later need results about graded rings
of orthogonal modular forms for the aforementiorteth order to derive our results about
the graded rings of orthogonal modular forms (2, 5) we briefly show how the results
about graded rings of Hermitian modular forms of degrestated in [De0O1], [DK03] and
[DKO04] can be translated to our setting. For details confer [De01].

TheHermitian half-spacédi (2; C) of degree is given by

. - _ (T ~ L. i 7
H(2;C) = {Z = (ZQ 72) € Mat(2; C); 2@‘(2 Z) > O}.
Let K = Q(v/—Ak) be an imaginary quadratic number field with discriminanix and
class numbeh(—Ak) = 1, and let

ivAg/2 if Ak =0 (mod 4),

=7+ Ty, wg = _
ox i {(1+¢\/AK)/2 if Ay =3 (mod 4),

be its ring of integers. Thenitary groupof degree2 over K is defined byU(2;K) =
{M € Mat(4;K); MJyeeM = Jye} WhereJye: = (1, 7 ), thespecial unitary groups
defined bySU(2; K) = U(2;K) N SL(4; K), and theHermitian modular groups defined
by I'(2; K) = U(2;0x) = U(2;K) N Mat(4; ox). The unitary group acts o (2;C) as
group of biholomorphic automorphisms via

(M, Z) — M(Z)=(AZ + B)(CZ+ D), M:(é g).

Obviously, scalar matrices act trivially ofi (2; C). The group of all biholomorphic au-
tomorphismsBihol(H (2; C)) is generated b$U(2; C) and the additional biholomorphic
automorphism

Iy : H(2;C) — H(2;C), Z — Z.

To be precise, we have

Bihol(H(2; C)) = PSU(2; C) x (I,,),
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wherePSU(2;C) = U(2;C)/(C* - 1) (cf. [Kr85, Thm. 11.1.8]). Therefore in case of
K = Q(v/—3) we only need to consider elementsl4®; K) of determinant.. We set

——  JT(ZK)NSL(4K), if Ag =3,
| T(2:K), if Ag # 3,

and we define thextended Hermitian modular grodp; as subgroup oBihol(H(2;C))
by

Iy = <{Z — M(Z); M e T(2;K)}, Itr> .

A Hermitian modular fornof weightk € Z with respect td'x and with respect to an
Abelian characteg € I'#" is a holomorphic functiorf : H(2;C) — C satisfying

(fleM)(Z) = det(CZ + D)™" [(M(Z)) = x(M) f(Z)

—_——

forall M = (4 B) € I'(2,K) and, additionally,

f o ]tr = X(]tr) f

If f satisfiesf o I, = f, i.e., we havex([;,) = 1, then we callf symmetricotherwise
we call f skew-symmetricWe denote the vector space of those formsIhy, &, x|. The
subspace of cusp forms which is as usual defined as kernel of Siégaisrator (note that
this relies om(—Ag) = 1) is denoted byT'k, &, x]o-

Examples of Hermitian modular forms are given by the Hermitian Eisenstein series

EXNZ) = > (det M)*? det(CZ + D)~*

M=(4 B)er2K)o\rK)

for evenk > 4 wherel'(2;K), = {(4 &) € I'(2;K); C = 0}. Additionally, we defineF
as Maal lift (cf. [Kr91]) with constant Fourier coefficient equal tcAccording to [DKO03]
we haveEl € [I', k,det™*/?] for all evenk > 4. In particular, the Eisenstein series are
symmetric modular forms.

Let

= (onew) ‘oot )

Then

ok : Hex — H(2;C), (21, u1,u2, x2) +i(y1,v1, V2, y2) —

T+ zy1 (’Uq + (UUQ) + i(Ul + WUQ)
(u1 4+ Wuz) + i(v1 + Wo) To + 1Yo

biholomorphically maps the orthogonal half-spatg: to the Hermitian half-spac# (2; C).
Via this map we can identiff3ihol(Hgx) andBihol(H (2; C)). Thus according to Remark
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1.12 we have
POT(SX,R) = PSU(2;C) x (I,). (2.10)

Now we consider the three imaginary quadratic number fi€ds’—1), Q(v/—3) and
Q(+/—2) of discriminant—4, —3 and —8, respectively. The corresponding matricgs

are A?), Ay and Sy, respectively. The isomorphism (2.10) allows us to identify the ex-
tended Hermitian modular grodpx with a subgroup oPO™(S¥; R). We get

Lo = FAf)/{iIG}a Low=s) = Ta {16}, Lo = Us, /{£ s}

In Appendix B we list the generators @fx and the elements dfsx those generators
correspond to, and we determine the charactersofVe have

Fatz\/fl) = <det7 Vg, Vskew> ) Fab(\/fg) = <Vskew> ) F(?Q}D(r) <Vpa Vskew> .
Theorem 2.35Letk € Z andl,m,n € {0, 1}.
a) Ifkisevenand € [ /—7). k, det' v7vj,. ] thenfopg =1 € [T e, k, v /25 det”].
Q-1 o “skew Q(/-1) Al 2

b) If /e [FQ(F)a k, Vskew] thenf O PQ(/=3) € [FAm k, Vrkr detn+k]'
c) If f € Toy=a), k, v, ) thenf o oo =g € [Ts,, k, 5wk det™ ],

PROOF Let f € [I'k, k, x|. We have to show that := f o v : Hgx — C transforms like
a modular form with respect g« and the charactey given above. LetV € ['gx. Then
N = M. M for someM eM € I'gx N SO(SY;R) andr € {0,1}. Lety = IT. o (Z — M(Z))

with M = (4 8) e F(2 K), be the corresponding elementldy, i.e.,

V(Z) = TL(M(Z)) = ¢x(N(eg'(2))) forall Z € H(2;C).

Then forw € Hg« andZ = px(w) we have

FIN()) = flox(N(w))) = f(IL(M(Z))) = x(I},) f(M(Z))
(I) det(CZ 4 D)*

(I) det(CZ 4 D)*

X
X

and thus
(FIeN) (w) = 3N w)™ F(N () = j(N,w)™ (1) det(Cipx(w)+D)* x(M) Fw).
So we have to show that

§(N,w) ™ x(If) det(Cipx(w) + D)F x(M) = Y(N) = X(M,) X(M)

forall N € I'gx and allw € Hgx. Sincej(N,w) andjue (M, Z) := det(CZ + D) are
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factors of automorphy and, moreovef)M;,, w) = 1 we only have to verify that
M, w)™ det(Cipr(w) + D)F x(M) = X(M)
holds for the generators dfsx N SO(SF; R) and that

X(Itr) = %(Mtr)

The second equation is true, and the first equation can easily be checkid joe Af,
and forR4, A € SO(AX). Finally, for J we have

J(J,w) = qgp(w) = det(pr(w)) = juer(Jher, Pr(w)).
This completes the proof. m

Fork > 4, k even, we define orthogonal Eisenstein seEé% by
EIEK = E]E{ O YK.-

According to the above theorem we haVg® € [[gx, k, 1].
Using the above theorem we can now translate the results about graded rings of Hermi-
tian modular forms of degreestated in [De01], [DK03] and [DK04] to our setting.

Theorem 2.36a) LetS = AY. The graded nngA(T's) = @41, k. 1] is generated
by
Ey, ¢4, Es, Ero, ¢r0, E12 and s,

where the, = E7 are orthogonal Eisenstein series of weight, € ['s, 4, vov, det]o,
¢10 - [FS, 10, Vﬁ]o and qbgo & [FS, 30, 1/2]0.
Moreover, the subringd(T's) = @,.,['s, 2k, 1] is a polynomial ring in

Ey, Eg, ¢35, E1p and Ejs,

i.e., Ey, Eg, ¢, E1p and E, are algebraically independent.
b) LetS = A,. The graded ringA(I'y) = @,.,[I's, k, 1] is generated by

Ey, Eg, ¢g9, i, E12 and ¢gs,
where theE, = E7 are the orthogonal Eisenstein series of weightyy € [['s,9, vx]o
andoys € [I'g, 45, v, det]o.
Moreover, the subringd(I's) = @,.,[I's, 2k, 1] is a polynomial ring in
E47 E67 E107 E12 and ¢§2)7

i.e., B4, Eg, Fho, E12 and¢g are algebraically independent.

PrROOF [DKO3, Thm. 10, Cor. 9] and [DK03, Thm. 6, Thm. 7]. n
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2.7. Quaternionic modular forms of degree 2

Similar to Hermitian modular forms quaternionic modular forms of de@rean also be

considered as orthogonal modular forms. We consider the<asé), which corresponds

to the case of quaternionic modular forms with respect to the extended modular group for

the Hurwitz integers. Since we only need this case in order to define certain examples of

modular forms folO(2, 5) we only state the necessary facts. For details confer [Kr85].
Recall that we denote the canonical basis of the skew Hetd Hamilton quaternions

by 1,i1,12,15. FOrz = 21 + 2211 + 23ip + 243 € H with z; € R the conjugate of is given

byz = 21 — 291; — 2315 — 2413 and the norm of is given by N (z2) = 2z = 27 + 25 + 22 + 23,
Thehalf-space of quaternion& (2; H) of degree is given by

H(2H)={Z=X+iY e Mat(2;H) @p C; Z =7 := X +iV, Y >0}.

Let
O =72+ 7y + Ziy + Zw, w = 35(1 + 1y + iy +i3)

be the Hurwitz order, and let
p=(14+1,))0=0(1+1i)={a€O; N(a) € 2Z}

be the ideal of even Hurwitz quaternions. Té&ymplectic groupf degree2 over H is
defined by

Sp(2;H) = {M € Mat(4;H); MJgM = Ju}, Jo= (L),

It acts onH (2; H) as group of biholomorphic automorphisms via the symplectic transfor-
mations

(M, Z) — M{(Z) = (AZ + B)(CZ + D)™, M:(é g).

The group of all biholomorphic automorphisBshol(H (2; H)) is generated bgp(2; H)
and the additional biholomorphic automorphism

Iy H2;H) — H(2:H), Z — Z.
We define theextended quaternionic modular grolip as subgroup oBihol( H (2; H)) by
Ty = ({Z — M(Z); M € Sp(2;0)or M = pI}, I,)
whereSp(2; ©) = Sp(2; H) N Mat(4; O) andp = (1 +1i,)/V/2.
A gquaternionic modular formof weight £ € 27Z with respect tol'y and an Abelian

charactery € I'? is a holomorphic functiorf : H(2; H) — C satisfying

(fleM)(Z) := (det(CZ + D)) ™** f(M(Z)) = x(M) f(Z) and fol,=x(L) f
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forall M = (4 8) € (Sp(2;0), pI) where" denotes the representation of quaternions as
complex2 x 2 matrices. We denote the space of all those functiong'hyk, x/|.

Let
L n t . # -
S.—{(E m>7mn€NO,t€(’) N(t)=tt <m }

where* is the dual lattice of with respect to the bilinear forrfu, b)i = 2 Re(ab) for
a,b € H which isC-linearly extended tél: = H @ C. Each quaternionic modular form
f € [Tm, k, x| has a Fourier expansion of the form

Z) _ Z ay (T i trace T@—&-Zﬁ Z Z ( > 627ri(n7'1+m72+(t,z)H)

TeS n,meNy tcOt
N(t)<mn

forZ = (% 75 ) € H(2;H). If the Fourier coefficients of € [I'y, k, 1] satisfy the condition

ap(T) = Z d" oy (%/ld mi{/ddZ) forall T = GL 72;) eS,T#0, (2.11)

d|e(T)

wheree(T') = max{d € N; d~'T € S} thenf belongs to théMlaal} spaceM (I'y, k) (cf.
[Kr87]). Note that, according to Krieg, € [I'y, k, 1] satisfies the Maaf3 condition (2.11) if
and only if a functiom} : Ny — C exists such that

1« n t
ay(T) = Z d" o (4det T/d?) forall T = (E m) €S, T#0. (2.12)
d|e(T)

Due todet(T) = det(T) = det(pTp) ande(T) = e(T) = e(pTp) forall T € S the
alternative MaaR} condition (2.12) implies(T") = a;(T) = a;(pTp) and thusf('Z) =
f(Z) = (fle(pl))(Z) forall f € M(T'y, k). HenceM(I'y, k) C [Ty, k, 1].
Examples of quaternionic modular forms are given by the quaternionic Siegel-Eisenstein
series
EXNZ) = > (det(CZ + D)) ~*/?

(& B)esp(2:0)0\8p(2:0)

for evenk > 6 whereSp(2; 0)y = {(4 B) € Sp(2; 0); C = 0}. The Fourier expansion
of the Eisenstein series can be explicitly calculated (cf. [Kr90, Thm. 3]). In particular,
the Eisenstein series are normalized, i.e., the constant term in the Fourier expansion equals
1. Additionally, we defineE and EL!' as MaaR lifts (cf. [Kr90]) with constant Fourier
coefficient equal td. According to [Kr90], we havest! € M(T'y, k) for all evenk > 4,
and thus, in particuladi' € 'y, k, 1] for all evenk > 4.

The orthogonal half-spad€p, is biholomorphically mapped t&/ (2; H) by

om: Hp, — H(2;H), (21, u, 22)+i(y1,v,y2) — ( 1+ 1 Lo, (w) + i LD4<U)),

tpy(u) +1 tp,(v) To + 1Yo
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where.p, : R* — H is defined as in Proposition 1.17. This map allows us to identify
Bihol(H p,) andBihol(H (2; H)). In particular, we get

'y =2Tp,/{xs}.

In Appendix A we list the generators &f; and the elements df,, they correspond to.
According to [KW98] we have
Fiﬂb = <Vp7 Vtr)

where

vo(pl) = -1, v,(Iy) =1, v,(M) = 1forall M € Sp(2; 0),
Vtr(p-[> = 1, Vtr([tr) = —]., Vtr(M> = 1forall M S Sp(2, O)

Theorem 2.37 Letk € 2Z andr, s € {0,1}. If f € [Ty, k, v)v;,] with Fourier expansion

f(2) = Z Z o (7% ;) 2T (1,2)i) Z=(7Z2)e H2H),

n,mEeNy tcOt
N(t)<mn

theng := f o vy € [I'p,, k, v, det’] with Fourier expansion

gw) = > ag(m,p,n) FrmimmrEDs), w = (11,w,7) € Hs,

m,nENp HeAﬁ
q(p)<mn

where

*x m

ag(m, p,n) = oy (” LDM)) : (2.13)

PROOF The assertiory o oy € [['p,, k, V. det’] can be proved analogously to Theorem
2.35 if one notes thaty (M, Z) := (det(CZ + D)¥)**is a factor of automorphy of weight
k (cf. [KW98]) and that

G ) = o, (w)* = (det (a(@)*)*"* = fia(Ji, ().

Since we have? = ., (A¥) and(a,b)p, = (tp,(a),tp,(b))r the Fourier expansion of
f 0wy can easily be derived from the expansioryfof m

Since we explicitly know how the Fourier expansion fob ¢y arises from the Fourier
expansion off € [I'y, k, x| we can show that Maal3 forms are mapped to Maal3 forms.

Corollary 2.38 Given an evert > 0, the map

M(F]ku) - M<FD47k>7 f = fonga
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is an isomorphism. In particular, we have

dim M(T'p,, k) = {wJ .

6

PROOF The mapIl'y, k| — [['p,, k|, f — fowmu, is obviously an isomorphism. Moreover,
by virtue of (2.13) the validity of the Maal3 condition (2.8) for the Fourier coefficients of
f o g follows immediately from the validity of the Maal3 condition (2.11) for the Fourier
coefficients off and vice versa. According to [Kr87, Thm. 1], we halien M (I'y, k) =

| 22 |. This completes the proof. -

Fork > 4, k even, we define the orthogonal Eisenstein seﬂ@é by
Eﬁ?4:::l?glo<pH,

and forT € {Ag,Ag?’)} we define the orthogonal Eisenstein seig’s : Hr — C as
restrictions of the Eisenstein seriE§4 toHr, i.e.,

As . D AY b
Ek3 = Ek 4|HA3 and Ek: b= Ek: 4|HA(13)‘

According to the above corollary, we hai®* € M(Tp,, k) for all evenk > 4. By virtue

(3)
of Proposition 2.27 and Proposition 2.28 this impliB§® € M(T'4,, k) and E,fl €
M(T @, k) for all evenk > 4. Since thel{! are normalized the same is true for tﬁé"*.
1

Moreover, note that th&! are no cusp forms (and consequently do not vanish identically)
since the constant term in the Fourier expansion eduals

2.8. Quaternionic theta series

In this section we consider the theta series

=0y, Y2=09), Y5=0(z), Yi=0(3), Y5=02) ¥s=0(2),

2w 2w
introduced in [FHOO, Sect. 10], where for alke ©O? the theta serie®, are defined by
0,(Z) 1= h(a)(Z) = Y _ e™?lte forall Z € H(2;H).
gep?

According to [FHOO], the’; are modular forms of weigtt with respect to the principal
congruence subgroup

Sp(2;0)[p] :={M € Sp(2;0); M =1, (mod p)}
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and the trivial character, i.e., we have € [Sp(2; O)[¢], 2, 1] for 1 < j < 6. Moreover,
according to [Krb], for allZ € H(2;H) we have

Ourop(Z) = O4(Z) forall b € @2,
0.(Z[U]) = O (2) forall U € GL(2; 0),
Ou(Z) =0,4(2) foralle € 0%,

whereO* = {¢ € O; N(e) = 1} is the unit group ofD. Additionally, Krieg showed that
Y;(Zlpl)) = Yi('Z) = Ya(y(2), 1<) <6,

wherer = (1)(2)(3)(4)(5 6) € S(6).
We are particularly interested in the restrictions of Yheo the submanifold

H(Q;HA(3)) = {(:1 :) € H(Q,H), Z =21 +2’211 +2312 +Z4i3, Z4 = O}
1 2

of H(2;H) which corresponds viay o Ligg) : 'H ,» — H(2;H) to the orthogonal half-

spaceH 5. We denote those restrictions ﬁ’y. Note that for allZz € H(2;H ;) we have
1 1
7 = Z|iz1]. Thus, by applying the above transformation formulas it is easy to check that

Ye(Z) = Ya('2) = Ys(Zlis]]) = Y5(2)

holds for allZ ¢ H(Q;HA<3)). Hencef@ and176 coincide.
We want to examine how th% behave under the generators of

[ := Bihol(H (2; H ;5 )) N I'm = Bihol(H 45) N O(A1) = (T y0 /{£1}),

AP
whereA; = Z7 is the lattice associated withgg). Due to Corollary 1.28 and the table in
Section A.2 we know thaf* is generated by the modular transformations corresponding
to

Ju, Trans(H) = (]2 H) (H € Her(2;0 ,)), i := Rot (EJHQ 0 ) and

0 I 0 w+1
_ (ip —11)/V2 0 B —o—1i, 0 p 0
Ry := Rot ( 0 (i — 12)/\/5 = Rot 0 T+is Rot 0 p)

whereO ,s) = Z + Zi, + Zi, andRot(U) = (tg UO_1>.

Theorem 2.39 Let©® = (Y},...,Ys) : H(2;H s) — C°. There exists a unique homo-

morphism of groups
T T — GL(5;C)
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given by
Ol M =V(M)0, Mel".
We have
\Ij(Rl RQ - ]57
U (Trans(H 1—1,1, 1—1] ifH=(59),
1,1,1,1, - ifH=(9g),
and
1 3 3 3 6
1 1 -1 3 -1 -2
Ui = |1 3 -1 -1 -2
1 -1 -1 3 =2
1 -1 -1 -1 -2

PROOF Using the above transformation formulas we can easily verify @has invari-
ant under the two rotation®; and R,. Moreover,© transforms under the translations
Trans(H ) and undet/y as stated above according to [Kra]. In view of their Fourier expan-

sions theYy, . . ., Y5 are obviously linearly independent. Thiigs uniquely determineds
Note thatTrans(H) € ker ¥ wheneverH{ € Her(2; o, ), where
1
Pa =N OA?) =722+ Z(1+11) + Z(1 +1y).

Obviously we havd?A@/pA(g) >~ 7./27. Thus in view of the above theorem the mép
defines a five-dimensional representation of the finite group

I/ ker ¥ = Sp(2;Fy) = 5(6).

We denote the orthogonal theta senés ¢y o P (3) again byY;. Moreover, we denote

ther-th elementary symmetric polynomial ¥y?, Y;, Y by e.(Y™). Using MAGMA (cf.
[BCP97]) we compute the invariant ring of the representaffon

Theorem 2.40 There are5 algebraically independent modular forms
hi € [ @,k 1], k=4,6,8,10,12,
given by

ha = Y7 +3e1(Y?) + 6Y5 = Y7 + 3(Yy + Y5 + Y7 +2Y7),
he = Y — 9Y1(ey(Y?) — 4Y2) + Bdes(Y),
hs = Yi' + 6Y2e1 (Y?) + 24Y1e3(Y) + 6ea(Y2) + 9e (V) 4 48, (Y)Y 4 24Y4,
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hio = Y — 6Ye1(Y?) +12Y2e3(Y) + 3Y1(10e2(Y?) — 9e; (V) + 3261 (Y)Y + 16Y3)
+ 36e1(Y?)es(Y) + 576e3(Y) Y2,

hip = Y +45Y2 (e (V") + 2Y5) + 1080Y1e3(Y )Y + 18e1(Y®) + 270e3(Y?)
+ 540e5 (YA Y2 + 270e; (Y2) Y3 + 367

The restrictions of those modular forms7tb,.) generate the graded ring (I ,2) ).
1 1

PROOF Theh, are primary invariants of the representatibnThis implies that they are el-
ements ofl" ), k, 1]. In order to show that they are algebraically independent we consider
1 o~ o~
their restrictionsy, := hy|H ;2 to'H , 2. Due to Theorem 2.34 we hawg € [FA<2), k,1].
1 1 1
According to Theorem 2.36, the graded rigdl" ,»)) is a polynomial ring in five mod-
1
ular forms of weight4, 6, 8, 10 and 12. Thusdim[FA(g),ZL, 1] = dim[FA(2>,6, 1] = 1,
dim[PA?), 8,1] = dim[Pé?), 10,1] = 2 and dim[FA(12>, 12,1] = 3. By calculating the
Fourier expansion of the, we can easily verify that the vector spa¢ege), k, 1], k =
— 1
4,6,8,10,12, are spanned by suitable products of the So, in particular, the five genera-
tors ofA(FA@)) can be written as polynomials in thhg which implies that thé,,, generate
1
the graded ringA(T" ,» ). Since the five generators gf(I" ,»)) are algebraically indepen-

dent the same must be true for t/an,gand thus of course also for the. m

Since the invariants, are polynomials in the theta serigs . . ., Y; the algebraic indepen-
dence of they, implies the algebraic independence of the theta serie{(pn). Accord-

ing to the proof of the above theorem, we even have the following

Corollary 2.41 The theta seried,...,Y; are algebraically independent oH
also onH 2.
1

and
AP






3. Vector-valued Modular Forms

In this chapter we introduce vector-valued elliptic modular forms of half-integral weight.
They will be used as input for the construction of Borcherds products. The facts presented
in this chapter are mostly well-known so we will not go into too much detail.

3.1. The metaplectic group

As usual, the action 3L(2: R) onH (or C = C U {cc}) is defined by

ar + b a b

Since we will have to consider modular forms of half-integral weight we have to introduce
the metaplectic grouplp(2; R) which is the double cover &fL.(2; R). Its elements can be
written in the form

(M, @),
whereM = (¢ %) € SL(2;R), andy is a holomorphic function oftt such that

O*(r)=cr+d forallT € H,

i.e.,is a holomorphic root of — c7+d. We define the action df\/, ¢) € Mp(2; R) on
H (or C) to be the same as that 8f. The product of two elements\/,, p1), (Ms, @) €
Mp(2; R) is given by

(My, 1) (Ma, p2) = (My My, o1 (Ma(:))pa).

As in [Br02] we define the embedding 81.(2; R) into Mp(2; R) as

a b a b a b
(¢ a)= (o) = (& ) verra)
Let Mp(2;Z) be the inverse image &fL.(2;Z) under the covering maplp(2;R) —
SL(2;R). Itis well known thatMp(2; Z) is generated by

r=(( 1)) = o=(( ) )
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and that the center oflp(2; Z) is generated by

Ci=J? = (JT) = ((_01 _01) 2) .

For N € N we denote the principal congruence subgrouplp{2; Z) of level N by

Mp(2; Z)[N] := {(M,p) € Mp(2;Z); M =1, (mod N)}.

T, = {(é Tf) nEZ} < SL(2;7)
T = {((é Tf) ,1); nEZ} = (T) < Mp(2; 7).

3.2. Vector-valued modular forms

Moreover, we set

Let V be a finite dimensional vector space o@&rand letk € $Z. For vector-valued
functionsf : H — V and(M, ¢) € Mp(2; Z) we define the Petersson slash operator by

(f1e(M, 9)) (1) = o(r) " f(M(7)).
This defines an action &flp(2; Z) on functionsf : H — V.

Definition 3.1 Suppose that is a finite representation dflp(2; Z) on a finite dimensional
complex vector spac€, and letk € 1Z. A (holomorphic) modular fornof weight/ with
respect tgp andMp(2; Z) is a functionf : H — V satisfying

() flkg = p(g) [ forall g € Mp(2;Z),

(i) f is holomorphic orH,
(iii) fisbounded oqr € C; Im(7) > yo} forall yo > 0.
If f additionally satisfiesim,-— f(7) = 0 then f is called acusp form We denote
the space of (holomorphic) modular forms of weighwith respect tgp and Mp(2; Z) by
[Mp(2;Z), k, p] and the subspace of cusp forms[bip(2; Z), k, plo.

Remark 3.2 a) AsMp(2;Z) is generated by and 7" condition (i) is equivalent to
() f(r+1)=p(T)f(r) and f(-771) = V7 p(J)f (7).

b) Sincep is a finite representation there exists Anc Z such thatl'V € ker p, and thus
f(r+N) = f(r),i.e., f is periodic with periodV. Let5 be a basis of". We denote the
components of by f,, sothatf = " _. f, v. Obviously,f is holomorphic if and only
if all its componentg, are holomorphic. Therefore eagh has a Fourier expansion of
the form

fo(r) = co(n/N)e /N,

ne’l
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Condition (iii) is then equivalent to
(ii")y  f has a Fourier expansion of the form

f(r) = Z ch(n/]\f)e%mT/N v.

vEB nEZ
n>0

fisacusp formit,(0) = 0forall v € 5.

Example 3.3 The Dedekind eta functiop: H — C defined by

e}

7,’<7_) _ eTl'iT/12 H(l _ eQﬂ’inT)

n=1
is a cusp form of Weigl"g with respect tdVIp(2; Z) and the Abelian character, with
v (T) = /12 and v, (J) =e ™/
(cf. [Ap90, Ch. 3] or [Le64, Thm. XI.1C]).

We note a few simple facts about vector-valued modular forms.

Proposition 3.4 Suppose that, andp, are two finite representations dfp(2; Z) on finite
dimensional complex vector spadésand V5, respectively. Iff; € [Mp(2;Z), k;, p;], j =
1,2, thenfi®fs : H — Vi®V,, 7 +— f1(7)® f2(7) is @ modular form of weightt; + &, with
respect tg; ® po. In particular, if f; is scalar-valued thetf; fo € [Mp(2;Z), k1 + k2, p1p2].

Proposition 3.5 Suppose thap is a representation okMp(2;Z) on a finite dimensional

complex vector spac¥ such thatp factors through the double covédp(2;Z/NZ) of

the finite groupSL(2; Z/NZ) for some positive integeV, i.e.,ker p C Mp(2;Z)[N] is a

congruence subgroup of leval. Then

a) [Mp(2;7Z),k,p] ={0}if k <0,

b) [Mp(2;7Z),0,p] = CY whereg is the multiplicity of the trivial one-dimensional repre-
sentation inp,

¢) dim[Mp(2;Z), k, p] < oo for all k € Z.

PROOF All componentsf, of f are elliptic modular forms with respect to the congru-
ence subgroupger p. Thus a) and c) follow immediately from the well known facts about
[ker p, k, 1]. By considering the decomposition pfinto irreducible representations :
Mp(2;Z) — GL(V;) b) follows from [ker p,0,1] = C, [Mp(2;Z),0,x] = {0} for all
non-trivial Abelian characterg : Mp(2;Z) — C and the fact that

span{p;(Mp(2;Z))(flv,(7)); T€ H} =V;

wheneverf|y, # 0. n
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For the construction of Borcherds products we need a certain type of non-holomorphic
modular forms.

Definition 3.6 A nearly holomorphic modular formf weight £ with respect top and
Mp(2;Z) is a functionf : H — V satisfying
() flxg = p(g)f forall g € Mp(2;Z),
(i) fis holomorphic orH,
(i) f has at most a pole ino, i.e., there exists any € Z, ny < 0 such thatf has a
Fourier expansion of the form

= Z Z co(n/N)e2™ /N )

vEB n€eZ
n>ng
We denote the space of nearly holomorphic modular forms of wéighth respect to
andMp(2; Z) by [Mp(2; Z), k, p]. Theprincipal partof f is given by

Z Z co(n/N)e2mnm/N

veEB nezZ
n<0

3.3. The Weil representation

In this section we introduce a special representation which plays an important role in the
theory of Borcherds products.

Suppose thaf € Sym(/;R) is an even matrix of signatuté™, b~). Let A = Z! be the
associated lattice with bilinear forfa,-) = (-,-)s and the corresponding quadratic form
q = gs. Let(e,),cns/a be the standard basis of the group rifig\*/A]. Then there is a
unitary representatiops of Mp(2; Z) on C[A?/A] which is defined by

ps(T)e, = e2mia(n)

\/—b —bt
Je —27rz uy
ps(J) IO /—‘ dot S e%;/\

e,

Note that this implies
b~ —bT
ps(C)e, =i e, (3.1)

This representation is essentially the Weil representation of the quadratic nidéite q).
Let N be the level ofA. Then the representatigny factors through the finite group
SL(2;Z/NZ) if 1 is even, and through a double coverSif(2;Z/NZ) if [ is odd. In
particular,ps is a finite representation.

We denote the dual representationogfby ps Sincepg is a unitary representation the
valuesp, (M, ¢)), understood as elementbffat(l; C), are simply the complex conjugate
of ps((M, ¢)). Note thatp_s = pg. Therefore all the results we state fay also hold for
P if one replacess by —S.
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Now we consider modular forms with respect to those special representations. Assume
that f € [Mp(2;Z), k, ps]. In this case we denote the componentsfdsy f,, so that

f =2 enejn fu enr Now f satisfying f|x(T) = ps(T)f implies thate=>7®) f, (1) is
periodic with periodl for all » € A*/A. Thereforef has a Fourier expansion of the form

Z Z n)q" ey, (3.2)

HEAE /A neq(p)+Z
zo

where, as usualj = ™" (not to be confused with the quadratic fogm= ¢g). Analo-
gously,f € [Mp(2;Z), k ps] has a Fourier expansion of the form

Z Z cu(n)q" e, (3.3)

neAt /A ne—q(p)+2
n>0

Considering that? acts trivially onr € H we can deduce a first necessary condition on
the weight for the existence of non-trivial modular forms.

Proposition 3.7 If 2k # b™ — b~ (mod 2) then

[Mp(2;Z), k, ps] = {0}.
PROOF Let f € [Mp(2;Z), k, ps|. Then

(=1)7*F = fle(C?) = ps(C)f = (1) 7" f,
and thusf = 0 unles2k = b™ — b~ (mod 2). n

The functional equation for modular forms with respectgaunderC' € Mp(2; Z) implies

Proposition 3.8 Let2k = b™ — b~ (mod 2) and f € [Mp(2;Z), k, ps| with Fourier ex-
pansion (3.2). Then
- _pt
cop(n) = (=1)EF =0, (n)

forall u € A*/Aandn € Z + q(p).
PROOF Let f € [Mp(2;Z), k, ps]. Then

iR = fC = ps(O)f =7 D fue
HEAE/A
yields f_,, = #0707 f, = (—1)@k+"=b")/2 £ forall € AF/A. -

If x = —p (mod A) for all u € A* then we get another necessary condition on the weight
for the existence of non-trivial modular forms.

Corollary 3.9 If 2k + b~ — b" =2 (mod 4) andy = —u for all € A*/A then

[Mp(2; Z), k, ps] = {0}.
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3.4. A dimension formula

If the representatiop of Mp(2; Z) satisfies certain conditions then for> 2 the dimen-
sion of[Mp(2;Z), k, p] can be calculated explicitly. In [Sk84] (see also [ES95]) Skoruppa
determined a dimension formula using the Eichler-Selberg trace formula.

Theorem 3.10 Letk € 1Z, and letp : Mp(2;Z) — GL(V') be a finite representation such
that p(C) = e ™*idy. Then the dimension dkp(2;Z), k, p] is given by the following
formula

dim[Mp(2; Z), k, p] — dim[Mp(2; Z), 2 — k, plo =

k+5 1
1+2 n-+ 5 Re("™? trace p(J)) +

Re(e™*+1/6 trace p(JT)) — Z A,

j=1

2
3V3

wheren = dimV and \;,..., A, € Q, 0 < \; < 1, such that the eigenvalues ofI") are
627ri)\j.

PrROOF We show how this follows from the formula given in [ES95]. Sinces a finite
representation we can find € Q with 0 < \; < 1 such that the eigenvalues of7") are
e?™i, Then

n

S B0 =5 S 1- Y-l —5) = = Y03 =——ZAJ,

1<j<n  1<j<n =1
/\jEZ )\j%Z

wherea(p) andB, ();) are defined as in [ES95] and where is the greatest integer func-
tion. -

Remark 3.11 a) If £ > 2 thendim[Mp(2;Z), k, p] can be calculated directly using the
above formula since the dimension of the spaces of cusp forms of non-positive weight
is 0. In the casess = { andk = 2 the dimension ofMp(2;Z), k, p| can also be
calculated explicitly (cf. [Sk84]). For the cage= 1 an explicit formula is not known
to the author.

b) In[B099, Sec. 4] Borcherds gives another dimension formula.

In general the dimension formula is not directly applicable to the Weil represeniation
because the condition ofi acting as a scalar oG[A?/A] is usually not satisfied. But
we can apply the formula to the induced representatiohipf2; Z) on the subspace of
C[A?/A] on which C acts ase~™*. According to (3.1) this space is spanned {ay, +
e_u; p € A*/A} wheneverk + b~ — bt = 0 (mod 4) and by{e, —e_,; u € A*/A}
wheneverk + b~ — b" =2 (mod 4).

Luckily, according to Proposition 3.8, afl € [Mp(2;Z), k, ps] belong to the subspace
spanned by{e, +e_,; p € A*/A}if 2k + b~ — bT = 0 (mod 4) and to the subspace
spanned by{e,, — e_,; p € A*/A}if 2k + b~ — b™ = 2 (mod 4). So in those cases we
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can calculate the dimension Bflp(2; Z), k, ps] by considering the induced representation
of Mp(2;Z) on those subspaces GfA*/A]. We denote those induced representations by
ps andpg, respectively.

First we look at the cas& = A3. Then the Weil representation acts as follows.

pA3 (T) — [1’6371’1'/47 _176371'2'/4]’

1 1 1 1 - - -
1 —1 — . I |
1 1 1| PAs3 (C) =1 A
-1 =1 -1

—_ = =

SinceC' does not act as a scalar we have to consider the induced represenigtiamsi
pa,- We get

i) €
ph (T) =1, —1),  ph (J) =

1 1
2 0 2|, pi(C)=e?".14
1

and | | |
Ppag(T) =™ p () =e ™/ p (C) = e ™72,

Lemma 3.12 Suppose thaf = A;. Then fork € 1Z, k > 0, we have

'V‘%JH if ke 24227,

LﬁJH ifkel+22,k—12£0 (mod12),
L’f—%J ifkel+2Z,k—2=0 (mod12),
0 if k € Z.

dim[Mp(2;Z), k, ps] =

PROOF The assertion fok: € Z follows from Proposition 3.7. For € % +7Z,k > 2, we
apply Theorem 3.10 op/; andpg, respectively.

Since the eigenvalue’™/* of p(T) is not of the forme2i's with n € Z, the sup-
plement to the dimension formula in [ES95, Sec. 4.2] yields[Mp(2;Z), %,pg] =
dim[Mp(2;Z), L, p5] = 0. By the same argument we gé&in[Mp(2; Z), 1, pz] = 0, and
thusdim[Mp(2; Z), 1, pt]o = 0. Then Theorem 3.10 yield$im[Mp(2; Z), 3, pt] = 1.
This completes the proof. m

Corollary 3.13 Suppose that = As. If k € § + 2Z, k > 7 then[Mp(2;Z), k, ps] is
isomorphic to the space of (elliptic) modular forms of (even) Weﬁaghtg with respect to
the full modular groupsL.(2; Z). The isomorphism is given by

[SL<272)7 k — %7 1] - [Mp(2a2)7 k?ﬂSL f = 779 : f ) (e(i,%,—i) — 6

N
[ I
PN
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PROOF Let f € [SL(2;Z), k — 2,1]. According to Example 3.3;° is a modular form of
weight$ with respect tg. Thus Proposition 3.5 yieldg’ - f € [Mp(2; Z), k, pg] and by
Proposition 3.8 we have

Ug'f'(e(

A comparison of the dimension of the spaces completes the proof. n

) €11 1) € [Mp(2;Z), k, ps].

IS

11
1427

Next we consider the case= Af”). Then the Weil representation acts as follows.

pA(3)(T) = [17i7i7i7 -1,-1,—-1, _2]7

1

1 1 1 1 1 1 1 1
1 -1 1 1 1 -1 -1 —1
1 1 -1 1 -1 1 -1 —1

e 41T 1 1 -1 -1 -1 1 -1

P =511 1 o1 11 1 -1 1|

1 -1 1 -1 -1 1 -1 1
1 -1 -1 1 -1 -1 1 1
1 -1 -1 -1 1 1 1 -—1

o™

p a0 (C) = e,
SinceC acts as a scalar we can immediately apply the dimension formylg@n
1
Lemma 3.14 Suppose that = A§3). Then fork € %Z, k > 0 we have

| 22| itk e d+2z,

dim[Mp(Q;Z)7 kapS] = {O if k ¢ 3197
S )

PROOF For k € Z the assertion follows from Proposition 3.7, and for % + 27 the
assertion follows from Corollary 3.9. A similar argument as in the proof of Lemma 3.12
yieldsdim[Mp(2; Z), 1, ps]o = 0. Then application of Theorem 3.10 completes the pgof.

Finally we consider the case= D,. Then the Weil representation acts as follows.

pD4(T> - [17 _17 _17 _1]7
1 1 1 1
111 1 -1 -1

pD4<J> = _5 1 —1 1 =11"
1 -1 -1 1
IOD4(C) = Iy

Again C acts as a scalar so that we can immediately apply the dimension formpjg on
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Lemma 3.15 Suppose that = D,. Then fork € Z, k > 0 we have

K if k=0 (mod4),
dim[Mp(2;Z), k, ps] = L%J +1 ifk=2 (mod4),
0 if £ odd.

PROOF The assertion for odé follows from Corollary 3.9, the assertion for positive even

k follows from Theorem 3.10, and the assertion fo« 0 follows from Proposition 3.5 b)

and the fact thaps decomposes into one irreducible two-dimensional representation and
two non-trivial one-dimensional representations. m

3.5. Examples of vector-valued modular forms

In this section we introduce two important examples of vector-valued modular forms,
Eisenstein series and theta series.

3.5.1. Eisenstein series

Throughout this section we suppose tlvate Sym(/;R) is an even matrix of signature
(b*,b7), and we set\ = Z'.

Definition 3.16 Letk € 1Z, k > 2, such thalk — bt + b~ = 0 (mod 4). Moreover, let
v € C[A*/A] such thatps(T)v = v. Then we define the Eisenstein serigg-; v, S) :
H — C[A*/A] by

Brv.8)=5 3 pslo)” (o)(r)

9:T o0 \Mp(2;Z)

where the sum runs over a set of representativésofMp(2; Z) and where is considered
as constant functiodt — C[A*/A].

Remark a) Due tops(7)v = v the definition is independent of the choice of represen-
tatives of .. \Mp(2;Z). Moreover, just as in the scalar case, the series converges
normally on’H if (and only if)k > 2.

b) The definition can be extended to allow arbitrarg: C[A*/A] by taking the sum over

a set of representatives @m Nker ps)\Mp(2; Z) (cf. [De01, Sec. 3.2)).

Letv = > cpmaln)e, € C[A*/A]. Then the conditiorps(T)v = v is obviously
equivalent toa(y) = 0 for all u € A*/A with ¢(u) ¢ Z. Moreover, E,(-; v,S) =

> opent/n () Ex (5 eu, S) it ps(T)v = v. Therefore it is sufficient to consider the Eisen-
stein seriegwy(+; eg, S) for 3 € A*/A with ¢(3) € Z.
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Proposition 3.17 Letk € 3Z, k > 2, such thalk — b™ + b~ =0 (mod 4). Moreover, let
B € A*/A with q(8) € Z. Then

Ex(; ep,S) € [Mp(2;Z), k, ps].

PROOF Ei(+; _¢p, S) converges normally oftt and thus defines a holomorphic function
onH. Sincel's.\Mp(2:Z) — T'sc\Mp(2:Z), T'sog — Lwogh, is a bijection for allh €
Mp(2; Z) we have

Ei(-; e, S)|kh = ps(9)~" (esleg)|ch

Mp(2;Z)

Z
Z ps(ghh™") ™" esli(gh)
Z

DN | —

g:F

DN | —

.00 \Mp(2;Z)

ps(h)ps(g)~! eslry’

| —

g’:Fm\Mp(2;Z)
= ps(h)Ex(+; €3, 5)

for all h € Mp(2;Z). Finally, we have
: : 1 _
lim Ey(iy; 5.5) =5 Y ps(e) ™ esleg = €5+ e

i.e., Ex(-; e, S)is bounded o7 € C; Im(7) > yo} for all yo > 0. -

In [BKO1] Bruinier and Kuss defined certain Eisenstein sefi§$ and gave explicit for-
mulas for the Fourier coefficients 6. Their E5* are defined via the dual representation
,05 Whl|e our Eisenstein series are defined pig but according to the remarks in Section
3.3, pS Is essentially the same asg, and thus we havEﬁBK Ex(+; eg, —S). Due to this
identification we can use their formulas to calculate the Fourier coefficiedig(af ey, 5).

3.5.2. Theta series

In this section we introduce vector-valued theta series. Our definition is based on the one
used in [Pf53] and [Sh73].

Definition 3.18 Suppose that € Sym(/;R) is an even positive definite matrix. Léet=

7'

a) Letr € Z,r > 0, and additionallyr < 1if / = 1. Ahomogeneous spherical polynomial
of degree- with respect toS is a functionp : R! — C of the form

= Z a, (vSz)"

veC!



3.5. Examples of vector-valued modular forms 75

with «, # 0 for finitely many vectors € C! satisfyingS[v] = 0 if r > 1.
b) Letp, be a homogeneous spherical polynomial of degregth respect taS. Then we
define the theta serig3(-; S, p,) : H — C[A*/A] by

O(r;S,p) = Y 0u(:5,p) en

HEAL/A

where ‘
0,(1;5,pr) = Z pr(A) SN forr e H.

Aep+A

According to Pfetzer ([Pf53]) and Shimura ([Sh73]), those theta series are holomorphic
modular forms.

Theorem 3.19 Suppose that' € Sym(/;R) is an even positive definite matrix and that
is a homogeneous spherical polynomial of degreéth respect ta5. Then©(-; S, p,) isa
modular form of weight/2 + r with respect to the Weil representatipp, i.e.,

O(+ 8, pr) € [Mp(2;Z),1/2 + 1, ps].

If » > 0then©(-; S, p,) is a cusp form.
The Fourier expansion of the componefjtsi: € A*/A, of © is given by

0,(1;8,pr) = Z cu(n;p,) 2™, where c,(n;p,) = Z pr(N).

neq(p)+Z Aep+A
n>0 g(\)=n

Concrete examples of theta series will be constructed in Section 5.2.






4. Borcherds Products

In this chapter we apply the results of [Bo98] and [Br02] to our special case.

Let S € Pos(l;R) be an even positive definite matrix of degreec N. Recall the
definition of S, andsS; as well as the definitions of the associated bilinear forms, (-, -)o
and(-, -); and the corresponding quadratic forms, andg, from Section 1.2. Moreover,
let A = Z', Ay = Z*2?, Ay = ZH* andV = R, 1, = R*2, 1, = R*4. Note thatA,
together with(-, -); is an even lattice of signatufe, ! + 2). Furthermore, note that= ¢g
and thusy ((x, *, z, %, %)) + Z = qo((*,2,%)) + Z = —q(z) + Zforallz € V.

Recall that the discriminant groups &f A, andA; are canonically isomorphic. There-
fore we will make no distinction between those groups or between the corresponding group
algebras, i.e., we will often write(e A*/A) ande,, or (€ Ag/AO) ande,,, instead of the
corresponding elements of /A; andC[A%/A,]. In particular, we will often denote the
Fourier coefficients of a vector-valued modular fofm Hg — C[A%/A4] by ¢,(n) or
¢ (n). Also, since the Weil representatipp, is essentially the same as the dual Weil rep-
resentatiorpf‘g(g p—s), we will always use the latter even though using the former would
be more correct. Moreover, by abuse of notation we will sometimes write an element
of a discriminant group in place of an elementf the corresponding dual lattice or vice
versa. In this case we always mean an arbitrary element of the casahe coset) lies
in, respectively. For example we often wrijg:) + Z andu + A for u € A¥/A, and we
sometimes write:y (n) instead ofcy, 4 (n) for A € A%, In any case it will always be clear
from the context what is meant.

In order to apply Borcherds’s theory we have to choose a primitive isotropic veetor
A, and a second vectaf € A% such thatz, z); = 1. We choose and fix = (1,0,...,0)
andz* = (0,...,0,1). This choice allows us to identify\; N 1) /Zz with the Lorentzian
lattice Ag = {0} x Ay x {0} = Ay Nzt N (%)L

4.1. Weyl chambers and the Weyl vector

We consider the Lorentzian lattick), and setzy = (1,0,...,0) andzg = (0,...,0,1).
Thenz, is a primitive isotropic element of, andz, € Ag with (zo, zg)o = 1. Therefore
we can identify(Ay N z5)/Zz with the negative definite latticd =~ {0} x A x {0} =
AoNzg N (zg)% Note thatz, is in the closure of the cornBg of positive norm vectors of

Vo = Ay ® R we fixed in section 1.2.

Definition 4.1 Let P} = {v € Ps; qo(v) = 1} be the subset of normvectors inPs.
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a) Foru € A*/Aandn € —q(u) + Z, n < 0, we define the subsék, (11, n) of P by

Hy(wn)= |J A
X0€(0,1£,0)+Ao
qo(Mo)=n

where)\; is the orthogonal complement &f in P.. Then the connected components
of P4 — Hy(u,n) are calledWeyl chambers of! of index (y, n).

b) Letf : Hg — C[A?/A] be a nearly holomorphic modular form of weight= —1/2
with respect to the dual Weil representatipﬁl Suppose thaf has Fourier expansion

Z Z cu(n)q” e,

neAt /A ne—q(p)+

Then the connected components of

,Pé'_ U U HO(:U“vn)

peAt /A ne—q(u)+Z
n<0, ¢, (n)#0

are calledWeyl chambers oP{ with respect tof.
c) LetWW be a Weyl chamber (of either type) ahge Ag. Then we writd \g, W)o > 0 if
(Mg, w)p > 0forall w e W.

The Weyl chambers are usually not explicitly given. Therefore a condition of the form
(Mo, W) > 0is hard to verify. Luckily, it often suffices to check the condition for a single
element of a Weyl chamber.

Lemma 4.2 LetTV be a Weyl chamber @? with respect to a nearly holomorphic modular
form f with Fourier expansion

Z Z cu(n)q" e,

peM /A nE—q(p)+Z

If \g € Ag with ¢, (g0(Xo)) # 0 and(Ag, v)o > 0 for one vectow € W then(\g, W), > 0,
i.e., (Ao, w)o > 0forall we V.

PROOF Obviously we have

o A A

neAt /A ne—q(p)+7Z
n<0, cu(n)#0

for suitable Weyl chamberd’, ,, of index (1, n) (cf. [Br02, p. 88]). Since:,(qo(Xo)) # 0
we either havey(Ag) > 0 0rgy(Ao) = n < 0andXy € (0, u,0) + Ag for one of the Weyl
chamberdV, ,, which occur in the above section. Therefore we can apply [Br02, La. 3.2]
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(where, in case ofy(A\o) > 0, we choose an arbitrary Weyl chambgf, ,, occurring in the
section) and getho, w)y > O forallw e W,,, > W. -

Definition 4.3 Let f be a nearly holomorphic modular form with Fourier expansion

Z Z cu(n)q" ey,

REAF/A nE—q(u)+Z

and letTV be a Weyl chamber g} with respect tof such thatz, lies in the closure of
the positive cone generated by. Then we define thé/eyl vectorp,(W) € V; of W by
0r(W) = (0x, 0, 0.2) Where

1

Oz = ﬂ C)\(_Q(/\))a

AEAH

1

o=—5 D, a0 (4.1)
AEAt
((0,1,0),W)o>0
0 = 05— Y o1(n) Y ex(=n—q(N)),
n=1 AEAH

andoy(n) = 3_,, dis the sum of divisors of.

Note that the sums which occur in the definition of the components of the Weyl vector
are all finite since; = ¢ is positive definite. Therefore and due to Lemma 4.2 we can

explicitly calculate the Weyl vector of the Weyl chamb&rwith respect tof if the Fourier
coefficients of the principal part gf are known and if we find a suitablec V.

Proposition 4.4 Our definition of the Weyl vector is compatible with Borcherds’s definition

in [Bo98, Sec. 10].

PROOF According to [Bo98, Th. 10.4] and the correction in the introduction of [Bo00] the

Weyl vector defined in [Bo98, Sec. 10] is equaltg,, o, ng) with

00 = —m(Host 1Y O es(-aN)Ba((6. o)

AEAT  send /Ao
5=(0,1,0)+Ag

1
=3 Z o0 (—a(A)A,

AEAE, (0,7,0)€AE
((07>\70)7W)0>0

0.; = constant term 00, () fa(T) Ea(7) /24,
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whereB;(z) = 2? — x + ¢ for 0 < 2 < 1 is a Bernoulli piecewise polynomial,

Z Z 627rz'q()\)7— e,

HEAE /A NEp+A

is a certain vector-valued theta seri¢s,(as defined in [Bo98, p. 512]) is in our situation

equal tof,
T)=1-— 24Zal(n)q
n=1

is the elliptic Eisenstein series of weightand©, f, is the inner product 0®, and f,
with (e,,, e,s) = 1 for u, ' € A*/Aif u+ 1/ = 0 and0 otherwise.

Sinceqy(z}) = 0 the first term in the formula fop., vanishes. Moreovery, =), =
forall 6 € A%/Ay with § = (0, \,0) + Ao. Thus the formula fop., can be simplified to

Z cr0)(=4(A))B2(0) = o > al=q(V).
)\eAﬁ AeAt

Because of\}, = Z x A? x Z the additional conditiori0, X, 0) € A% in the formula foro
can be omitted.

Finally we calculate the constant term@®f,(7) f(7)E»(7)/24. Leta(g;n) denote the
n-th Fourier coefficient of;.. Then

0. = (O fF,/24;0) = 1 a(OAf;0) Zal a(Opf;—n). (4.2)

With the above Fourier expansions fpand©, we get

o= 3 (2 qu) 0 R B D B DA OV B

nEAE /A \AEU+A peEA /A \ne—q(p)+Z
-y (Z ) %
pEAE /A \AEp+A ne€—q(p)+Z

and thus

a@rfin) = 3 3 clmn—a) = 3 ex(=n —a().

HEAE /A AEU+A AEAE
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Inserting this into (4.2) yields

05 = 57 2 ex(~a(N) - > i) 3 exl=n — 40

)\GM AeEAE

— 0., - Zal )Y eal=n—q(V)). .

AEAH

Remark For the special case wher& is the maximal order of an imaginary quadratic
field with quadratic formy(z) = |z|? this result can already be found in [DKO3].

Next we will define a special Weyl chamb#r; which will allow us to replace the hard-
to-check condition(\, W), > 0 appearing in the definition of the Weyl vector by a much
nicer condition.

Proposition 4.5 For =z € R, z > 0, we define the vector:s(:c) = (1,...,271) € Rt and
v(z) = (1, —2a(r),x) € R, Moreover, we set;(z) := v(z)/v/qo v(x ) whenever

qo(v(x)) > 0.
a) For small positive values of we havev(z) € Ps andwv,(z) € PJ.

b) Suppose thaf is a nearly holomorphic modular form with Fourier expansion

Z Z cu(n)q" e,

peAt/A nE—q(p)+Z

Then there exists a Weyl chambér of P with respect tof such thatv,(z) € W for
small values of: > 0, i.e., there exists am, € R, zy > 0, such that{v;(z); 0 < z <
2o} N AL = 0 forall Ay e Af with go(X) < 0andey, (go(Xo)) # 0.

PROOF a) Forz — 0we havey(v(x)) = z—2'q(a(z)) = x+O(x*). Thus the definition
of Ps implies thatv(z) € Pg for small positive values of. For thoser we obviously
havev, (z) € Pl.

b) By virtue of a) we have), () € P! for small values ofr > 0. Suppose that for
arbitrary small values af, > 0 there is a\o = (m, A\, n) € A} with ¢(X) < 0 and
cx(q0(No)) # 0 such that, (z) € Ay for somed < = < . Then

0= (vi(x), \o) = (v(z), Ao) = max +n + 2*(a(x), \).
Case 1(m,n) # (0,0). Due to the Cauchy-Schwarz inequality we have
(ma +n)? =2 (a(z), \)* < 2'(a(x), a(2) - (A, A) = dz'q(a(z))g(N),

and thus
qo(Xo) = mn —q(\) < mn —
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This implies thatgy()) tends to—oo for small values of: > 0 which is impossible
because,,(m) = 0 for m < 0.

Case 2:(m,n) = (0,0). SinceA? = S~1A thereisa = (ty,...,t;) € A = Z! such
that\ = S~'t. Note thatt # 0 becausey (o) = —¢q(\) < 0. Because ofn = n = 0

we have

0= (afz),\) = (a(x),S7) = thxj_l. (4.3)

Letr := mil’llgjgl{j; tj # O} ands := maxlgjgl{j; t]’ # O} Then (43) and: # 0
imply » #£ s. We get

t, 1
zmﬂ o)
xs T 1-877‘7
for x | 0. Now we consider

~qo(M) =q(N) =gs1 () = Y (5 )utte

r<j,k<s
= > (St tk+22 D, stits + (S71)sst2
r<j,k<s—1
t2 1
_ a1
= (S )SstS o T O (:U232r1) : u

SinceS is positive definite we havgS—!), , > 0. Thus, just as in the first case, we get
a contradiction becausg(\,) tends to—oo for small values ofr > 0.

Definition 4.6 For z € R, 0 < = < 1, letv,(x) be defined as in Proposition 4.5. Let

f be a nearly holomorphic modular form. Then we denote the uniquely determined Weyl
chamber ofP{ with respect tof that containsv; () for small values of: by 1, and call

it the Weyl chamber off. Moreover, we denote the corresponding Weyl vepi@il’;)
simply byo; and call itthe Weyl vector off.

Note thatzy, = (1,0...,0) is contained in the closure of the positive cone of the Weyl
chambeV; sincev(z) (as defined in Proposition 4.5) is contained in the positive cone for
small values of: and converges te, for z — 0. Thus the Weyl vectop, is well-defined.

Next we define a certain type of positive vectors. As we will show this positiveness
coincides with positiveness with respect to the Weyl chamiggr The definition differs
from the definition of positive vectors introduced in Section 2.1, but this should not lead to
confusion.

Definition 4.7 Lett = (t,,...,t;) € A = Z' . We writet > 0 if there is aj € N,
1<j<lsuchthat, =...=t,; =0andt; > 0. For A\ = S~'t € A* we write A > 0
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if t > 0, and forA\g = (m,\,n) € Ag we write\g > 0if n > 00rn =0andm > 0 or
m =n = 0andX > 0. Additionally, we writet < 0, A <0andXqg < 0if =t >0,—A >0
and—)\, > 0, respectively.

Note that for eacht € Z! we have eithet > 0 ort < 0 ort = 0. Analogous assertions
hold for A € A* and), € A,

Proposition 4.8 Suppose thaf is a nearly holomorphic modular form with Fourier ex-

pansion
Z Z cu(n)q" ey

neAt /A ne—q(p)+2

Let1V; be the corresponding Weyl chambefRy. Then for all\, € A4 with ¢y, (qo( o)) #
0 we have\, Wy) > 0 if and only if \; > 0.

PROOF Let Ay = (m, A\,n) € AL with ¢y, (qo(Xo)) # 0, and lett = ty,....t;) € A =
Z' such thath = S~ 't. Forz € R, 0 < = < 1 letv(z) andv,(z) be defined as in
Proposition 4.5. By virtue of Lemma 4.2 we have, W) > 0if and only if (Ao, v1(x)) >

0 (wheneverr > 0 such that, (z) € Wy). Sincev,(x) is a positive multiple of(z) we
have(\o, v1(x)) > 0 if and only if (Ao, v(x)) > 0. The claim now follows from the fact
that the inequality

(/\071)('1;)) =n-+mx -+ :L'Q(tl + ...+ tlf[‘l_l) >0

is satisfied for arbitrary small values ofif and only if Ay > 0. m

4.2. Quadratic divisors

For the purpose of this chapter we introduce a different realizatiGmsods subvariety of
the projective spac®(V;(C)) := {[Z]; Z € V4(C)} associated to the complexification
Vi(C) = V; ® C of V;. We extend the bilinear forrf, -); : V; x V3 — R to aC-bilinear
form onV;(C). Let

N = {Z] € P(V(C)); a1(2) = 0}

be the zero-quadric i#*(V;(C)) and
K:={[Z]eN; (Z,Z), > 0}.

If Z=X+1iY € V1(C) then[Z] € Kifand only if¢;(X) = ¢:(Y) > 0and(X,Y); = 0.
We defineamap: Hs U (—Hs) — P(V1(C)) by

t(w) = [(—qo(w), w, 1)] forallw € He U (—Hs).
Letw = u+iv € HeU(—Hg). Thenu(w) = [X + Y] with X = (go(v) — go(u), u, 1) and

Y = (—(u,v)o,v,0). Because of;(X) = ¢:(Y) = qo(v) > 0and(X,Y); = (u,v)o —
(u,v)o = 0forallw € Hg U (—Hg) we conclude(w) € K forall w € Hg U (—Hs).
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Conversely, lefZ] = [X + Y] € K. SinceX andY span a two-dimensional (and thus
maximal) positive definite subspace 6f we have(Z, z); # 0, wherez = (1,0,...,0)
is the isotropic vector we fixed at the begin of this chapter. Therdfdfdnas a unique
representation of the forfi—qo(Z), Zo, 1)], Zo € Vo(C) = C"*2. Now as abovéZ] € K
impliesgo(Im(Zy)) > 0 and thusZ, € Hgs U (—Hs).

We conclude that biholomorphically map$i{s U (—Hs) to K, and we denote the image
of Hs under. by K.

On K the orthogonal group(S;; R) acts in a natural way (induced by the actionigh
This action is (of course) exactly the same as the actidn(¢f;; R) on Hs U (—Hs) we
introduced in Section 1.2. The subgro0p (S1; R) of O(S;; R) mapsK™ onto itself.

Definition 4.9 Supposd # X = (I_1, Ao, lj12) € A’i. We define theational quadratic
divisor \* for \ by

M= {w € Hg; -1+ (Mo, w)o — lisago(w) = 0}.
Let), € QXN A% be primitive. Then theiscriminants(\-) of A\ is defined by
S(M) = —Nai(Ay)
whereN is the level ofA;.

Remark 4.10 The discriminant is well-defined since the primitive vectpcorresponding
to A is uniquely determined up to the sign.

We havew € A\ if and only if (A, (—go(w), w, 1)); = 0. ThusO™(S;; R) acts on the set
of all rational quadratic divisors via

MM = (MM = {M(w); we X'}
Obviously, the discriminant is invariant under this action.

Proposition 4.11 Let S be one of the matrices listed in (1.2). ThEg acts transitively
on the set of rational quadratic divisors of fixed discriminant, i.e\;if\; € A’i such that
§(A{) = 6(Ay) then there exists al/ € ' such that\; = M\

PrROOF Each rational quadratic divisor is generated by a uniquely (up to the sign) deter-
mined primitive vector imﬁ. According to [FHOO, La. 4.6] the groups acts transitively

on the set of primitive vectors inﬁ of the same norm. ThusSg also acts transitively on

the set of rational quadratic divisors of the same discriminant. n

4.3. Borcherds products

Now we can state the main result of [Bo98] adapted to our situation.
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Theorem 4.12 Suppose that is an even positive definite matrix of degreeGiven a
nearly holomorphic modular fornfi € [Mp(2;Z), —1/2, pﬁs]oo of weight—1/2 with respect
to the dual Weil representatiqm@ with Fourier expansion

=YY amde,

pEAE/A nE—q(u)+Z

such thatc(0) € 2Z andc,(n) € Z whenevem < 0, there exists a Borcherds product
Yy : Hg — C with the following properties:

a) 1y is a meromorphic modular form of weight= ¢,(0)/2 with respect td4(A;) N T'g
and some Abelian characterof finite order.

b) The only zeros and poles©f lie on rational quadratic divisors. IA € A§ IS primitive
with ¢;(\) < 0 then the order of);, along \* is given by

> ea(ai(N).

r=1

c) Leto, be the Weyl vector of. Moreover, lety, := min{n € Q; ¢,(n) # 0}, and letS
be the set of poles af,. Then on{fw = u +iv € Hg; go(v) > |no|} — S the function
1y IS given by the normally convergent product expansion

wk(w) _ e27ri(gf,w)o H (1 . 627ri()\07w)0)0)\0(%()\0)) . (44)

AOEA?}
Ao>0

PrRoOOF Apply [B0o98, Thm. 13.3] and [Br02, Thm. 3.22] to our special case and take the
other results from this chapter into account. -

Note that the theorem only gives us modular forms with respect to the sub@dp) N

I's of the full modular groug’s. But due to the explicitly given product expansion (4.4) we
can explicitly check how the Borcherds produgttransforms under the additional genera-
tors of['s which do not fix the discriminant group, and thus we can show that the Borcherds
products are in fact modular forms with respect to the full modular group. Moreover, we
get explicit formulas for the values of the characters of the Borcherds products. By virtue
of Proposition 1.15 we only have to consider hpptransforms under matrices of the form
Ra, A€ O(A)

Proposition 4.13 Let A € O(A), and lety) be a Borcherds product with product expansion
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(4.4). Then

w w) - 1— 6—2m’ tz

_ TI'it t o Ck(fq()‘))
Y(Raw)) H <€7rit(tAt—t)z 1 — e ?m A ) %

teZ!
t>0, tAt<0

A= 1 (4.5)

% H (em‘ Y tAtft)z> ex(=a(V)

tezt
t>0, tAt>0
A=S"1¢t

for all w = (7, z, 7») in the domain of convergence.

PROOF First of all note that for altv in the domain of convergend®, (w) = R w, where
Ra =1 x A x I, also lies in the domain of convergence. Thus we can imggftv) in
the product expansion af and get

w(RA<w>) _ 627ri(gf,RA(w>—w)o H

1 — e2mi(Ao,Ra(w))o cxp(20(R0))
o )

1 _ 627Ti()\0 7w)g
)\oéAg
Ao>0

First we look at( Ay, Ra{w))o. Let g = (m, S~'t,n) andw = (71, z, 7»). We have
(S, Az) = (S7')SAz = ('At)z

and
Sfl tA — Aflsfl

sinceA € O(A). Therefore

(Ao, Ra(w))o = ((m, S7't,n), (1, AZ,TQ))O = mmy +nm — (S, A2)
= mmy +nm — (‘At)z = ((m, S7'('At),n),w), = (Ra-1 Mo, w)o.

Because of? 4,1 A} = A} all terms for whichR -1\ = (m, S~('At), n) > 0 cancel out,
and thus we get

1/}<RA<UJ>) _ eZm’(gf,RA(’w>7w)o H (

tezt
t>0, tAt<0
>\0:(07571t70)

1 . 6_27”- t( tAt)Z C)\O (QO(AO))
1 — e—2mittz )

6—27ri i(tAt)z ) ex(=a(¥)

. 1—
_ 27mi(of,Ra{w)—w)
= ermienta ’ H ( 1 — e—2miltz

tez!
t>0, tAt<0
A=S"1t
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Next we considefos, Ra(w) —w)o = (oy, (0, Az — 2,0))o = —(p, Az — 2). Inserting the
explicit formula (4.1) forp yields

1
(o7, Balw) —w)o =5 D, ex(=q(N)AS(Az - 2)

tezZtl, t>0
A=S"1t

1

=5 2 al-a) (At —1)e
teZt, t>0
A=8"1¢
This completes the proof. n

In order to construct concrete Borcherds products with known weight and known zeros and
poles we need nearly holomorphic modular forms of weight2 with respect to the dual

Well representatiomfg with known principal part and constant term. In [Bo99] Borcherds
gives a necessary and sufficient condition for the existence of nearly holomorphic modular
forms with prescribed principal part and constant term. Note that, according to [Br02, Prop.
1.12], nearly holomorphic modular forms are uniquely determined by their principal part.

Theorem 4.14 Suppose that is an even positive definite matrix of degte@here exists a
nearly holomorphic modular fornfi € [Mp(2;Z), —1/2, pS] of weight—1/2 with respect
to the dual Well representathmg with principal part and constant term

Z Z Cu (n)q" €us

peAB/A ne—q(p)+Z
n<0

if and only if

> X e =0

pEAF/A nE—q(n)+
n<0

for all holomorphic modular formg € [Mp(2;Z),2 + [/2, ps] (the so-calledbbstruction
spacé with Fourier expansion

=2 > e

ueAt /A neq(p)+7Z
n>0

PROOF [B099, Thm. 3.1] |

4.3.1. Borcherds products for S = A3

In this case we only have to check how the Borcherds products transformufder R 4,
A= (é —(1)1 i ) because, according to Corollary 1.23 and Proposition 1.24, welhave

(Oa(Ar) NTg, My).
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Proposition 4.15 Letv be a Borcherds product with product expansion (4.4). Then

(M (w)) = < H (_1>cx(—q(>\))> W(w)

to,t3€Z
(t2,t3)>0

for all w in the domain of convergence wheke= S~1%0,,,¢3). In particular, all
Borcherds products are modular forms with respect to the full modular group.

PROOF We apply Proposition 4.13. Lét= (t,t,t3) € Z3,t > 0. Then

31 0
tAt = t1 — to and At —t= t1 — 2ts
_t, —9t,

Thus

t>0and4t >0 <<= t; >0, ty,t3 €7,
t>0and’At <0 <= t; =0, (ts,t3) > 0.

First we consider the cage> 0 and ‘At < 0, i.e.,t = (0, t,t3) > 0. In this case

1 — ¢—2mi H(tAt)z i (2taz2+2t323)

7T7:(72t22272t323) ]' — € _ _1

e HtAt—t)z
1 _ eﬁi(—2t222—2t323) o

1 _ e-2mittz €

Therefore the first product in (4.5) becomes

H (_1)@(—(1()\))

to,t3€Z
(tz ,t3)>0

where\ = 57140, to, t3).

Next we consider the cage> 0 and ‘At > 0, i.e.,t = (1, ta, t3), t1 > 0. We will show
that the second product in (4.5) equalsThe set{t € Z3; t; > 0} splits into the disjoint
sets

{teZ t1 >0, 2ty > 1}, {t€Z’ t, >0, 2, <t}
{teZ t1 >0, 2ty =1, t3 >0}, {t€Z% t; >0, 2ty =t, t3 <0},
{teZ? t; >0, 2ty =t,, t5 = 0}.

For eacht = (1, t,t3) in the first or third set’ = (¢}, t,,t5) = (t1,t1 — t2, —t3) = Atis
in the second or fourth set, respectively. We have

e (HAt=t)z _ mi((t1—2t2)20+(—2t323))
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and

i) t( tAtlft/)Z 77Ti((t172t2)22+(72t323))

e = e .

Moreover, forA = S~1t and\ = S~!'t' one easily verifies thax + A = —\ + A and
q(A) = q(X). Thuscy(—q(N)) = ex(—q(N)), and consequently the terms fioin the first
and third set and the terms for the correspondimg the second and fourth set cancel each
other out in the second product in (4.5). The remaining terms fiorthe fifth set are all
equal tol. This completes the proof. n

4.3.2. Borcherds products for S = A

According to Corollary 1.23 and Proposition 1.24, we hBye= (O4(A;) NT's, R4, Rp),

whereA = (Bl 0 g) andB = 2% . So in order to show that the Borcherds products

01
are modular forms with respect to the full modular graupwe have to consider how the
Borcherds products transform undex and Rz (or some alternative generators). This will
also help us to determine the Abelian characters of the Borcherds products.

Proposition 4.16 Suppose thap is a Borcherds product fop' = Ag?’) with product expan-
sion (4.4). Let

1 0 0 01 0
A=10 0 -1, B=|10 0
0 -1 0 00 —1
Then
Y(Ralw)) = (H(—l)cwww/m(f2/2>> b(w)
t=1
and

Y(Rp(w)) = (ﬁ(—l)c“/”/w)(t2/2)+0<0,07t/2>(t2/4>> Y(w)

t=1
for all w in the domain of convergence. In particular, all Borcherds products are modular
forms with respect to the full modular group.

PROOF This can be proved analogously to Proposition 4.15. n






5. Graded Rings of Orthogonal
Modular Forms

5.1. The graded ring for S = Aj

In this section we will determine generators and algebraic structure of the graded ring of
orthogonal modular forms in the caSe= A;, i.e.,

ATs) = P, k,1].

kEZ

First we construct some suitable Borcherds products. As input we need nearly holomor-
phic modular formg € [Mp(2;7Z), —3/2, pﬁs]oo of small pole order. According to Theorem
4.14, the Fourier coefficients of those forms have to satisfy a certain condition for all ele-
ments of the obstruction spafdp(2;Z),7/2, ps|. By virtue of Lemma 3.12 the obstruc-
tion space has dimensidn It is spanned by the Eisenstein serigs, = LE7/s(+; eg, As).

Using the formulas in [BKO1] we can calculate the Fourier expansion of this Eisenstein
series. (We used the prograsiswhich is available for download on Bruinier's homepage
and verified the results with independent calculations.) We get

E7/2,(0,0,0)(T) =1-108q — 450q2 — 1656q3 + O(q4),
(1) = =8¢™% — 21645 — 792/ + O(¢*),
Er a1 01(T) = —18¢1/% — 232¢%/? — 1080¢°2 + O(¢"?),

whereq = ¢*™". Using Theorem 4.14 we deduce the following condition for principal part
and constant term of elements[dfp(2;7Z), —3/2, pﬁs]ooi

w(0) =8 (¢ (=) +18 ¢

Thus possible principal parts and constant terms of nearly holomorphic modular forms
are given by

(=2) + ¢ )(—3) 4+ 108 co(—=1) + - - .

707

NG
D=
[NIE

1
LR

N
ENE
NG

)

Al

q*3/8 (61/4 + 6_1/4) + 16 €o,
g% ey + 18 e,
q " eo + 108 e,
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where we use the following abbreviations for the basis elemenB§®f/A]: ey = ey,
ex1/4 = €111 _1y,p, €172 = €191y, 5. By applying Theorem 4.12 we obtain Borcherds

11 1 1
4°2:" .4 2

productsy, which have zeros ’a{fong rational quadratic divisors with discrimirart.
According to Proposition 4.11 the modular grdupacts transitively on the set of rational
guadratic divisors of fixed discriminant. Therefore it suffices to consider the following
representatives; of discriminant):

Ay = {w € Hg; 23 =0} = Hy,,
A= {w € Hg; 2220}%HA§2>,

Ay = {w € Hs; 23 = —21} 2 Hg,,
wherew = (1, 21, 22, 23, T2).
Theorem 5.1 Let S = A3. Then there exist Borcherds products
s € [I'g, 8, 1]o, g € [I's, 9, Vrlo and 54 € [['g, 54, v, det]o.

The zeros of the products are all of first order and are given by

U M(Ha,), U M(H,=)  and U M(Hs,),

Mel's Mel'g Mel's

respectively.

PROOF Theorem 4.12 yields the existence of holomorphic modular forms of the given
weights with respect t@4(A;) N I's and some Abelian charactgrand with the given
zeros (and no poles). By virtue of Proposition 4.15 theare in fact modular forms with
respect to the full modular groups, and thusy € T'%". Moreover, the proposition allows

us to calculate the value of(M;,) explicitly. In view of Corollary 2.3 the character is
uniquely determined by this value. Finally, the Borcherds produgctsboviously vanish on

H x {0} x H C Ay which yieldsiy;|® = 0. This completes the proof. -

Remark 5.2 a) The Borcherds productss and vy occurred already in [FHOO, 13.11,
13.12]. Using Theorem 2.31 and Theorem 2.36 we can identify the restrictions of the
Borcherds products to the submanifolﬂa(z) and’H 4,. We get

AgQ) 9 A§2> A§2)
¢8|HAS2) = ((234 ) and 1D54|HA§2) € ¢4 ¢30 : [FA§2)’ 20, 1],

A Ay A
Yo|Ha, = ¢g°  and  sy|Ha, = ¢5°045 .

b) In [Kra] Krieg constructed lifts o3 and+3 to quaternionic modular forms)
295 Is given as restriction of the sum of a certain Maal? form and a twisted version of the
same MaaR form. This allows us to calculate the Fourier expansiofi'6f. Moreover,

Krieg
A =
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he writes that there are, 5 € C\ {0} such that
a grieg(Elo — E4Eg) + 0§ = F[Ha,,

for some cusp fornk” € [I'p,, 18, 1] which is explicitly given as polynomial of Eisen-
stein seriesa)y vanishes oMt ,c2), but /' does not vanish Oft ,2). Therefore we can
1 1

determinex by restricting the above equation %A§2)' We geln = ﬁ andjg =9

(where we choosg such that the Fourier coefficients ¢f are minimal but still inte-
gral). In particular, we can explicitly calculate the Fourier coefficients/gfand 2.

The Borcherds products vanish on quadratic divisors of first order. Therefore, if a modular
form vanishes on a quadratic divisor one of the Borcherds products vanishes on, then we
can divide this modular form by the Borcherds product. Luckily, for some of the quadratic
divisors the Borcherds products vanish on there exist non-trivial elementsstfbilizing

those quadratic divisors pointwise. Now, if a modular form is not stabilized by such a
non-trivial elementV/ € I'g, then this modular form must vanish on the quadratic divisor
which is stabilized byM. This way we can show that modular forms with respect to
certain Abelian characters must be divisible by certain Borcherds products. The result is
summarized in the following

Lemma5.3 LetS = A; andk € Z.

a) If kisodd,m € {0,1}, and f € [['s, k, v det™] then f vanishes ot ,» and we
havef /i € [T, k — 9, ™ det™). 1

b) If f € [['s, k, v51 det] then f vanishes orHs, and f /154 € [['s, k — 54, v%].

PROOF a) Letk € Z be odd andf € [[s, k,v™" ! det™]. Then f vanishes orH 2
1

according to Corollary 2.29. Therefore Theorem 5.1 yiglds, € [I's, k—9, v det™].
b) Let f € [['s, k, v**1 det]. By virtue of Corollary 2.29f vanishes ort{g,. Thus Theo-
rem 5.1 yieldsf /54 € [T's, k — 54, VE]. -

The preceding result allows us to give some more information apput

Corollary 5.4 4 is a Maal3 form.

PROOF According to Corollary 2.24 there is, up to a scalar factor, exactly one Maalf3 form
fo of weight9. By virtue of the preceding lemma we hayge = 1y - f, for somef, €
[I's, 0] = C which yields the assertion. n

Due to the above lemma we can reduce any modular form of odd weight and any modular
form with respect to a non-trivial Abelian character to a modular form of even weight with
respect to the trivial character by dividing the modular form by a suitable produge of
ands,. This way we have reduced the problem of determining the graded ring

A(FZS‘) = @[F/S? k, 1]

kEZ
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of modular forms with respect i3 to the problem of determining the graded ring

ATs) = PITs, k. 1] = P, 2k, 1],

kEZ keZ

of modular forms of even weight with respect to the full modular groyp(and trivial
character). Elements of this graded ring are given by the Eisenstein #&ries E,fB,
k > 4, we defined in Section 2.5.2 and, of course, alsa/by2 and«2,. Using our
knowledge about the graded ring of modular formg-6n, we will now show that for each
f € A('s) we can find a polynomial itt},, Fs, F10, E12 ande2 such that the restriction
of f to ’H 4, coincides with the restriction of this polynomial.

Lemma5.5LetS = A;, k € 2Z, and f € [I's, k, 1]. Then there exists a polynomial
such that

f - p(E47 Eﬁa E107 E127 wg)
vanishes orH 4,.

PROOF Let k € Z, k even, andf € [['4,,k,1]. Then due to Theorem 2.3H,, €
[T a,, k, 1]. By virtue of Theorem 2.36 b¥|H4, is a polynomial inEj?, E2, B2, E{?
and¢Z. Sincedim M(T4,,k) = 1for k € {4,6} and E,|Ha, € M(T4,,k) we have
Ey|Ha, = Ei? andEs|H4, = E{. Moreover, we have)y|H, = ¢,. It remains to
be shown thafZ;;> and ;3 can be expressed as polynomialgif?, E5?, Ei|H.4, and
E12|H 4, This can easily be verified by comparing some Fourier coefficients. -

The Eisenstein series,, and E1, can be replaced by the cusp forms

441 250
= FE,,— Ey-Es and = F,— —FE% — ——F2
flO 10 4 6 f12 12 691 4 691 6

If we denote the normalized elliptic Eisenstein series of weigby G, then we obtain

441 , 250 ,

P — OO — d P — _ s e
J1ol Gio—Gs-Ge=0 and fio] G2 50154~ Go1C6

0.

Thus f1p and f1, are indeed cusp forms according to Proposition 2.10. By explicitly cal-
culating the first Fourier coefficients gf, and f;» we can verify thatf,;, and f,», do not
vanish identically or 4, .

Now we can prove our main result in the case- As.

Theorem 5.6 Let S = As.
a) The graded ringA(I's) = @,,[I's, 2k, 1] is generated by

E47 EG? 1/}87 ElO; E12 and 1/13
b) The graded ringA(I's) = @,.,[I's, k, 1] is generated by

Ey, Eg, Us, 1y, Evg, E12 and 1s,.
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c)

The ideal of cusp forms id(I') is generated by

s, Yo, fio, fiz and isy.

PROOF a) Letk € Z be even, andlet € [I's, k, 1]. According to Lemma 5.5, there exists

b)

a polynomialp such that

fi=f —p(Eys, Bs, Erg, Eia,3)

vanishes orH 4,. Then Theorem 5.1 leads to

f/¢8€[rs>k_8>1]7

and an induction yields the assertion.
Let f € [I'y, k,1]. If k is odd then, according to Lemma 5.3, the functjpmanishes
onH , and we havef /¢y € [I's,k — 9,1]. So we can assume thatis even. Due

to Corollary 2.3 we know thdts, k, 1] = [I's, k, 1] & ['s, k, v, det] for evenk. Thus
f = fi+ fo.aee With f,, € [I's, k, x]. The functionf,_q4. vanishes or{s,, and we
getf,. aet/Wss € [U's, k — 54,1]. Applying part a) onf; and f,,_qe /%54 cOmpletes the
proof.
Let Z be the ideal generated by the cusp forms v, f19, fi12 @andysy, and letf €
[I's, klo. According to part b) we can writ¢ as a polynomial inEy, Es, vs, 19, Eo,
E15 andis,. In view of the above comments abofit and f1, we can also writef as
a polynomial inEy, Eg, vs, V9, fi0, f12 @andis,. Therefore there exists a polynomial
p € C[X1, X5 such that

f—p(Ey, Eg) €T,

Application of Siegel'sb-operator yields

0= (f — p(Ey, Ee))|® = p(Ey|®, Es|®) = p(Gy, Gg)

whereG, andGg are the normalized elliptic Eisenstein series of the indicated weight.

SinceG4 andGg are algebraically independent, we have 0, and thusf € 7. m

Some more results are given in the following

Theorem 5.7 Let S = A;.

a)

b)

c)

The orthogonal modular forms,, Es, 15, 19, F19 and E;, are algebraically indepen-
dent.
There is a unique polynomiale C[X1, ..., Xg] such that

V2, = p(Ey, Eg, 108,19, E1o, E12).

We have
A(T) =2 C[Xy,. .. ,X7]/(X$ —p(Xy,...,Xp))



96 5. Graded Rings of Orthogonal Modular Forms

and

= . , E 1+t54
kZ:Odlm[Fsa k]t - (1 _ t4)(1 _ t6)(1 _ t8)(1 . tg)(l _ t10)<1 — t12)'

PROOF a) The restrictions of,, Eg, 19, E1p and £y, to H 4, are algebraically indepen-
dent due to Theorem 2.36. Moreoves, vanishes ort 4, according to Theorem 5.1.
This yields the assertion.

b) Because ofZ, € [I's, 108, 1] the existence gf follows from Theorem 5.6. The unique-
ness ofp is a consequence of part a).

c) Let@ € C[Xy,...,X;] such thatQ(FEy, Es, Vs, 19, E19, E12,151) = 0. There exist
polynomials,, @, € C[X1, ..., X¢] suchthat)—Qy—X;Q; € (X?—p(X,..., Xs)),
hence

QO(E47 E67w87¢9a E107 E12) + ¢54 : Ql(E47 E67w87 ¢97 E107 El?) = 0 (51)

Let M = R(_1,)M,.. Then the modular substitutian — M (w) mapsys4 to —1)s, and
leavesFE,, Eg, s, 19, E19 and £y, invariant. Therefore, by applying this substitution
on (5.1) we get

Qo(Ey, Eg, s, Y9, Erg, E12) — 54 - Q1(E4, Es, s, 19, Erg, Er2) = 0.

SinceFEy, Fg, vs, 1y, F1g andE;, are algebraically independeft and@; both have to
vanish identically. Thus we havg € (X? — p(X3, ..., Xs)). The dimension formula
is a direct consequence of the algebraic structurd(af; ). n

The dimension formula for the Maal? space in Corollary 2.24 and Theorem 5.7 imply that
all modular forms of weighk < 10 are Maal forms, i.e., we get the following

Corollary 5.8 For £ < 10 we have
In particular, the Borcherds productgs andy are Maal3 forms.

Similarly to Aoki-Ibukiyama [AlO5] and Krieg [Kra] we can construct the Borcherds prod-
uct s, from the algebraically independent primary generatorg @) via the Rankin-
Cohen type differential operator we introduced in Section 2.2.

Corollary 5.9 There exists a constante C, ¢ # 0, such that

{Ey4, Es, 5,19, E1, E1a} = cifsy.

PROOF Since Ey, Eg, vs, 19, F19 and Ey, are algebraically independent, we haves
g = {Ey, Eg, s, 9, Erg, E12} € [I'a,, 54, v, det] according to Proposition 2.14. Due to
the character Lemma 5.3 yieldgys4 € [I'4,,0, 1] = C. n
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In [Kra] Krieg determines the graded ring§I'p,) and A(I";,) of quaternionic modular
forms of degre€. He shows thatd(T'p,) is generated by the Eisenstein serig$' and

six modular formsf;, j € {2,5,6,8,9,12}, of weight2; (not to be confused with the cusp
forms f1, and f15) given as polynomials in six theta series. We examine the restrictions of
those generators (where we denote the restrictions ¢f thgain byf;) to H »,. Computing

the Fourier expansions we get

Ey = f5,
51F10 = 35f5 + 16 f2E,
21421 Fy5 = 22050 f5 + 400E; — 1029f3,
382205952105 = 27 fs — 30fafs — 4Esfs + 2f2Eg + 515,
2779890176902 = —54fy — OEsfo — 414720s(f5 — foEg) + 2f3f5 + ES 4 62 Eg.

So obviously we can replace some of the generators of the graded (ihg ) by some of
the restrictions of the;.

Corollary 5.10 The graded ringA(I's) = @, .,[I's, 2k, 1] is generated by

falHay, Ees, Vs, fs|Hay, fo|Ha, and fo|Ha,.

Due to Baily-Borel’s theory of compactification of arithmetic quotients of bounded sym-
metric domains ([BB66]) each orthogonal modular function, i.e., each meromorphic mod-
ular form of weight0, is a quotient of two orthogonal modular forms of the same weight.
Therefore the above results allow us to determine the algebraic structure of the field of or-
thogonal modular functions. We denote this field®y's). Moreover, we denote the space

of meromorphic modular forms with respect to an Abelian charact®y [I's, £, x]mer-

Theorem 5.11 LetS = As.
a) The fieldIC(I's) of orthogonal modular functions with respect g and the trivial
character is a rational function field in the generators

Vg
nd =.
Eg

B ¥ Bw  Eu
£} EY E.E, E3

b) The fieldlC(I"y) of all orthogonal modular functions with respectlfq is an extension
of degree2 over K (I's) generated by)s, /5.

PROOF a) Letf € K(I's). Due to Baily-Borel ([BB66, Cor. 10.12]) there exigth €
[I's, k] such thatf = g/h. Sincef is a modular function with respect to the trivial char-
acterg andh have to be modular forms with respect to the same chargctBecause
of Lemma 5.3 we can assume= 1 andk even. Then, due to Theorem 5.6,s a
quotient of polynomials ity Es, vs, F10, E12 andi?. After dividing the polynomials
by a suitable modular formt’ Els of weight4l, + 615 = k it remains to be shown that
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all monomialsE}* Eg® Byl Eyi* vt with k; € Z and)_ j - k; = 0 can be written
in the above generators. This follows from

ka 1oks ), ks k10 ok12,),2k1s
E4 EG ¢8 ElO E12 9 -

E_g —ky—kg—2kg—2k190—3k12—3k1s ﬁ ks ElO k10 @ k12 770_3 k1s
E3 B} E4Es £} Eg '

HenceC(T's) is a function field in the above generators which are algebraically inde-
pendent according to Theorem 5.7.

b) The functiong = 5,4/4§ is obviously a modular function with respect to the char-
actery = v,det. If f is another modular function with respect {othen f /g €
[['s,0, 1]mer = K(I's). Therefore

IC(F/S) = [FlSv Ov 1}mer = [F57 07 1}11161” D [FS’ O’ Vn det]mer
=K(s)®g-K(Ts)=K(s)[g).

Due to Theorem 5.7 we hay@ € K(I's). ThusK(I'y) is an extension of degreover
/C(FS) |

Remark There are no non-trivial modular functions with respectitp and the Abelian
charactersdet or v,.

5.2. The graded ring for S = A\Y

In this section we will determine the algebraic structure of the graded ring of orthogonal
modular forms in the casg = A7, i.e.,

A(T) = P, k. 1].
keZ

Just as in the case = A3 we will construct suitable Borcherds products in order to reduce
this problem to the problem of determining the structure of

A(Ts) = EDIT's. 2k 1].
kez
The structure of this algebra can be easily derived from the structure of
AT ) = @[FA@, 2k, 1].
kez

First we will again construct some suitable Borcherds products. In this case, by virtue
of Lemma 3.14, the obstruction spdéép(2;Z), 7/2, ps| has dimensiol. So in addition
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to the Eisenstein seriés;;, = E7/,(-; eo, A§3>) we need two more generators. They are
given by theta series. According to Theorem 3.19 we have to find homogeneous spherical
polynomialsp of degree2 with respect taS in order to get suitable theta seri®s-; S, p).

We can choosg,; (z) = 2% — z2 andp,y(z) = 23 — 2.

Using the formulas in [BKO1] we can calculate the Fourier expansion of the Eisenstein
series. (Again we used the programs and verified the results with independent calcula-

tions.) We get

Er2,000)(1) = 1 = 66¢ — 396¢” + O(¢?),
E =F =F = —2¢"* —120¢°"* + O(¢*"*
7/2,(%,0,0)(7) 7/2,(0,%,0)(7) 7/2,(0,0,%)(7') q ¢""" +0(q""),
(1) = —12¢"2 — 18442 + O(¢"/?),
(1) = —40¢%* — 192¢"/* + O(¢"*),

E?/Z,(O,%,%)(T) = E7/2,(%,0,%)(7') = E7/2,(§,%,0)
REXCREY

whereq = ¢*™". According to Theorem 3.19, for the components of the two theta series
we get the Fourier expansions

000 (7' Sapl)
3
00)(7 S,p1) = —2¢°/* — 2q9/4 —|—O(q13/4),
0%0)(7 S,p1) = ‘9( ,0,0) (755, p1),
00%)(7— S,p1>
0.4.5)(T: S p1) = 1/2 +6¢°% — 10472 + O(¢"?),
% % (T Sapl) _0( %%)(Ta S>p1)>
0(%,%,0)(7757])1) 0
6(%,%,%)(Ta S7p1) = 07

and

1755, p2 9(0 1 0)(7' S pl)
0(0,1,1)(T35,p2) =0,
9(%,0,%)(7'7 S,p2) = 9(07%7%)(7;5,])1)
01.1.0)(T:5.p2) =0(101y(7:5,p1),
0(%7%7%)(7;5,]92) =0
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Inserting the theta series into the obstruction condition (cf. Theorem 4.14) yields

hto0) = Po10) = Moy @nd hg 1y ="hao1y=hiig

N
[NIE
N
D=
D=

1
19

for all h € [Mp(2;2), —3/2,pg]oo. Thus, using the Fourier expansion of the Eisenstein
serieskt; », we see that the terms

3.-q7* 16,
3.q7 12 + 36,
q 3" + 40,
g —3- ¢ "* 460,
where the Fourier expansion of the components can be easily reconstructed from, are valid
principal parts and constant terms of nearly holomorphic modular forms of weigjfit
with respect tq)g. By applying Theorem 4.12 we obtain Borcherds produgteiith zeros

along rational quadratic divisors of discriminants. Just as in the case = Aj it suffices
to consider the following representatives of discriminants:

Ay = {w € Hg; 23 =0} H o,
M =1{w € Hg; 2= 23} 2 Hsg,,
Ao = {w € Hs; 23 =21+ 22} = Hou,,
)\é ={w € Hg; 23 = %} =: Hs,
wherew = (7y, 21, 29, 23, Ta).
Theorem 5.12 Let S = A{Y). Then there exist Borcherds products
s € [I's, 3, vovy det]o, t1s € [I's, 18, v,]o, a0 € [I's, 20, 1]g and ¢3¢ € [['s, 30, v5]o.

The zeros of the products are all of first order and are given by

U M), U MHs), U M(Hew,) and ) M{Hs),

Mel'g MeTg Mel's MeTg
respectively.

PROOF Theorem 4.12 yields the existence of holomorphic modular forms of the given
weights with respect t@4(A;) N I's and some Abelian charactgrand with the given
zeros. By virtue of Proposition 4.16 thg, are in fact modular forms with respect to the
full modular groupl's and thusy € T'%". Moreover, the proposition allows us to explicitly
calculate the value of for two elements of's. In view of Corollary 2.3 the character is
uniquely determined by those values. The Borcherds produgts s ands, are cusp
forms since they are modular forms with respect to a non-trivial character. Moregyer,
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obviously vanishes ot x {0}® x H C A& which impliesi|® = 0. This completes the
proof. n

Remark 5.13 Using Theorems 2.34 and 2.36 and comparing the divisors of the Borcherds
products we can identify the restrictions of the Borcherds products to the submanifold

HA@. For exampley s vanishes ort{s,, and thus, in particular, or{ (2;R) = H,, C

(2)
Hs,. This implies that its restriction té{ ,») is divisible bygbf1 . Due to the character we

2
Af

(2) (2)
then conclude thaps|H ;) = (qbfl )Zgbfol . For the other two Borcherds products we get
1

e e
Yao[H @ € ¢1g - [Cye,10,1] and go|H o) = 39 -

The restriction of/5 to Hg, is equal to the Borcherds produgt occurring in [DK04].

Let f = X; ... - X0 be the product of the ten theta series in [FHOO, Def. 10.3].
According to [FHOO, Prop. 11.9] this product is a non-trivial modular form of weight
with respect td” , s) vanishing orfH,,. Hencef /1y is a holomorphic modular form of
weight0, and thus

J = cao

for somec € C\ {0}.

Just as in the case = Aj the fact that the Borcherds products vanish on quadratic divisors
of first order allows us to conclude that modular forms with respect to certain Abelian
characters must be divisible by certain Borcherds products. The result is summarized in
the following

Lemma5.14 LetS = AP k € Z, andm € {0,1}.

a) If kis odd andf € [I'y, &, 1] then f vanishes ot ,-) and f /13 € [, k — 3, 1].
b) If f € [T's, k, v§'vi+! det”] thenf vanishes oftls, and f /115 € [T's, k—18, vy'vk det”].

c) If f € [Ts, k, it det”] thenf vanishes ofi{g and f /439 € [['s, k—30, vEv™ det*].

PROOF a) Letk € Z be odd andf € [I'y, k, 1]. Thenf vanishes orHA<12> according to

Corollary 2.32. Therefore Theorem 5.12 yielflg); € [I'y, k — 3, 1].
b) Let f € [['s, k, vi*v/**+' det*]. By virtue of Corollary 2.32f vanishes orfg,. Thus

Theorem 5.12 yieldg /115 € [T's, k — 18, v5"vk det”].
c) We have

1 0 O
Hs=qweHs; w=[0 1 0 w+t(0,0,0,1,0):(Te4R 10 0 )(w)
00 -1 (305,
Let y = v4 v det* andf € [I's, k, x]. Then for allw € Hs we have

f(w) = (fleM)(w) = x(M) f(w) = = f(w)
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if M = T64R((1)(1) 0 ) Hencef vanishes orig, and by virtue of Theorem 5.12 we

00 -1
concludef /45 € [T's, k — 30, vv™ det]. -

Due to the above lemma we can reduce any modular form of odd weight and any modular
form with respect to a non-trivial Abelian characterd@fto a modular form of even weight

with respect to the trivial character by dividing the modular form by suitable powefs, of

113 andisg. This way we have reduced the problem of determining the graded ring

A(FZS‘) - @[FTSW k,1]

keZ

of modular forms with respect 0 to the problem of determining the graded ring

ATs) = PIrs, k1] = @PITs, 2k, 1],

keZ kEZ

of modular forms of even weight with respect to the full modular groyp(and trivial

character). Elements of this ring are given by the Eisenstein sEfies E,f?), k > 4,
we defined in Section 2.5.2, by the invariants we determined in Section 2.8, and, of
course, also by, v, 1% andy3,. The structure of this ring can be easily derived from
the structure of the graded ring(l" A§2>).

Theorem 5.15LetS = Af’). The graded ring4(I's) is a polynomial ring in

h47 h67 wg’ h87 hlU andh12-

PROOF Letk € Z be even, and lef € [I's, k, 1]. By virtue of Theorem 2.40, the restric-
tions of theh; generate the graded ring(I" ,2)). Thus there exists a polynomialsuch
1
that B
f = f - p(h47 h67 h87 tha h12)
vanishes orH ,»). Since the Borcherds produgg vanishes ort
1

divide f by v, and get

4@ of first order we can
1

J?/% € [Ls, k — 3, vor, det].

Due to Lemma 5.14 the quotie[}fi/% also vanishes oft{
second time by); and get

4@ Hence we can divide a
1

f/v3 € s,k —6,1].

By induction we conclude that the graded ring is generated by the given functions. The
algebraic independence of the generators follows from the algebraic independence of the
restrictions of thei; to H ,2) and the fact that)? vanishes orH A m
Remark 5.16 In a forthcoming paper (cf. [FSM]) Freitag and Salvati Manni determine
the structure of this ring using completely different methods.



5.2. The graded ring for S = A% 103

Of course, itis possible to express the Eisenstein sétiegs, o andE;, as polynomials
in the generators. The result is

E4 = h4;
Eg = he — 345613,
17E1g = 15h1g + 2hahe — 18432h4y3,
21421 E5 = 22050h,5 + 400h% — 2764800hetp2 — 1029h3 + 477757440045

Corollary 5.17 The graded ringA(T" ,)) is a polynomial ring in

Ey, Es, 13, hg, Eip and Eys.

Now we can determine the structure of the full ridgl’y) = @, ., ([I's, k, 1] of modular
forms with respect td's for S = A(f’).

Theorem 5.18 Let S = A,
a) The graded ringA(T'y) = @, ., [I's, k, 1] is generated by the modular forms

Vs, By, Eg, hs, Ev, Ei2, 115 and s

of whichys, Ey4, Fs, hs, E1o and E;, are algebraically independent.
b) There are uniquely determined polynomialg € C[ X1, ..., X¢] such that

w%S = p(w?n E47 E67 h’Sa E107 E12)7
¢§o = Q<¢37 E47 E67 h87 E107 EIQ)-

c) We have
Al) 2 CIXy, ..., X5]/ (X7 —p(Xy,.... Xe), X5 —q(Xy,...,X5))
and

o) . , . (1+t18)(t+t30)
;dlm[rsa k]tk = (1 — t3)(1 _ t4)(1 _ tﬁ)(l _ t8)(1 — tlo)(l _ tl?).

PROOF a) This follows analogously to the corresponding resultSfes A; from Theorem
5.15and Lemma 5.14.

b) Theorem 5.15 yields existence and uniqueness of the polynomials.

C) LetQ € (C[Xl, . ,Xg] such tha@(wg, Ey, Eg, Fy, Evg, Fro, Y13, ¢30) = 0. There exist

p0|yn0mia|SQ0, Q17Q27Q3 € (C[Xla s 7X6] such thatQ - QU - X7Q1 - X8Q2 -
X7X8Q3 - (X? — p(Xl, . ,XG), X82 — q(Xl, . ,X@)), hence

Qo(V3, By, Es, Fy, Ero, Era) + g - Q1(E4, Eg, s, 19, B0, F12)
+ ¢30 : Q2(¢37 E47 Eﬁa F87 E107 El?) + ¢18¢30 : Qs(%& E47 E67 F87 E10> El?) =0.
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Applying the modular substitutiom — M (w), M = R< ) to this equation we get

OO
(e =J=]
oo

QO(w& E47 E67 F87 E107 E12) - ¢18 : Ql(E47 E67 w87 ¢97 E107 E12)
+ 30 - Qa2(3, By, Fs, Fy, Ero, Fr2) — 18130 - Q3(s, Ey, Eg, Fs, Ero, F12) = 0,

and thus

Qo(Vs, By, Eg, Fs, Evg, E12) 4+ 30 - Qa2(vs, Ey, Es, Fs, Erg, Er2) = 0,
1(Ys, By, Eg, F3, Ero, E12) 4+ 30 - Q3(¥s, Ey, Eg, Fy, Erg, Era) = 0.

Applying the modular substitutiom — M (w), M = T64R( ) to those equations

10 0
01 0
. 00 -1
yields

Qo(V3, By, Eg, Fs, B, E12) — 130 - Qa2(Y3, By, Eg, F, Eh, Era) = 0,

Q1(¢Ys, Ey, Eg, Fg, Erg, Era) — 130 - Q3(vs, By, Eg, Fy, Erg, E2) = 0.
Now the algebraic independencewf, F4, Fs, Iy, F1g and £, implies thatQg, Q@+,
Q)2 and@; vanish identically. Thug) € (X2 — p(Xy,..., Xe), X2 — q¢(X1, ..., X5)).
The dimension formula is a direct consequence of the algebraic structd@¢j. m

As in the caseS = Aj; we can apply the Rankin-Cohen type differential operator we
introduced in Section 2.2 to the algebraically independent primary generat@ij(§9{3)).

The result is
Corollary 5.19 There exists a constante C, ¢ # 0, such that

{%7 Ey, Eg, hg, Ehp, E12} = c1830.

PROOF Sincevs, Ey, Eg, hs, E1g and E1, are algebraically independent, we haves
g = {13, Ey, Eg, hs, F19, E12} € [FA(s),48,l/2V7r] according to Proposition 2.14. Due to
the character Lemma 5.14 yielgg(v15%30) € [ ;,0, 1] = C. n

1

Just as in the cas€ = A; we can replace some of the generators by cusp forms. We
replace the Eisenstein serie, and £, by the cusp forms

3 - 441, 250
fl() = El(] E4 E6 and f12 D E12 691E4 69]. 6

and we replacég by the cusp form
fg = hg - Eﬁ%
Since the constant term ¢f vanishes and due to

fs|® € [SL(2;Z),8] = C - Gg,
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whereGjg denotes the normalized elliptic Eisenstein series of weighte conclude
fS’q) = 07

and thusfs is indeed a cusp form.
Analogously to the corresponding result for= A3 we can now determine the genera-
tors of the ideal of cusp forms (" ).
1

Corollary 5.20 The ideal of cusp forms id(I') is generated by

U3, fs, fio, Ji2, ¥1s and 1.

Finally, we can again determine the algebraic structure of the field of orthogonal modular
functions.

Theorem 5.21 LetS = A,
a) The fieldIC(I's) of orthogonal modular functions with respect fg and the trivial
character is a rational function field in the generators

V3 hg Eo Eiy E?
S =, /=, = and —5.
Es EP E.E, EP B3

b) The fieldlC(I"y) of all orthogonal modular functions with respectlfq is an extension
of degreet over K(I's) generated by)s/ES and s/ ES.

PROOF a) Letf € K(I's). Due to Baily-Borel ([BB66, Cor. 10.12]) there exigth €
[I's, k] such thatf = g/h. Just as in the case = A; we can assume thagtand’ are
modular forms of even weight with respect to the trivial character. Thissa quotient
of polynomials inE,, Fg, v3, hs, F1o and Ej». Again it remains to be shown that all
monomialsE}* E5oy; ™ hi* By Efs* with k; € Z and3ks+3_ ;- k; = 0 can be written
in the above generators. This follows from

ka ke, ) 2k3 1. ks k1o k12
E4 Eﬁ w3 hS ElO E12 -

E_g —k4—ke—k3—2kg—2k10—3k12 w_g k3 E ks ElO k1o @ k12
B} E) \E}) \E,E )

Hence/C(T's) is a function field in the above generators which are algebraically inde-
pendent according to Theorem 5.15.

b) We havey := 115/ E3 € [['s,0, Vx)mer @Ndh := 1h3g/EZ € [T, 0, Vo] mer- JUst as in the
case of holomorphic modular forms the vector space of modular functions splits into
the eigenspaces of the character§ of Since some eigenspaces vanish we have

IC(F{S') = [F57 07 1]mer @ [F57 O; Vﬂ]mer @ [FS7 07 V2}mer EB [FS, O, VQVW]mer
=K(Ts)®g-KI's)@h-K(Is)® gh-K(I's) =K('s)[g,h].
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Due to Theorem 5.18 we hayé h? € K(T's), and thusC(T's) is an extension of degree
4 overK(I'g). n



A. Orthogonal and Symplectic
Transformations

We use the notation introduced in Section 2.7. Moreover, we denote the most common
elements of the symplectic grodp(2; H) by

I, H

Trans(H) = (0 I
2

) for H € Her(2; H),
Rot(U) = voo for U € GL(2; H).
0 Ut
According to [Kr85], Sp(2; O) is generated by/y, Trans(H), H € Her(2;0), and

Rot(U), U € GL(2;0) whereU = (§9), ¢ € O = (wiy,wiz). Thus the extended
modular group

141,

Iy =({Z— M(Z); M €Sp(2;0)or M =pI}, I,), p= N

is generated by the following biholomorphic transformation#/¢g; H):

—z 1
Z+H H € Her(2;0),

+i1 . .
( :E+Zy (xT;’y)) ) €€ {w12,u)l3}7

_ G (z+iy)p
Rot ( 92) = (et )

Z— Ju(4
Z +— Trans(H)(Z

(Z) =
(Z)
Z > Rot (£9) (2)
(Z)
(Z) =

Z — (pl){(Z
Z v Iy (Z

B ‘5! T+ 1y
whereZ = (E+iy 72 ),71,72 eH,z,y € H.
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A.l. Thecase S = Dy

A. Orthogonal and Symplectic Transformations

The orthogonal half-spad€p, is biholomorphically mapped t&/ (2; H) by

x|+ zy1

tp,(uw) +1tp, (v)

ou: Hoy — H(ZH), (21, u,20)+i(ys, 0, y2) — (

where.p, : R* — H is given by

LDy (u> +1 LDy (U)

)

T + 1Y

(SCl,l'Q, T3, Q?4) — I + 33'211 + $3i2 + TqaW.

This map allows us to identify the corresponding elementsgptndI"p, (or more pre-
cisely of'p, /{+13}) considered as subgroupBfhol(Hp,). The following table lists the
generators of ', /{+I} and the elements dfy those generators correspond to, and vice

versa.
M €Ty, v eTy
J Ju
Ty,9=1(91,G,92) € Ao | Trans(H), H = (9*1 LD;(9>> € Her(2; O)
2
Mtr—R<10 0 1) I,
0-10 0
00 —10
00 0 —1 -
R/10-10 Rot(p 9)
(01—1 o) 0 p
00—1-1
00 2 1 .
R/10-10 Rot(w 9)
(00—10) 0 w
01-10
00 2 1 '
R,1 0 0 0 Rot(uj_11 0_)
<0 1 0 0> 0 w — i3
1 1 0 1
i s R |
u)ig 0
R(?:ig 8) ROt(o 1)
0 —1-1-1
11 1 0
u)ig 0
R(B%?%) ROt(o 1)
1 0 0 1
1.1 -1 -2
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A.2. Thecase S = A

The orthogonal half-spacdk , ) is biholomorphically mapped to the submanifold

H(2H ) = {(Tl Z) € H(2H); 2 = 2 + 2i; + 2300 + 245, 24 = 0}
1

* Ty
of H(2;H) by

P Hyw — H2H o), (21,u,22) +i(y1,v,52) —
1 1 1

( 1+ LAEP’) (u) +1 LAgg) (v)>

no (u) +1 LA (v) Ty + iy

WhereLA?) ‘R3 — HA<13> is given by

(21, T2, T3) > T1 + To2l1 + T3ia.

The following table lists elements of the orthogonal modular grbyp, and corre-
1
sponding elements dfy; N Bihol(H (2;H ;3))), i.e., if M € T' s then the corresponding
1 1
elementy € I'y satisfies

’)/(goAgzz,) (w)) = M(w) forallw € HA(ls).

M e FA<3) vyelgn Bihol(H(Q;HA<3)))
1 1
J Ju

Tgvg = (91757 92) € AO TI'&IIS(H),H = (g*l LA?;) (g)) € HGY(Q;OA(3))
2 1
My=R/,1 0 o Itr—Rot<13 0)
(55 2) 0
R ~-100 Rot ((12 11)/ . .
(3 88) 0 i)V
w+i 0
Kith o (V5 5 1)
010



110 A. Orthogonal and Symplectic Transformations

A.3. The case S = A;

The orthogonal half-spad¥ 4, is biholomorphically mapped to the submanifold

H(2;Hy,) = {(Z—: Z) € H(2;H); z = 21 + 2011 + 23l0 + 24d3, 23 = z4}

T2
of H(2; H) by

PAs - HAg - H(27HA3)a (xla U, .1'2) + i(yla U>y2) =
( T+ iy Lag(u) + 1 LA3(U))

Lag(u) + 7 ta,(v) To + 1o

wheret, : R® — Hy, is given by
(1, T, T3) — o1 + Tow + T3ip.

The following table lists elements of the orthogonal modular giowpand correspond-
ing elements of'y N Bihol(H (2; Hy,)), i.e., if M € 'y, then the corresponding element
v € 'y satisfies

Y(pas(w)) = M{(w) forallw € Ha,.

M e T4, v € 'y N Bihol(H (2;Hy,))
J Ju
Tgag = (91757 g?) € AO Trans(H), H= g*l LA;E@ - Her(2, OAS)
(iy — i3)/Vv/2 0
M., = I, =
gy | T e
—i; 0
R,~1-10 Rot( ) >
(§2,9) 0 i
W — 11 0
R _ Rot .
() (70" <)




B. Orthogonal and Unitary
Transformations

Let K be an imaginary quadratic number field. We use the following abbreviations for the
most common elements of the unitary grdu; K)

Trans(H) = (1;)2 ?) for H € Her(2;K),
2

Rot(U) = (tg Uo_l) for U € GL(2;K).

According to [De01, Lem. 1.4%3U(2;0k) is generated by, and Trans(H), H €
Her(2; 0k), andI'(2; K) = U(2; ok) is generated by, Trans(H), H € Her(2;0x) and
Rot(U),U = (§9), ¢ € ox. Thus

L = ({2~ M(Z); M €T(2K)}, I, )
is generated by the following biholomorphic transformationgfég; C):

7 JualZ) = -7,
Z — Trans(H)(Z) = Z + H, H € Her(2; 0x),
Z—Rot(51)(2) = (2, 5), € € og N{%1, £i},
7 I.(7) =7,

whereZ = (Tl Zl) € H(2;C).

Z2 T2
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2
B.1. Thecase S = Ag )
LetK = Q(v/—1). Thenog = Z + Zi, S = S¥ = A® and
w = (Tl7w17w277—2) = (xlauhuanQ) +7:<y1;v17027y2) S HA(12)

corresponds to

7 — 1 (U1 —U2)+i(UQ+Ul)
(u1 + UQ) — Z(UQ — Ul) To
_ ( a2 u1+zu2>+i< 7 v1+zv2> € H(2:C).
UL — U2 T2 V1 — W2 Y2

The generators of [ and I'x

MeT o M (w) v(Z) 7 € o
J J(w) —Zil JHer
+1
T(go ..... g3) w + (907 e 793) Z + H TranS(H)’ H= (g*o g g3 92)
T iZl — 0
R (1) —01) (7—1,—1,U27’I,U1,7_2) (_122 7—2) Rot ( 0 ]_)
Mtr - R((l) —01) (Tla wy, —Ws, 7-2) tZ Itr

The Abelian characters of I'x
We haveU(2; ox)* = (det, 1,,). We can extendet andv,, to I'x by definingdet(/;,) :=
vy(Ii) == 1. Moreover, we defin@ge,, : I'r — C by @ew(ftr) = —1 andvgew (M) =1

for M € U(2; 0x). Considering thal/(I;.(Z)) = I,,(M(Z)) for all M € U(2;C) we can
easily verify that'2> = (det, v, Vskew)-

7 € Do det(7) | vp(7) | Vakew(7)
JHer 1 1 1
Trans <go g1+ zgz> 1 (—1)29 1
* g3
—i 0
Rot ( 0 1) —1 1 1
-[tr 1 1 —1
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B.2. The case S = A,
LetK = Q(v/=3). Thenox = Z + Zw,w = (1 +iV/3), S = S¥ = A, and
w = (T, w1, Wa, To) = (@1, U1, Uz, T2) + (Y1, V1, V2, Y2) € Ha,

corresponds to

Z=( T wmtwuw) o0 h o i) g o),
U + Wus T V1 + Wuy Y2

The generators of 'y, and I'x

M €Ty, M (w) 1(2) 7 € Towms

J J<U)> —Z_l ']Her
+w
Tigo....08) w+ (9o, ---,93) Z+H Trans(H), H = (io 91 . 92)
_ 2
1 Wz w0

R<31 ) (71, w1 + wa, —w1, 7o) (wzz T ) Rot (O w)

M= Ry 1) | (mow fws —wn,m) |12 b

The Abelian characters of TI'x o
We haveU(2; 0k )** = (det) = C3. Because ofV/([,(Z)) = I,(M(Z)) for all M €
U(2; C) we have

— 2
[Ir, Rot (‘5 ?)] = I,, o Rot (‘6’ (1)> o I,y o Rot (“6’ (1)> = Rot (% (1)) eTl.

3

Since we also havBot (“6 (1)) = Rot (_01 ?) € I'y we get(Z — M(Z)) € '} for

all M € U(2;0k), and thugl'x : T'k] < 2. We definevgey : I'x — (C_by Vekew (Itr) == —1

and vgew (M) = 1 for M € U(2;0x). Due toM (I, (Z)) = I,(M(Z)) for all M €
U(2;C) we getl'? = (Vgew)-

7 € Tow=3) Vskew (7)
JHer 1
Trans (90 g1+ wgz) .
* g3
w? 0
Rot ( 0 w) 1
. -1
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B.3. The case S =5,
LetK = Q(v/—1). Thenog = Z + Zi\/2, S = S¥ = S, and
w = (Tlaw17w277-2) = (IE17U1,U2,ZE2) + i(ylyvhUQayQ) € HSQ

corresponds to

_ ( T (w1 — V205) +i(vy + \/§U2))
(Ul + \/51)2) + i(Ul — \/§u2) T2
T uy + i/ 2uq , Y1 v1 + 1v/20;
= H(2:C).
(u1 — iv/2uy T ) i (Ul — iv/2v, Y2 € H(%C)
The generators of I'g, and I'x

M €T, M (w) 1(Z) 7 € lg=s)

J J<w> —Z_l JHer

+1
T | 0t ng) | Z4H | Tons(), i = (407 9)
T —Z1 -1 0
R(_Ol _01) (7'1, —WwWi, —Wa, 7'2) (—2’2 T > Rot < 0 1)
Mtr:R<(1]Pl) (Tlawla_w277-2> Z Iy

The characters of I's and I'x
We haveU(2; ox)* = (v,,). We can extend,, to I'x by definingy,,(I;,) := 1. Moreover,
we definevgen : I'x — C bY Vgew(lir) 1= —1 andvgew (M) := 1 for M € U(2;0k).

Considering that/ (I;,(Z)) = I.(M{(Z)) for all M € U(2;C) we can easily verify that

F]%b = <Vp7 Vskew>-

gAS F@(\/772) Vp(’Y) Vskew(’Y)
JHer 1 1
Trans (9*0 g1 +gi\/§92) (—1)0tai+gs 1
3

-1 0
Rot(O 1) 1 1

I, 1 1




C. Eichler Transformations

We want to show that a group which is nicely generated in the sense of Definition 1.18
is also nicely generated in the sense of Freitag/Hermann [FHOO, Def. 4.7]. We use the
notation we introduced in Chapter 1. Freitag/Hermann call a subgroapO(S;;R)

nicely generated if it is generated by the grdip(A) of Eichler transformations and by

the groupO(A) considered as subgroup Of(S;; R) via the embeddingd — R4. The
groupEO(A) is generated by all Eichler transformations of the fakify;, v), 1 < j < 4,

where the pair$fi, f2) and(fs, f1) span the two hyperbolic planes which are contained in
A, and wherev € A is orthogonal tof;. In our terminology we have

fi=ea, fo=ens, fs=e1, f1= e,
where(e;)1<j<i+4 i the standard basis &f = R+, With this choice we obviously have
A =H, ® Hy® A,
whereH, = Zf, + Zf, andHy = Z f5 + Z f4 are two integral hyperbolic planes, that is
Qo fi +22fo) =210 ANd g1 (33 + 14 fs).

The Eichler transformations'( f;, v) are then defined for all € A, which are orthogonal
to f; by

E(fj,v)(a) =a— (a, f)v+ (a,0)1f; — a1 (v)(a, f;)1f; foralla € Vi.

In order to see how they act i we have to apply them to = [(—¢o(w),w,1)] € KT
(cf. Section 4.2). Then fow = (1, z, 72) andh = (0,0, 1,0,0), A € A, we get

E(f1, f3)(w) = (1 +1,2,7) =T, (w),

E(f1, f)(w) = (—qo(w) + 71, 2,72) (=15 + 1) = (JT.,,J ) (w),
E(fa, f3)(w) = (11,2, 72+ 1) =T, (W),
E(fa, f)(w) = (11, 2, —qo(w) + 72) (=1 + 1) = (JT.,J){w),
E(fi,h)(w) = (71 — NSz + q(\)70, 2 — )\7—2,7—2) = U_,(w),
E(fa,h)(w) = (11,2 = At1, 72 — NSz + q(\)71) = (JU\T)(w),
E(fs,h)(w) = (11,2 — A\, 72) = T(0,-20) (W),
B(f1, h)(w) = (71, 2 + ao(w)A ) (~a(Nao(w) — N8z + 1) = (TTigr0) )
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Since
fori =1,2andj = 3,4, and

E(fj,v1 +v2) = E(fj,v1) o E(fj,v2)

forl1 <j<4andallv;,v; € A1 N fjL we see that the above eight Eichler transformations
generate the grouBO(A). We conclude that a subgrodpof O(S;; R) which is nicely
generated in the sense of Freitag/Hermann is also nicely generated in the sense of Definition
1.18. On the other hand, we have

J(w) = (E(f1, f3) o E(fa, fa) o E(fa, f3) 0 E(f1, f1) o E(fa, f3) o E(f1, f3)) (w).

Thus the converse is also true. In fact we have shown even more, namely that the subgroup
(J, T,; g € Ay) of 'y considered as subgroup Bihol(Hs) is isomorphic to the group
EO(A).



D. Discriminant Groups

—
—~
N

—~
N
N =
SN—

N = \'O = \'o







E. Dimensions of Spaces of
Vector-valued Modular Forms

In the following tables we list the dimensions of the spaldds(2;Z), k, ps| of vector-
valued modular forms for some positive definite matriSegor weightst € %Z which do
not occur in the tables the dimensiordisWe writed(k) := dim[Mp(2; Z), k, ps].

S == Ag

A HHHEREE RS
akyfofol1lof 1] 1)1 ]ar-12+1
Pzl |2] g mrsnzT
Ry |11 223 ]38 4]dk-12)+3
S=AY

k % % % % 2n+%,n24

dk) [ 1]3] 4|5 | dk—6)+4

S:D4

Eolol2)4l6|s|10|12] 2monz7
akyfol1|1]sl2) a4 |dr-—12+4
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Notation

{flv"'afn}
|D
| X

’k,m,S

= (AZ + B)(CZ + D)~! (pp. 53, 57)

= (at +b)/(cT +d)

= (—qo(w)b+ Aw + c)(M{w})~" (p. 10)

= —vyqo(w) + "dw + 0 (p. 10)

M is positive semi-definite

M is positive definite

a € Pg (p. 31)

a € Ps (p. 31)

See p. 83

A bilinear form, usually(-, -)s (p. 9)

= (-,")s,, the bilinear form associated £ (p. 9)

= (-,")s,, the bilinear form associated 3 (p. 9)

= z:Sy, the bilinear form associated £(p. 8)

The greatest integer function

The principal branch of the square root

The commutatoyhg—h~! of g andh

The commutator factor groui /G’ of G

The commutator subgroup of

H is a subgroup ofr

The block diagonal matrix with diagonal elemerts ..., A,
The diagonal matrix with diagonal elements. . ., a,

= 'BAB

The transpose af/

The conjugate transpose bf

A certain Rankin-Cohen type differential operator (p. 36)
Siegel's®-operator (p. 33)

Restriction of a function to a subspace or subgraéup

The Petersson slash operator of weiglipp. 29, 54, 57, 66)
The slash operator of weightand index(m, S) (p. 40)



Notation

= (Wi—iﬂ the Jacobian matrix of : C* — C" (p. 35)

= det <8(F1 """ F")>, the Jacobian (determinant) 8f: C* — C" (p. 35)

The space of modular forms of weightwith respect td” andv (p. 29)
The subspace of cusp forms|ing, &, v] (p. 33)

=Tk, 1]

The space of quaternionic modular forms of weigtith respect toy (p. 58)
The space of Hermitian modular forms of weighwith respect toy (p. 54)
The subspace of cusp forms|in, &, x| (p. 54)

The space of meromorphic modular forms of weightith respect toy (p. 97)
The space of modular forms of weightwith respect tq (p. 66)

The subspace of cusp forms[dip(2;Z), k, p]

The space of nearly holomorphic modular forms of weigkp. 68)

The space of elliptic modular forms of weight

The alternating group of degree

= @,z [I', k, 1], the graded ring of modular forms with respecl't(p. 30)
=(1,...,271) (p. 81)

The Fourier coefficients of the orthogonal modular fofm

A Bernoulli number

The group of biholomorphic automorphisms on the spdce

= ((% %) ,i), the generator of the center bfp(2; Z)

The complex numbers

The group ring of the discriminant grouy /A

The polynomial ring im variables

The Fourier coefficients of a vector-valued modular form

The cyclic group of orden

An Abelian character of ¢

The dihedral group of order

The discriminant of\* (p. 84)

The determinant map or the determinant character of a modular group
The column vector consisting of the diagonal elements of the mafrix
The discriminant group* /A of A (p. 7)

= {1,0,...,0,1) € R*2 (p. 9)

An element of the standard basis, . . ., ¢;) of R!

A vector-valued Eisenstein series of weighip. 73)

The normalized orthogonal Eisenstein series of welight ', s) (p. 60)



Notation

B}

ED

By

By

E¥

€u

7

Fq

I35 fros f12

Hs(R)
Her(n; R)
I

Iy, 19,13

I,

Ly
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The normalized orthogonal Eisenstein series of weidiotr I" 4, (p. 60)
The normalized orthogonal Eisenstein series of welidior ', (p. 60)
The normalized quaternionic Eisenstein series of weidbt 'y (p. 58)
The normalized Hermitian Eisenstein series of wefghdr 'k (p. 54)
The normalized orthogonal Eisenstein series of weidior '« (p. 56)
An element of the standard basis,),,ca:/a Of C[A?/A]

The Dedekind eta function (p. 67)

The field of two elements

Certain cusp forms for 4, and/orl’ A (pp. 94, 104)

A component of a vector-valued modular fogfin

The normalized elliptic Eisenstein series of weigl{p. 45)
A subgroup of finite index of g

= U(2; ok ), the Hermitian modular group

A certain subgroup of (2; K) (p. 54)

The extended quaternionic modular group (p. 57)

={(41); n€Z} <SL(2;Z)

={((§1).1); n € Z} < Mp(2; Z)

The extended Hermitian modular group (p. 54)

= O(A1)NO7(S1; R), the orthogonal modular group with respecbt(p. 11)
The group of Abelian characters Bf; (p. 22)

The group of invertible: x n matrices with elements iR

Class number of an imaginary quadratic number field with discrimifant
The Hermitian half-space of degredp. 53)

The half-space of quaternions of dege@. 57)

The Hamilton quaternions

A subspace ofl (p. 13)

The complex upper half plane- € C; Tm(7) > 0}

The (orthogonal) half-space associatedtp. 9)

A certain subset oP¢ (p. 78)

Certain modular forms of weiglit € {4, 6, 8, 10, 12} for FA@ (p. 62)

The Heisenberg group (p. 27)

The set of Hermitiam x n matrices with elements iR
An identity matrix

The canonical non-real basis element&lof

The identity matrix inMat(n; R)

The involution onH (2; C) or H(2; H) mappingZ to 'Z
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Ls

v

Im(z)

J

s (0, (7, 2))
j(Mv w)

J

Ju

JHer
jHer(M7 Z)
Jk(m, S)
Jk(m, S, V)
JY(m, S)
JY(m, S, v)
(R)

(Z)

NN

K
K
(I's)

Notation

The isomorphisnR! — Hg (p. 13)

An isometric embedding ot in Ag (p. 45)

The imaginary part of € C

A certain element of g, or the element(? '), v/7) € Mp(2;Z) (p. 11)
A factor of automorphy o/s(R) x (H x C') (p. 40)

= M{w}, the factor of automorphy 00+ (S;; R) x Hg (p. 29)
A certain element 0O (Ao) (p. 11)

= (1 o)

A factor of automorphy orSp(2; O), pl,) x H(2;H) (p. 59)
= (1 o) .

A factor of automorphy o'(2, K) x H(2;K) (p. 55)

= Jg(m, S, 1)

The space of Jacobi forms of indéx, S) and weight: with respectta (p. 41)

= J(m, S, 1)

The subspace of Jacobi cusp formg/jim, S, v) (p. 41)
The Jacobi group (p. 27)

The integral Jacobi group (p. 28)

An imaginary quadratic number field (p. 53)
={[Z] e N; (Z,Z), > 0} (p. 83)

The field of orthogonal modular functions fbg (p. 97)
A component ofC (p. 84)

A positive integer, usually the rank 6f

A lattice, usuallyZ' and even of signatur@, /)
Usually an element of or A

=ZxXNANXZ

=Z XNy xXZ

=A®zQ

The lattice associated 6 (p. 45)

A rational quadratic divisor (p. 84)

The dual lattice of\ (p. 7)

The Maal space ifi'y, &, 1] (p. 58)

= M(Tg,k, 1)

The Maal space ifi's, k, v/

A certain element of 5 (p. 12)

A certain element of 5 (p. 12)

A certain element of 5 (a rotation) (p. 20)
Usually an element of* or A*/A



Notation

Ho

Mat(n, m; R)
Mat(n; R)
Mp(2; R)
Mp(2; Z)
Mp(2; Z)[N]
N(z)
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An element ofA} or A% /A,

The group ofn x m matrices with elements iR

The ring ofn x n matrices with elements iR

The metaplectic cover ¢fL,(2; R) (p. 65)

The integral metaplectic group (p. 65)

The principal congruence subgroupldb(2; Z) of level N
= 2z, the norm oriH (p. 13)

The natural number§l, 2,3, ...}

=NU{0}

The zero-quadric iP(V;(C)) (p. 83)

An Abelian character of ¢

The Siegel character afs (p. 24)

The character of the Dedekind eta function (p. 67)
The Siegel character dfx (p. 55)

The orthogonal character 6f; (p. 22)

A certain Abelian character afy (p. 59)

The symmetry character of (p. 55)

A certain Abelian character afy (p. 59)

The real orthogonal group of signatuie, b~) (p. 8)
The orthogonal group of (p. 8)

The discriminant kernel aD(A) (p. 8)

={A € O(Ao); A-Hs ="Hs} (p. 15)

The real orthogonal group with respectddp. 8)
The connected component of the identity®({S;; R) (p. 10)
The Hurwitz order (p. 13)

= O NHg (p. 13)

The ring of integers of the imaginary quadratic number fi€l¢h. 53)
= %(1+i1+12+i3)

A certain element of 5 (a rotation) (p. 12)

The projective space af; (C)

A certain element 0©*(Ag) (p. 12)

The positive cone associatedddp. 9)

= {v € Ps; qo(v) =1} (p. 77)

The closure ofPs (p. 31)

The parabolic subgroup @ (S;; R) (p. 26)

= P5(R) NTs (p. 28)

Siegel's®-operator (p. 33)
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on A Borcherds product of weighi for FA<12) (p- 56)

09 A Borcherds product of weiglitfor I" 4, (p. 56)

®10 A Borcherds product of weighit0 for FA(12> (p. 56)

®30 A Borcherds product of weigls for FA(12> (p. 56)

Pa5 A Borcherds product of weight5 for I' 4, (p. 56)

o A certain biholomorphic isomorphism frof ,, to H(2; H) (p. 58)
0K A certain biholomorphic isomorphism froffi s« to H(2; C) (p. 54)
Om A Fourier-Jacobi coefficient of index (p. 38)

U3 A Borcherds product of weigtt for FA§3> (p. 100)

g A Borcherds product of weiglgfor I' 4, (p. 92)

gy A Borcherds product of weigltfor I' 4, (p. 92)

18 A Borcherds product of weight8 for FA(I‘” (p. 100)

U0 A Borcherds product of weigh0 for FA(13> (p. 100)

V30 A Borcherds product of weigls0 for FA@ (p. 100)

(N A Borcherds product of weight for I' 4, (p. 92)

U A Borcherds product of weiglit (p. 85)

PO(S1;R) = O(Si;R)/{£I} (p. 10)

PO*(S;R) = O%(S;;R)/{%I} (p. 10)

Pos(n; R) The ring of positive definite Hermitian x n matrices with elements iR
q e?™7 for r € H, or a quadratic form and then usually (p. 9)
q(p+A) =q(p) +Zp.7)

Q The rational numbers

9o = ¢s,, the quadratic form associated4 (p. 9)

¢ = q¢g,, the quadratic form associated4o (p. 9)

qs(z) = %(w, x)s, the quadratic form associatedSqp. 8)

R The real numbers

Ry A certain element of s (a rotation) (p. 12)

R, A certain element of s (a rotation) (p. 12)

) = (1411)/v/2, or afinite representation &fp(2; Z)

Ps The Weil representation attached(tv /A, ¢s) (p. 68)

pg The dual representation pf;

Ps The induced Weil representation ¢a, —e_,,; 1 € A*/A} (p. 71)
pe The induced Weil representation ¢a, + c¢_,; u € A*/A} (p. 71)
0 A component ofp (W)

of The Weyl vector off

or(W) The Weyl vector associated W& and f (p. 79)



Notation

Oz

SU(2; K)
Sym(n; R)
T

Ty
o(r; S, pr)
O,

0,(7: S, pr)
T,T1, T2
trace(M)
Trans(H)

U(2; K)
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A component ofos (W)

A component ofos (W)

The real part ot € C

= (U 0)forU e GL(2;H) or U € GL(2;K)

A nonsingular real symmetric matrix, usually even

The symmetric group of degree

An extension of-S of signaturg(1,l + 1)

An extension ofS, of signature(2, [ + 2)

The even matrix associated to the imaginary quadratic Ke{d. 54)
The sign function

The group ofn x n matrices with elements iR and determinant
The special orthogonal group af(p. 19)

The symplectic group of degr@eoverH (p. 57)

The symplectic group of degreeover R

={g € G; gx € X forall z € X}, the stabilizer ofX in G
= U(2; K)NSL(4; K), the special unitary group of degr2everK (p. 53)
The set of symmetrie x n matrices with elements iR

= ((41).1) € Mp(2:2)

A certain element of s (a translation) (p. 11)

A vector-valued theta series (p. 75)

A quaternionic theta series (p. 60)

A component o (7; S, p,)

Usually elements o

The trace of the matrid/

= (% 1) for H € Her(2; H) or H € Her(2;K)

The unitary group of degreeoverK (p. 53)

A certain element of s (a rotation) (p. 12)

A certain element of s (a rotation) (p. 12)

A certain element 00" (Ag) (p. 12)

= A ® R, usuallyR

=VeC

= (1, —z*a(z), ) (p. 81)

Ag®R

A ®R

= v(x)/V/q(v(z))

Usually an element df{s of the form(ry, z, 72)

The Weyl chamber of (p. 82)



Certain quaternionic theta series (p. 60)
An element ofH (2; C) or H (2; H)
Usually an element of"

The integers

Notation



Index

automorphism
biholomorphic, 10

bilinear form, 7
Borcherds product, 85
Borcherds products, 77

character
orthogonal, 22
Siegel, 22
characters
Abelian, 22
cocycle condition, 29
commutator subgroup, 21
cusp form, 33
Hermitian, 54
Jacobi, 41
vector-valued, 66

Dedekind eta function, 67
determinant, 22
differential operator, 35
dimension formula, 70
discriminant, 84
discriminant group, 7
discriminant kernel, 8
divisor

rational quadratic, 84
dual lattice, 7

Eisenstein series
elliptic, 45
Hermitian, 54

orthogonal, 56, 60

guaternionic, 58

vector-valued, 73
embedding

isometric, 45
Euclidean lattice, 9
even

lattice, 7

matrix, 8

factor of automorphy, 29
Fourier expansion, 31
Fourier-Jacobi expansion, 38

graded ring, 30

half-space, 9
Hermitian, 53
of quaternions, 57
Heisenberg group, 27

index, 40

Jacobi cusp form, 41
Jacobi form, 40
Jacobi forms, 38
Jacobi group, 27
Jacobian, 35

Koecher’s principle, 32

lattice, 7
dual, 7
Euclidean, 9
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even, 7
level
of a lattice, 7

Maalf3 form, 42
Maal3 space, 42, 58
metaplectic group, 65
modular form
Hermitian, 54
meromorphic, 97
nearly holomorphic, 68
orthogonal, 29
guaternionic, 57
skew-symmetric, 54
symmetric, 54
vector-valued, 66
modular forms
Hermitian, 53
vector-valued, 65
modular function, 97
modular group
Hermitian, 53
extended, 54
orthogonal, 10, 11
guaternionic, 57

nicely generated, 15

obstruction space, 87
operator

differential, 35
order

Hurwitz, 13
orthogonal group, 7, 8

parabolic subgroup, 26
d-operator, 33
polynomial

spherical, 74
primitive, 7
principal part, 68

guadratic form, 7
quadratic space, 7

representation
dual, 68
Weil, 68

restriction, 45

Siegel'sd-operator, 33
slash operator, 66
special unitary group, 53
spherical polynomial, 74
symplectic group, 57

theta series, 74, 75

unitary group, 53
special, 53

Weil representation, 68
Weyl chamber, 78, 82
Weyl vector, 79, 82
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