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Introduction

We consider modular forms for orthogonal groupsO(2, l + 2) with particular emphasis on
the casel = 3. Modular forms forO(2, 3) correspond to Siegel modular forms of degree
2. In the 1960’s Igusa [Ig64] used theta constants in order to describe the graded ring of
Siegel modular forms of degree2. Using Igusa’s method Freitag [Fr67] was able to deter-
mine the graded ring of symmetric Hermitian modular forms of degree2 over the Gaussian
number fieldQ(

√
−1) which corresponds to the case of modular forms forO(2, 4). Na-

gaoka [Na96], Ibukiyama [Ib99b] and Aoki [AI05] completed the description the graded
ring in terms of generators and relations. Other cases corresponding to modular forms for
O(2, 4) where dealt with by Dern and Krieg. They determined the graded rings of Her-
mitian modular forms of degree2 including the Abelian characters for the number fields
Q(
√
−1), Q(

√
−2) andQ(

√
−3) (cf. [De01], [DK03], [DK04]). Instead of using estima-

tions on theta series as in Igusa’s approach they applied the theory of Borcherds products
(cf. [Bo98]) in order to obtain Hermitian modular forms with known zeros. Then a similar
reduction process as the one used by Igusa and Freitag yields their structure theorems. The
general case of modular forms forO(2, l+ 2) was studied by Freitag and Hermann [FH00]
from a geometrical point of view. They derived partial results on modular forms forO(2, 5)
by embedding suitable lattices into the Hurwitz quaternions.

Using similar methods as Dern and Krieg we will characterize the graded rings of or-
thogonal modular forms for two maximal discrete subgroups ofO(2, 5). Let S be an even
positive definite symmetric matrix of rankl, and let

S0 :=
(

0 0 1
0 −S 0
1 0 0

)
, S1 :=

(
0 0 1
0 S0 0
1 0 0

)
.

The bilinear form associated toS0 is given by(a, b)0 = taS0b for a, b ∈ Rl+2 and the
corresponding quadratic form isq0 = 1

2
(·, ·)0. The attached half-space is

HS = {w = u+ iv ∈ Cl+2; v ∈ PS},

wherePS = {v ∈ Rl+2; (v, v)0 > 0, (v, e) > 0}, e = t(1, 0, . . . , 0, 1). The orthogonal
group

O(S1; R) = {M ∈ Mat(l + 4; R); tMS1M = S1}
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acts onHS ∪ (−HS) as group of biholomorphic rational transformations via

w 7→M〈w〉 = (−q0(w)b+ Aw + c) j(M,w)−1 for M =

(
α ta β
b A c
γ td δ

)
∈ O(S1; R),

wherej(M,w) = −γq0(w) + tdw + δ. The orthogonal modular group is given by

ΓS = {M ∈ O(S1; R); M〈HS〉 = HS, MΛ1 = Λ1}.

An orthogonal modular form of weightk ∈ Z with respect to an Abelian characterν of ΓS

is a holomorphic functionf : HS → C satisfying

(f |kM)(w) := j(M,w)−k f(M〈w〉) = ν(M) f(w) for all w ∈ HS, M ∈ ΓS.

The vector space[ΓS, k, ν] of those functions is finite dimensional. Iffj ∈ [ΓS, kj, νj],
j = 1, 2, thenf1f2 ∈ [ΓS, k1 + k2, ν1ν2]. Thus

A(ΓS) =
⊕
k∈Z

[ΓS, k, 1] and A(Γ′S) =
⊕
k∈Z

⊕
ν∈Γab

S

[ΓS, k, ν],

whereΓ′S is the commutator subgroup ofΓS andΓab
S is the group of Abelian characters of

ΓS, form graded rings. Our main goal is the explicit description of those graded rings in
terms of generators for

S = A3 =
(

2 1 0
1 2 1
0 1 2

)
and S = A

(3)
1 =

(
2 0 0
0 2 0
0 0 2

)
.

It turns out that in both cases the graded ringA(ΓS) is a polynomial ring in six (alge-
braically independent) generators while the graded ringsA(Γ′S) are freeR-modules of
rank2 and4, respectively, where in both casesR is an extension of degree two ofA(ΓS).
In the case ofS = A3 we can simply take certain Eisenstein series and Borcherds products
as generators. In the other case we determine the invariant ring of a finite representation
which is given by the action of a subgroup of the quaternionic symplectic group on quater-
nionic theta series. The restrictions of the primary invariants and some Borcherds products
generate the graded rings forS = A

(3)
1 . In both cases Borcherds products play an impor-

tant role. In a first step the explicitly known zeros of the Borcherds products allow us to
reduce the problem of determining the graded ringA(Γ′S) of modular forms with Abelian
characters to the problem of determining the graded ringA(ΓS) of modular forms of even
weight with respect to the trivial character. In the next step we use the fact that we already
know the generators of the graded rings of modular forms living on certain submanifolds
ofHS on which suitable Borcherds products vanish of first order. In the case ofS = A3 we
can derive our results from Dern’s result forQ(

√
−3), and in the case ofS = A

(3)
1 we use

the results forQ(
√
−1). As an application of our results we describe the attached fields of

orthogonal modular functions.
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We now briefly describe the content of this thesis:

In the first chapter we collect the necessary facts and results about orthogonal groups. In
particular, we explicitly determine generators and Abelian characters of certain orthogonal
modular groupsΓS, and we introduce the paramodular subgroup ofΓS.

In the second chapter we define the main object of our studies, the orthogonal modu-
lar forms, and state some fundamental results. In particular, we show that, unlike elliptic
modular forms, orthogonal modular forms automatically possess an absolutely and locally
uniformly convergent Fourier series due to Koecher’s principle. Moreover, we introduce
the notion of cusp forms and show that, as usual, the subspace of cusp forms can be char-
acterized by Siegel’sΦ-operator. Then we consider a certain differential operator which
allows us to construct non-trivial orthogonal modular forms from a number of algebraically
independent orthogonal modular forms. The next two sections deal with Jacobi forms and
the Maaß space. An explicit formula for the dimension of certain Maaß spaces is derived
from a dimension formula for spaces of Jacobi forms. Next we take a look at restrictions
of orthogonal modular forms to submanifolds and give a brief introduction into Hermitian
and quaternionic modular forms of degree2. We translate the results about graded rings of
Hermitian modular forms of degree2 from the symplectic point of view to our terminol-
ogy, and we define orthogonal Eisenstein series forS = A3 andS = A

(3)
1 as restrictions of

quaternionic Eisenstein series. Finally, we consider a5-dimensional finite representation of
Γ

A
(3)
1

, determine its invariant ring using the MAGMA and get five algebraically independent
modular forms forΓ

A
(3)
1

whose restrictions to a certain submanifold generate the graded
ring of orthogonal modular forms of even weight and trivial character corresponding to
Hermitian modular forms over the Gaussian number field.

In the third chapter we recall fundamental facts about vector-valued elliptic modular
forms for the metaplectic groupMp(2; Z). We focus on holomorphic vector-valued modu-
lar forms with respect to the Weil representationρS attached to a certain quadratic module
(Λ]/Λ, qS) associated toS. A dimension formula for spaces of holomorphic vector-valued
modular forms is given, and two classes of vector-valued modular forms whose Fourier
expansions can be explicitly calculated are introduced: Eisenstein series and theta series.
Moreover, so-called nearly holomorphic vector-valued modular forms, that is vector-valued
modular forms with a pole in the cusp∞, are defined.

In the fourth chapter we briefly review the theory of Borcherds products specializing
Borcherds’s results to our setting. Borcherds products are constructed from nearly holo-
morphic vector-valued modular forms of weight−l/2 with respect to the dual Weil repre-
sentationρ]

S. They are orthogonal modular forms, but in general they are not holomorphic.
The most remarkable property of a Borcherds product is the fact that its zeros and poles
are completely determined by the principal part of the nearly holomorphic modular form
the Borcherds product is constructed from. The zeros and poles lie on so-called rational
quadratic divisors which correspond to embedded orthogonal half-spaces of codimension
1. It is intuitively clear that it is desirable to find holomorphic Borcherds products with as
few zeros of as low order as possible. The existence of nearly holomorphic modular forms
with suitably nice principal part is controlled by the so-called obstruction space, the space
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of holomorphic vector-valued modular forms of weight2 + l/2 with respect toρS.
In the fifth chapter we derive our main results. ForS = A3 andS = A

(3)
1 we start by de-

termining nice Borcherds products. In the first case the obstruction space is1-dimensional
and spanned by an Eisenstein series while in the other case it is3-dimensional and spanned
by an Eisenstein series and two theta series. Nevertheless in both cases the existence of
principal parts of nearly holomorphic modular forms mainly depends only on the Fourier
coefficients of the Eisenstein series. This allows us to construct Borcherds products which
vanish only on one rational quadratic divisor and only of first order. Orthogonal modu-
lar forms with non-trivial character have to vanish on certain rational quadratic divisors.
Since the Borcherds products we constructed vanish of first order we can divide orthogo-
nal modular forms with non-trivial character by suitable Borcherds products. This way we
can reduce all orthogonal modular forms to orthogonal modular forms with respect to the
trivial character. It turns out that in the two cases we consider all non-trivial orthogonal
modular forms with respect to the trivial character are of even weight. Thus it remains to
determine the graded rings of modular forms of even weight and with trivial character. In
the case ofS = A3 we show that the ring of orthogonal modular forms of even weight and
with trivial character corresponding to Hermitian modular forms forQ(

√
−3) is generated

by the restrictions of four orthogonal Eisenstein series and the restriction of the square of
a Borcherds product. So by subtracting a suitable polynomial in those functions from an
arbitrary modular form of even weight and with trivial character we get a function which
vanishes on a submanifold corresponding to the Hermitian half-space forQ(

√
−3). Again

we can divide by a suitable Borcherds product and by induction we get our main result in
the case ofS = A3. In the other case we use the five algebraically independent modular
forms we determined in chapter two in order to derive a corresponding result. We conclude
the chapter by a few corollaries including the determination of the algebraic structure of
the fields of orthogonal modular functions.

This thesis was written at the Lehrstuhl A für Mathematik, Aachen University. The work
was supervised by Prof. Dr. A. Krieg. I am indebted to him for his valuable suggestions
and encouragement. Without his support this work would not have been possible.

Furthermore, I would like to thank Prof. Dr. N. Skoruppa for supporting me during my
stay at Bordeaux and for accepting to act as second referee.

Part of this work was funded by a scholarship of the Graduiertenkolleg “Analyse und
Konstruktion in der Mathematik” of Aachen University. For the granted financial support I
would like to thank the speaker of the Graduiertenkolleg, Prof. Dr. V. Enß.

Moreover, I thank all my present and former colleagues at the Lehrstuhl A für Mathe-
matik for many valuable discussions.

Last but not least, I would like to express my deepest gratitude to my parents and my
brother and his wife for their continued support, encouragement, patience and love over all
my years of study.



0. Basic Notation

We use the following notation (for a detailed list see the table of notation on pages 125 ff.):
N is the set of positive integers,N0 is the set of non-negative integers,Z is the ring of the
integers,Q, R andC are the fields of rational, real and complex numbers, respectively, and
H is the skew field of Hamilton quaternions with standard basis1, i1, i2, i3 = i1i2.

LetR be a suitable ring with unity, i.e., commutative whenever necessary.Mat(n,m;R)
is the group ofn×m matrices overR, Mat(n;R) is the ring ofn× n matrices over
R, GL(n;R) andSL(n;R) are the general linear group and the special linear group in
Mat(n;R), respectively.Sym(n;R) denotes the set of symmetric matrices,Her(n;R) the
set of Hermitian matrices, andPos(n;R) ⊂ Her(n;R) the ring of positive definite Hermi-
tian matrices inMat(n;R). ForH ∈ Her(n;R) we writeH > 0 if H is positive definite
and we writeH ≥ 0 if H is positive semi-definite.In is the identity matrix inMat(n;R).
If the dimension is obvious then we also write simplyI.

ForA ∈ Mat(n;R) andB ∈ Mat(n,m;R) we denote the transpose ofB by tB, the
conjugate transpose ofB by tB, and we defineA[B] := tBAB. For matricesAj ∈
Mat(nj;R), 1 ≤ j ≤ n, we define

A1 × . . .× An :=

A1 0 0

0
... 0

0 0 An

 ,

and for a1, . . . , an ∈ R we denote the diagonal matrix with diagonal elementsaj by
[a1, . . . , an].

Let G be a group. Forg, h ∈ G we define the commutator ofg andh by [g, h] :=
ghg−1h−1. We denote the commutator subgroup ofG by G′ and the commutator factor
group ofG by Gab := G/G′. The latter coincides with the group of Abelian characters
G→ C× which we also denote byGab.

We will sometimes write column vectors as row vectors because row vectors take less
vertical space. In this case we will omit the “transpose” symbol whenever it is clear from
the context what we actually mean.





1. Orthogonal Groups

1.1. Lattices and orthogonal groups

Definition 1.1 A lattice is a freeZ-module of finite rank equipped with a symmetricZ-
valued bilinear form(·, ·). We call a latticeΛ evenif (λ, λ) is even for allλ ∈ Λ. The
associated quadratic formq is defined by

q(λ) =
1

2
(λ, λ) for all λ ∈ Λ.

Let Λ be a lattice. IfΛ is even thenq obviously takes its values inZ.
Henceforth we always assume thatΛ is non-degenerate. We setV := Λ ⊗ R. SinceΛ

contains a basis of theR-vector spaceV the bilinear form(·, ·) onΛ×Λ induces a bilinear
form onV × V which we again denote by(·, ·). The associated quadratic form is again
denoted byq. Then the pair(V, q) is a quadratic space.

Definition 1.2 For a latticeΛ with attached bilinear form(·, ·) thedual latticeΛ] is defined
by

Λ] := {µ ∈ V ; (µ, λ) ∈ Z for all λ ∈ Λ}.

We obviously haveΛ ⊂ Λ]. Therefore the following definitions make sense.

Definition 1.3 LetΛ be a lattice.
a) The finite Abelian group

Dis(Λ) := Λ]/Λ

is called thediscriminant groupof Λ.
b) Thelevelof the latticeΛ is defined by

min{n ∈ N; nq(µ) ∈ Z for all µ ∈ Λ]}.

c) µ ∈ Λ] is calledprimitive if Qµ ∩ Λ] = Zµ, i.e.,max{n ∈ N; 1
n
µ ∈ Λ]} = 1.

Proposition 1.4 Let Λ be an even lattice. Then the mapq : Dis(Λ) → Q/Z which is
induced byq onDis(Λ), i.e., which is given by

q(µ+ Λ) = q(µ) + Z

for all µ ∈ Λ], is well defined.
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PROOF Let µ+ Λ = µ′ + Λ ∈ Dis(Λ). Thenµ′ = µ+ λ for someλ ∈ Λ and

q(µ′)− q(µ) = q(µ+ λ)− q(µ) = (µ, λ) + q(λ) ∈ Z.

Thusq(µ′ + Λ) = q(µ+ Λ). �

Now let l ∈ N, Λ = Zl, V = Λ ⊗ R ∼= Rl, and letS ∈ Sym(l; R) ∩ GL(l; R) be
a nonsingular real symmetric matrix. We define the symmetric bilinear form(·, ·)S on V
associated toS by (x, y)S = txSy for x, y ∈ V , and we denote the corresponding quadratic
form by qS, i.e.,

qS(x) =
1

2
(x, x)S =

1

2
S[x]

for x ∈ V . If it is clear to which matrixS the bilinear form(·, ·)S and the quadratic form
qS correspond to then we simply write(·, ·) andq respectively.

If S ∈ Sym(l; Z) ∩GL(l; R) is a nonsingular integral symmetric matrix thenΛ together
with (·, ·)S is a lattice of rankl, the lattice associated toS. Obviously we haveΛ] = S−1Λ,
and thus the discriminant groupDis(Λ) is of orderdetS. We callS aneven matrixif the
associated lattice is an even lattice.

Definition 1.5 LetS ∈ Sym(l; R)∩GL(l; R) be a nonsingular real symmetric matrix. The
real orthogonal groupO(S; R) with respect toS is defined by

O(S; R) := {M ∈ Mat(l; R); S[M ] = S}
= {M ∈ Mat(l; R); qS(Mx) = qS(x) for all x ∈ Rl}.

Remark 1.6 Up to isomorphism the real orthogonal groupO(S; R) only depends on the
signature(b+, b−) of S. Therefore one often writesO(b+, b−) for O(S; R). Moreover, note
thatdet(S[M ]) = detS yieldsdetM = ±1 for all M ∈ O(S; R).

Definition 1.7 Suppose thatS ∈ Sym(l; Z)∩GL(l; R) is a nonsingular integral symmetric
matrix. LetΛ be the lattice associated toS. The stabilizer ofΛ in O(S; R) is denoted by
O(Λ), i.e., we have

O(Λ) = {M ∈ O(S; R); MΛ = Λ}.

Remark 1.8 The conditionMΛ = Λ is equivalent toM ∈ GL(l; Z). ThusO(Λ) is a
subgroup ofGL(l; Z). In fact we haveO(Λ) = O(S; R) ∩GL(l; Z).

One easily verifies that we haveMΛ] = Λ] for all M ∈ O(Λ). ThusO(Λ) acts on the
discriminant groupDis(Λ) of Λ which leads to the following definition.

Definition 1.9 Let Λ be the lattice associated to a nonsingular integral symmetric matrix
S. Thediscriminant kernelOd(Λ) of O(Λ) is the kernel of the action ofO(Λ) on the
discriminant groupDis(Λ).

Finally we define a property of lattices which will be crucial for the existence of a nice
system of generators of the corresponding modular group.
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Definition 1.10 Let Λ be the lattice associated to a positive definite symmetric matrixS.
We callΛ Euclideanif for all x ∈ Rl there existsλ ∈ Λ such that

qS(x+ λ) < 1.

1.2. O(2, l + 2) and the attached half-space

We are particularly interested in certain integral symmetric matrices of signature(2, l+ 2),
l ∈ N. LetS ∈ Pos(l; R) be a positive definite even matrix. We set

S0 :=

0 0 1
0 −S 0
1 0 0

 andS1 :=

0 0 1
0 S0 0
1 0 0

 .

ThenS0 is of signature(1, l + 1) andS1 is of signature(2, l + 2). We use the following
abbreviations for the associated bilinear forms and quadratic forms:

(·, ·) = (·, ·)S, q = qS,

(·, ·)0 = (·, ·)S0 , q0 = qS0 ,

(·, ·)1 = (·, ·)S1 , q1 = qS1 .

Moreover, we sete := t(1, 0, . . . , 0, 1) ∈ Rl+2 and define

HS := {w = u+ iv ∈ Cl+2; v ∈ PS},

where

PS := {v ∈ Rl+2; q0(v) > 0, (v, e)0 > 0}
= {(v0, ṽ, vl+1) ∈ R× Rl × R; v0vl+1 > qS(ṽ), v0 > 0}.

ThenPS is the domain of positivity of a certain Jordan algebra with unit elemente, andHS

is a Hermitian symmetric space of type (IV) in Cartan’s classification and a Siegel domain
of genus1 (cf. [PS69]) and corresponds to the groupO(2, l + 2) (cf. [Kr96]).

Note that we have
HS ⊂ H× Cl ×H

whereH = {τ ∈ C; Im(τ) > 0} denotes the complex upper half plane. Therefore we will
usually write the elements ofHS in the formw = (τ1, z, τ2), τ1, τ2 ∈ H, z ∈ Cl.

In the orthogonal context we write a matrixM ∈ Mat(l + 4; R) always in the form

M =

α ta β
b A c
γ td δ

 , whereA ∈ Mat(l + 2; R).
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Then we haveM ∈ O(S1; R) if and only if 2αγ + S0[b] α td+ tbS0A+ γ ta αδ + tbS0c+ βγ
αd+ tAS0b+ γa a td+ S0[A] + d ta βd+ tAS0c+ δa
αδ + tbS0c+ βγ β td+ tcS0A+ δ ta 2βδ + S0[c]

 =

0 0 1
0 S0 0
1 0 0

 . (1.1)

The real orthogonal groupO(S1; R) acts transitively onHS := HS ∪ (−HS) as a group
of biholomorphic automorphisms via

w 7→M〈w〉 := (−q0(w)b+ Aw + c)(M{w})−1,

where
M{w} := −γq0(w) + tdw + δ

(cf. [Bü96],[Kr96]). In fact all biholomorphic automorphisms ofHS have this form,
and they either induce an automorphism ofHS (and−HS) or they permute the two con-
nected componentsHS and−HS of HS. A matrix M ∈ O(S1; R) acts trivially onHS

if and only if M lies in the centerCent(O(S1; R)) = {±I} of O(S1; R). Thus the
group of biholomorphic automorphisms ofHS, denoted byBihol(HS), is isomorphic to
PO(S1; R) := O(S1; R)/{±I}.

Definition 1.11 We define

O+(S1; R) := {M ∈ O(S1; R); M〈HS〉 = HS}

as the subgroup ofO(S1; R) stabilizingHS.

Remark 1.12 O+(S1; R) acts transitively onHS as a group of biholomorphic automor-
phisms (cf. [Bü96, Satz 2.17]) and we have

Bihol(HS) ∼= PO+(S1; R) := O+(S1; R)/{±I}.

Proposition 1.13 LetM = ( ∗ ∗ ∗
C ∗ D ) ∈ O(S1; R), C,D ∈ Mat(2; R). Then

M ∈ O+(S1; R) if and only if det

(
C

(
0 1
1 0

)
+D

)
> 0.

PROOF For allM ∈ O(S1; R) we have eitherM〈HS〉 = HS or M〈HS〉 = −HS. Thus
M ∈ O+(S1; R) holds if and only ifM〈ie〉 ∈ HS whereie = t(i, 0, . . . , 0, i) ∈ HS. For
details confer [Bü96, Satz 2.15]. �

1.3. The orthogonal modular group

Let Λ = Zl, Λ0 = Z × Λ × Z andΛ1 = Z × Λ0 × Z. Λ, Λ0 andΛ1 are even lattices
with respect toS, S0 andS1, respectively. The corresponding dual lattices areΛ] = S−1Zl,
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Λ]
0 = Z × Λ] × Z andΛ]

1 = Z × Λ]
0 × Z = Z × Z × Λ] × Z × Z, respectively. Thus we

obviously haveDis(Λ) ∼= Dis(Λ0) ∼= Dis(Λ1) where the isomorphisms are given by

Dis(Λ) → Dis(Λ0), λ+ Λ 7→ (0, λ, 0) + Λ0,

Dis(Λ0) → Dis(Λ1), λ0 + Λ 7→ (0, λ0, 0) + Λ1.

Moreover, note that

q(λ+ Λ) = q0((0, λ, 0) + Λ0) = q1((0, 0, λ, 0, 0) + Λ1) for all λ ∈ Λ].

Because of this we will often use the three discriminant groups interchangeably, and, by
abuse of notation, we will often simply writeλ instead of(0, λ, 0) or (0, 0, λ, 0, 0).

Definition 1.14 Theorthogonal modular groupΓS with respect toS is defined by

ΓS := O(Λ1) ∩O+(S1; R).

In Section 1.1 we already saw thatO(Λ1) acts on the discriminant groupDis(Λ1). ThusΓS

also acts onDis(Λ1). We can say even more about this action.

Proposition 1.15 ΓS acts on the sets of elements ofDis(Λ1) with the same value ofq1. For

M =

∗ ∗ ∗
∗ A ∗
∗ ∗ ∗

 ∈ ΓS,

whereA ∈ Mat(l; Z), both, the action ofΓS onDis(Λ1) and the action ofΓS on the sets of
elements ofDis(Λ1) with the same value ofq1, only depend onA.

PROOF For allM ∈ ΓS we have

q1(M(µ+ Λ1)) = q1(Mµ+ Λ1) = q1(Mµ) + Z = q1(µ) + Z = q1(µ+ Λ1).

SinceDis(Λ1) = {0 + Z} × {0 + Z} × Dis(Λ)× {0 + Z} × {0 + Z} it is clear that both
actions only depend onA. �

Proposition 1.16 The following matrices belong toΓS:

(1) ±Il+4,

(2) J =

 0 0 −1

0 J̃ 0
−1 0 0

, whereJ̃ =

 0 0 −1
0 Il 0
−1 0 0

,

(3) Tg =

1 − tgS0 −q0(g)
0 Il+2 g
0 0 1

, g ∈ Λ0,
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(4) Uλ =

1 0 0

0 Ũλ 0
0 0 1

, whereŨλ =

1 tλS q(λ)
0 Il λ
0 0 1

, λ ∈ Λ,

(5) λU =

1 0 0

0 λŨ 0
0 0 1

, whereλŨ =

 1 0 0
λ Il 0
q(λ) tλS 1

, λ ∈ Λ,

(6) Rg =

εg 0 0

0 R̃g 0
0 0 εg

, whereR̃g = (Il+2 − εgg
tgS0)J̃ , if g ∈ Λ0 such thatεg =

q0(g) = ±1,

(7) MD =

 α −β
−γ δ 0 0

0 Il 0

0 0 α β
γ δ

,D =

(
α β
γ δ

)
∈ SL(2; Z),

(8) M∗
D :=

 α 0
0 α 0 −β 0

0 β

0 Il 0
−γ 0
0 γ 0 δ 0

0 δ

,D =

(
α β
γ δ

)
∈ SL(2; Z),

(9) P = (1)× P̃ × (1), whereP̃ =

0 0 1
0 Il 0
1 0 0

,

(10) RA =

I2 0 0
0 A 0
0 0 I2

, A ∈ O(Λ).

PROOF In [Bü96, Prop. 2.27] Bühler proved that matrices of the forms (1)–(7) belong to
ΓS. For the remaining matrices one easily verifies that they belong toO+(S1; R) by using
the definition ofO(S1; R) and the characterisation ofO+(S1; R) (Proposition 1.13). It
remains to be proved thatMΛ1 = Λ1 for those matrices. According to the remark following
Definition 1.14, this is equivalent toM ∈ GL(l + 4; Z) which follows immediately from
detM∗

D = det
((

α β
γ δ

)
×
(

α −β
−γ δ

)
× Il

)
= 1 for D =

(
α β
γ δ

)
∈ SL(2; Z), detP = −1 and

detRA = detA = ±1 for A ∈ O(Λ) ⊂ GL(l; Z). �
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The above elements ofΓS act as follows onw = (τ1, z, τ2) ∈ HS:

J〈w〉 = −q0(w)−1(τ2,−z, τ1),
Tg〈w〉 = w + g, for g ∈ Λ0,

Uλ〈w〉 = (τ1 + tλSz + q(λ)τ2, z + λτ2, τ2), for λ ∈ Λ,

Rg〈w〉 = q0(g)R̃gw, for g ∈ Λ0 with q0(g) = ±1,

MD〈w〉 =

(
τ1 −

γq(z)

γτ2 + δ
,

z

γτ2 + δ
,
ατ2 + β

γτ2 + δ

)
, for D =

(
α β
γ δ

)
∈ SL(2; Z),

M∗
D〈w〉 =

(
ατ1 + β

γτ1 + δ
,

z

γτ1 + δ
, τ2 −

γq(z)

γτ1 + δ

)
, for D =

(
α β
γ δ

)
∈ SL(2; Z),

P 〈w〉 = (τ2, z, τ1),

RA〈w〉 = (τ1, Az, τ2), for A ∈ O(Λ).

1.4. Generators of certain orthogonal modular
groups

In this section we will show that for certainS the orthogonal modular groupΓS is nicely
generated. We will consider the following matrices:

D4 =


2 0 0 1
0 2 0 1
0 0 2 1
1 1 1 2

 , A
(3)
1 =

2 0 0
0 2 0
0 0 2

 , A3 =

2 1 0
1 2 1
0 1 2

 ,

A
(2)
1 =

(
2 0
0 2

)
, A2 =

(
2 1
1 2

)
, S2 =

(
2 0
0 4

)
.

(1.2)

The quadratic spaces associated to those matrices are isomorphic to subspaces of the
Hamilton quaternionsH. Since we will later make use of this fact we now fix some concrete
isomorphisms. We denote the canonical basis ofH by 1, i1, i2, i3. Then forz = z1 + z2i1 +
z3i2 + z4i3 ∈ H with zj ∈ R the conjugate ofz is given byz = z1 − z2i1 − z3i2 − z4i3 and
the norm ofz is given byN(z) = zz = z2

1 + z2
2 + z2

3 + z2
4 . The Hurwitz order is denoted

by

O = Z + Zi1 + Zi2 + Zω, ω =
1

2
(1 + i1 + i2 + i3).

Proposition 1.17 Let S be one of the matrices listed in (1.2), and letl be the rank ofS.
Then the quadratic space(Rl, qS) with latticeΛ = Zl is isomorphic to the quadratic space
(HS, NS) with latticeOS whereHS is a subspace of the Hamilton quaternionsH,NS is the
restriction of the normN to HS, andOS = O ∩ HS is the sublattice of the Hurwitz order
O in HS. The following list contains the subspacesHS, the corresponding latticesOS, one
possible isomorphismιS : Rl → HS and the quadratic formsqS = NS ◦ ιS.
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a) HD4 = H,OD4 = O,

ιD4 : R4 → H, (x1, x2, x3, x4) 7→ x1 + x2i1 + x3i2 + x4ω,

qD4(x) = x2
1 + x1x4 + x2

2 + x2x4 + x2
3 + x3x4 + x2

4,

Dis(Λ) = 〈(1
2
, 1

2
, 0, 0) + Λ, (1

2
, 0, 1

2
, 0) + Λ〉 ∼= Z2 × Z2.

b) H
A

(3)
1

= {x ∈ H; x4 = 0},O
A

(3)
1

= Z + Zi1 + Zi2,

ι
A

(3)
1

: R3 → H
A

(3)
1

, (x1, x2, x3) 7→ x1 + x2i1 + x3i2,

q
A

(3)
1

(x) = x2
1 + x2

2 + x2
3,

Dis(Λ) = 〈(1
2
, 0, 0) + Λ, (0, 1

2
, 0) + Λ, (0, 0, 1

2
) + Λ〉 ∼= Z2 × Z2 × Z2.

c) HA3 = {x ∈ H; x3 = x4},OA3 = Z + Zω + Zi1,

ιA3 : R3 → HA3, (x1, x2, x3) 7→ x1 + x2ω + x3i1,

qA3(x) = x2
1 + x1x2 + x2

2 + x2x3 + x2
3,

Dis(Λ) = 〈(1
4
, 1

2
,−1

4
) + Λ〉 ∼= Z4.

d) H
A

(2)
1

= {x ∈ H; x3 = x4 = 0},O
A

(2)
1

= Z + Zi1,

ι
A

(2)
1

: R2 → H
A

(2)
1

, (x1, x2) 7→ x1 + x2i1,

q
A

(2)
1

(x) = x2
1 + x2

2,

Dis(Λ) = 〈(1
2
, 0) + Λ, (0, 1

2
) + Λ〉 ∼= Z2 × Z2.

e) HA2 = {x ∈ H; x2 = x3 = x4},OA2 = Z + Zω,

ιA2 : R2 → HA2, (x1, x2) 7→ x1 + x2ω,

qA2(x) = x2
1 + x1x2 + x2

2,

Dis(Λ) = 〈(1
3
, 1

3
) + Λ〉 ∼= Z3.

f) HS2 = {x ∈ H; x2 = x3, x4 = 0},OS2 = Z + Z(i1 + i2),

ιS2 : R2 → HS2 , (x1, x2) 7→ x1 + x2(i1 + i2),

qS2(x) = x2
1 + 2x2

2,

Dis(Λ) = 〈(1
2
, 0) + Λ, (0, 1

4
) + Λ〉 ∼= Z2 × Z4.

PROOF Explicit calculations show that the quadratic forms are preserved under the iso-
morphisms, i.e., thatqS = NS ◦ ιS. �

Next we will show in several steps that the orthogonal modular groups associated to the
above matrices are nicely generated. We start by defining what we mean by “nicely gener-
ated”.
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Definition 1.18 The orthogonal modular groupΓS is nicely generatedif it is generated by
the inversionJ , the translationsTg, g ∈ Λ0, and the rotationsRA, A ∈ O(Λ).

Remark ΓS is nicely generated in the above sense if and only if the corresponding group
in the terminology of [FH00] is nicely generated in the sense of [FH00, Def. 4.7] (cf.
Appendix C).

In a first step, using results from [Bü96], we reduce the problem of determining generators
of ΓS ⊂ O(Λ1) to the problem of determining generators of a certain subgroup ofO(Λ0).

Proposition 1.19 ΓS is generated by

J, Tg (g ∈ Λ0), and


1 0 0

0 A 0
0 0 1

 ; A ∈ O+(Λ0)

 ∩ ΓS,

whereO+(Λ0) := {A ∈ O(Λ0); A · HS = HS}.

PROOF According to [Bü96, Satz 2.31],ΓS is generated by

J andΓS,0 :=

M ∈ ΓS; M =

1 ta β
0 A c
0 0 1

 .

So letM =

1 ta β
0 A c
0 0 1

 ∈ ΓS,0. Then by virtue of (1.1) we havea = − tAS0c, β =

−q0(c) andS0[A] = S0, and thus, in particular,A ∈ O(S0; R) ∩ GL(l + 2; Z) = O(Λ0).
By multiplication withT−1

c = T−c we get

T−cM =

1 tcS0 −q0(c)
0 In+2 −c
0 0 1

1 − tcS0A −q0(c)
0 A c
0 0 1

 =

1 0 0
0 A 0
0 0 1

 .

Finally (1)×A× (1) ∈ O+(S1; R) yieldsHS = ((1)×A× (1))〈HS〉 = A · HS. Hence
A ∈ O+(Λ0). This completes the proof. �

Next we show that the latticesΛ associated to the above matrices are Euclidean. This will
allow us to reduce the problem of determining generators of a subgroup ofO(Λ0) to the
problem of determining generators of the finite groupsO(Λ).

Proposition 1.20 a) Givena ∈ HA3 there existsg ∈ OA3 such that

a− g = b1 + b2i1 + b3(i2 + i3) with |bj| ≤
1

2
, 1 ≤ j ≤ 3, and

3∑
j=1

|bj| ≤
3

4
.
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b) Givena ∈ HA3 there existsg ∈ OA3 such that

NA3(a− g) ≤ 9

16
.

PROOF a) Leta = a1 + a2i1 + a3(i2 + i3) ∈ HA3. Because ofZ + Zi1 + Z(i2 + i3) ⊂ OA3

we may assume|aj| ≤ 1
2

for 1 ≤ j ≤ 3. If
∑3

j=1 |aj| > 3
4

then we choosegj = 1
2
sign aj

for 1 ≤ j ≤ 3. Theng = g1 + g2i1 + g3(i2 + i3) ∈ OA3 with |aj − gj| = 1
2
− |aj| ≤ 1

2

for 1 ≤ j ≤ 3 and
∑3

j=1 |aj − gj| = 3
2
−
∑3

j=1 |aj| < 3
4
.

b) Because of a) it remains to be shown that

ϕ(b1, b2, b3) := NA3(b1 + b2i1 + b3(i2 + i3)) = b21 + b22 + 2b23 ≤
9

16

whenever(b1, b2, b3) ∈ A := {(b1, b2, b3) ∈ R3; 0 ≤ bj ≤ 1
2
,
∑3

j=1 bj ≤
3
4
}. We

choose(b1, b2, b3) ∈ A such thatϕ(b1, b2, b3) is maximal. Since we haveϕ(b1, b2, b3) =
ϕ(b2, b1, b3) we may assumeb2 ≥ b1. Furthermore, due to the choice of(b1, b2, b3) we
have0 ≤ ϕ(b1, b2, b3)− ϕ(b1, b3, b2) = b23 − b22 which impliesb3 ≥ b2. Thusb2 ≤ 3

8
.

If b1 > 0 thenb2 < 3
8

and there existsε > 0 such thatb1 − ε > 0 andb2 + ε < 1
2
. Then

ϕ(b1 − ε, b2 + ε, b3)− ϕ(b1, b2, b3) = 2ε(b2 − b1) + 2ε2 > 0

yields a contradiction to the choice of(b1, b2, b3). Henceb1 = 0.
If b2 > 1

4
thenb3 < 1

2
and there existsε > 0 such thatb2 − ε > 0 andb3 + ε < 1

2
. Then

ϕ(b1, b2 − ε, b3 + ε)− ϕ(b1, b2, b3) = 2ε(2b3 − b2) + 3ε2 > 0

yields a contradiction to the choice of(b1, b2, b3). Henceb2 ≤ 1
4
.

Therefore

max
(b1,b2,b3)∈A

ϕ(b1, b2, b3) ≤ 0 +
1

16
+ 2 · 1

4
=

9

16
.

�

Proposition 1.21 LetS be one of the matrices listed in (1.2), and letΛ be the associated
lattice. Then for allx ∈ Rl there existsλ ∈ Λ such that

qS(x+ λ) ≤ c(S),

wherec(D4) = c(A
(2)
1 ) = 1

2
, c(A3) = 9

16
andc(A(3)

1 ) = c(S2) = c(A2) = 3
4
. In particular,

Λ is Euclidean.

PROOF Let x = t(x1, . . . , xl) ∈ Rl. Because ofΛ = Zl we may assume|xj| ≤ 1
2

for

1 ≤ j ≤ l. Then forS ∈ {A(3)
1 , A

(2)
1 , S2, A2} the assertion is obvious. By virtue of

Proposition 1.17, forS = D4 the assertion follows from [Kr85, 1.7] and forS = A3 it
follows from Proposition 1.20. �
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Proposition 1.22 Let

Γ̃S :=

M ∈ O+(Λ0);

1 0 0
0 M 0
0 0 1

 ∈ ΓS

 .

a) We have

Γ̃S =


α ta β
b A c
γ td δ

 ∈ O(Λ0); γ + δ > 0

 .

In particular, the following matrices are elements ofΓ̃S:

P̃ , Ũλ (λ ∈ Λ), and

1 0 0
0 A 0
0 0 1

 (A ∈ O(Λ)).

b) Suppose thatΛ is Euclidean. Then givenµ0 ∈ Λ]
0 with q0(µ0) = 0 there existsM ∈〈

P̃ , Ũλ; λ ∈ Λ
〉
≤ Γ̃S such thatMµ0 = t(m, 0, . . . , 0) for somem ∈ Z.

c) Suppose thatΛ is Euclidean. TheñΓS is generated by

P̃ , Ũλ (λ ∈ Λ), and


1 0 0

0 A 0
0 0 1

 ; A ∈ O(Λ)

 .

PROOF a) LetM =

α ta β
b A c
γ td δ

 ∈ Γ̃S. Then

1 0 0
0 M 0
0 0 1

 ∈ ΓS ⊂ O+(S1; R) yields

det

((
0 γ
0 0

)(
0 1
1 0

)
+

(
δ 0
0 1

))
= γ + δ > 0.

P̃ , Ũλ for all λ ∈ Λ and(1)×A× (1) for all A ∈ O(Λ) obviously satisfy this condition
and are thus elements ofΓ̃S.

b) Let µ0 = (m,µ, n) ∈ Λ]
0, i.e.,m,n ∈ Z andµ ∈ Λ]. Without restriction we may

assume that|n| ≤ |m| (otherwise we consider̃Pµ0). q0(µ0) = 0 impliesmn = q(µ).
So if µ = 0 thenn = 0 and thusµ0 = t(m, 0, . . . , 0). Otherwise, sinceΛ is Euclidean
there existsλ ∈ Λ such thatq(µ+ nλ) = n2q( 1

n
µ+ λ) < n2. We consider

Ũλµ0 =

m+ tλSµ+ nq(λ)
µ+ nλ
n

 =

m′

µ′

n

 .

Due toŨλ ∈ O(Λ0) we haveŨλµ0 ∈ Λ]
0 andq0(Ũλµ0) = q0(µ0) = 0. Thusm′ ∈ Z and
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m′n = q(µ+ nλ) < n2. This yields|m′| < |n|. Therefore, after finitely many steps we
get the matrixM ∈ Γ̃S we are looking for.

c) LetM =

α ta β
b A c
γ td δ

 ∈ Γ̃S. ThenS0 = S0[M ] yieldsαγ = q(b). Therefore, by

virtue of b), there exists añM ∈
〈
P̃ , Ũλ; λ ∈ Λ

〉
≤ Γ̃S such that

M ′ = M̃M =

α′ ∗ ∗
0 A′ ∗
0 td′ δ′

 .

Due toM ′ ∈ O(Λ0) we haved′ = 0 andA′ ∈ O(Λ) (and thus alsoA′−1 ∈ O(Λ)). Then

M ′′ =

1 0 0
0 A′−1 0
0 0 1

M ′ =

α′ ∗ ∗
0 I c′′

0 0 δ′

 .

Now M ′′ ∈ O(Λ0) yieldsα′δ′ = 1 with α′, δ′ ∈ Z and a) yieldsδ′ > 0. Therefore
α′ = δ′ = 1. Multiplying with Ũ−c′′ we get

M ′′′ = Ũ−c′′M
′′ =

1 ta′′ β′′

0 I 0
0 0 1

 .

Finally a′′ = 0 andβ′′ = 0 follow from M ′′′ ∈ O(S0; R). �

Corollary 1.23 If S is one of the matrices listed in (1.2) thenΓS is nicely generated.

PROOF Due to Proposition 1.21Λ = ΛS is Euclidean. Therefore, Proposition 1.19 and
Proposition 1.22 yield thatΓS is generated by

J, Tg (g ∈ Λ0), P, Uλ (λ ∈ Λ), andRA (A ∈ O(Λ)).

According to [Kr96, p. 249f],Uλ andRg can be written as product ofJ andTh for certain
h ∈ Λ0. Furthermore, we haveP = −R(0,1,0,...,0)Mtr = R(1,0,...,0,−1)R(−Il)R(0,1,0,...,0)Mtr

with Mtr = MS
tr as defined below in (1.3). Thus onlyJ , Tg, g ∈ Λ0, andRA, A ∈ O(Λ),

are needed to generateΓS. �

Finally we determine some properties of the finite orthogonal groupsO(Λ) associated to
the matrices listed in (1.2).
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Proposition 1.24 a) LetS = D4. ThenO(Λ) is generated by
1 0 0 1
0 −1 0 0
0 0 −1 0
0 0 0 −1

,


1 0 −1 0
0 1 −1 0
0 0 −1 −1
0 0 2 1

,


1 0 −1 0
0 0 −1 0
0 1 −1 0
0 0 2 1

,


1 0 0 0
0 1 0 0
1 1 0 1
−1 −1 −1 −1

.
SO(Λ) = O(Λ) ∩ SL(4; Z) is generated by the last three matrices. The commutator
subgroupO(Λ)′ is generated by the last two matrices. The commutator factor group
O(Λ)ab is isomorphic toC2×C2 whereC2 denotes the cyclic group of order2. The first
two matrices are representatives for the generators ofO(Λ)ab. The discriminant kernel
Od(Λ) is generated by the first, the square of the second and the last matrix, and the
factor groupO(Λ)/Od(Λ) is isomorphic toS(3), the symmetric group of degree3.

b) LetS = A
(3)
1 . ThenO(Λ) is generated by

−I3,

−1 0 0
0 0 1
0 1 0

,
1 0 0

0 −1 0
0 0 −1

,
−1 0 0

0 1 0
0 0 −1

 and

0 0 1
1 0 0
0 1 0

.
SO(Λ) is generated by the last four matrices and is isomorphic toS(4). The commuta-
tor subgroupO(Λ)′ is generated by the last three matrices and is isomorphic toA(4),
the alternating group of degree4. The commutator factor groupO(Λ)ab is isomorphic
toC2×C2. The first two matrices are representatives for the generators ofO(Λ)ab. The
discriminant kernelOd(Λ) is generated by the three diagonal matrices, and the factor
groupO(Λ)/Od(Λ) is isomorphic toS(3).

c) LetS = A3. ThenO(Λ) is generated by−1 −1 0
0 1 0
0 0 1

,
1 1 0

0 −1 0
0 0 −1

,
−1 −1 0

0 1 0
0 −1 −1

 and

 0 0 −1
−1 0 1
1 1 0

.
SO(Λ) is generated by the last three matrices and is isomorphic toS(4). The commu-
tator subgroupO(Λ)′ is generated by the last two matrices and is isomorphic toA(4).
The commutator factor groupO(Λ)ab is isomorphic toC2 × C2. The first two matri-
ces are representatives for the generators ofO(Λ)ab. The discriminant kernelOd(Λ) is
generated by the first and the last two matrices, and the factor groupO(Λ)/Od(Λ) is
isomorphic toC2.

d) LetS = A
(2)
1 . ThenO(Λ) is generated by(

1 0
0 −1

)
and

(
0 −1
1 0

)
and is isomorphic toD8, the dihedral group of order8. SO(Λ) is generated by the
second matrix and is isomorphic toC4. The commutator subgroupO(Λ)′ is generated
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by−I2 and is isomorphic toC2. The commutator factor groupO(Λ)ab is isomorphic
to C2 × C2. The two matrices are representatives for the generators ofO(Λ)ab. The
discriminant kernelOd(Λ) is generated by−I2 and the first matrix, and the factor group
O(Λ)/Od(Λ) is isomorphic toC2.

e) LetS = A2. ThenO(Λ) is generated by(
0 1
1 0

)
and

(
1 1
−1 0

)
and is isomorphic toD12. SO(Λ) is generated by the second matrix and is isomorphic
toC6. The commutator subgroupO(Λ)′ is generated by the square of the second matrix
(i.e., by( 0 1

−1 −1 )) and is isomorphic toC3. The commutator factor groupO(Λ)ab is
isomorphic toC2 × C2. The two matrices are representatives for the generators of
O(Λ)ab. The discriminant kernelOd(Λ) is generated by the first and the square of the
second matrix, and the factor groupO(Λ)/Od(Λ) is isomorphic toC2.

f) LetS = S2. ThenO(Λ) is generated by(
−1 0
0 1

)
and − I2

and is isomorphic toC2×C2. SO(Λ) is generated by−I2 and is isomorphic toC2. The
commutator subgroupO(Λ)′ is the trivial group. The commutator factor groupO(Λ)ab

is isomorphic toC2 × C2. The two matrices are representatives for the generators of
O(Λ)ab. The discriminant kernelOd(Λ) is generated by the first matrix, and the factor
groupO(Λ)/Od(Λ) is isomorphic toC2.

PROOF The generators were explicitly calculated. The rest of the assertions was verified
with GAP ([GAP05]). �

All of the above groupsO(Λ) contain an element which corresponds to the conjugation on
the corresponding subspacesHS of H (cf. Proposition 1.17), i.e., for all matricesS listed
in (1.2) there is anAS ∈ O(Λ) such thatιS(ASι

−1
S (z)) = z for all z ∈ HS. We denote the

corresponding rotationsRAS
byMS

tr or, if it is clear whichS is meant, simply byMtr. We
have

MD4
tr = R0@ 1 0 0 1

0 −1 0 0
0 0 −1 0
0 0 0 −1

1A, M
A

(3)
1

tr = R„ 1 0 0
0 −1 0
0 0 −1

«, MA3
tr = R„ 1 1 0

0 −1 0
0 0 −1

«,

M
A

(2)
1

tr = R( 1 0
0 −1 ), MA2

tr = R( 1 1
0 −1 ), MS2

tr = R( 1 0
0 −1 ).

(1.3)
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1.5. The commutator subgroups of certain
orthogonal modular groups

In this section we proof an estimation for the index of the commutator subgroupΓ′S in ΓS

for the matricesS listed in (1.2). In the next section we show that the inequalities are in
fact equalities.

Proposition 1.25 a) If S ∈ {A(3)
1 , A

(2)
1 , S2} then[ΓS : Γ′S] ≤ 8.

b) If S ∈ {D4, A3, A2} then[ΓS : Γ′S] ≤ 4.

PROOF a) First we will show that[ΓS : Γ′S] ≤ 8 for all of the matricesS listed in (1.2). So
let S be one of those matrices. We start by calculating a few commutators. Forλ ∈ Λ
andg = (g0, g̃, gl+1) ∈ Λ0 we get

[Uλ, Tg] = T( tλSeg+q(λ)gl+1,λgl+1,0).

Thus for the standard basis(e1, . . . , el) of Λ we get

[Uej
, T(0,...,0,1)] = T(q(ej),ej ,0) =

{
T(2,0,1,0) if S = S2 andj = 2,

T(1,ej ,0) otherwise,

and
[Ue1 , T(0,e1,0)] = T(2q(e1),0,...,0) = T(2,0,...,0).

Furthermore,
[R(0,e1,0), T(0,...,0,1)] = T(1,0,...,0,−1).

Because ofTgTh = Tg+h for all g, h ∈ Λ0 this yields

Tg ∈ Γ′S for all g = t(g0, . . . , gl+1) ∈ Λ0 with g0 + gl+1 +
l∑

j=1

sj

2
gj ≡ 0 (mod 2),

wheresj ∈ 2Z, 1 ≤ j ≤ l, are the diagonal entries ofS. So moduloΓ′S all matricesTg

with g ∈ Λ0 are equivalent either toIl+4 or toT(1,0,...,0). Moreover,(JT(1,0,...,0,1))
3 = 1

yieldsJ = J3 ∈ Γ′S, and, due toRARB = RAB andR−1
A = RA−1 for all A,B ∈ O(Λ),

we haveRA ∈ Γ′S for all A ∈ O(Λ)′.
According to Corollary 1.23, each element ofΓS can be written as a product ofJ , Tg,
g ∈ Λ0, andRA, A ∈ O(Λ). Since, by virtue of Proposition 1.24,O(Λ)ab ∼= C2 × C2

for all S we are considering we have[ΓS : Γ′S] ≤ 8.
b) If S ∈ {D4, A3, A2} then

[R(0,ej ,0), T(0,e1,0)] = T(0,−2e1+ej ,0),

whereej is the vector which is mapped toω under the isomorphisms in Proposition



22 1. Orthogonal Groups

1.17, i.e.,j = 4 if S = D4 andj = 2 if S ∈ {A3, A2}. Therefore,Tg ∈ Γ′S for all
g ∈ Λ0, and thus[ΓS : Γ′S] ≤ 4. �

1.6. Abelian characters of the orthogonal modular
groups

The Abelian characters of the orthogonal modular groupΓS are in one-to-one correspon-
dence to the elements of the corresponding commutator factor groupΓab

S . Because of this
correspondence we denote the group of Abelian characters ofΓS also byΓab

S . According to
Proposition 1.25, for allS listed in (1.2) the commutator factor groups are finite (Abelian)
groups of order4 or 8, and thus at most three different characters (and their products) occur.

1.6.1. The determinant

The determinant occurs in all cases as character of the orthogonal modular groupsΓS. The
determinant is−1 for RA if A is the first generator ofO(Λ) given in Proposition 1.24, and
it is 1 for J , Tg, g ∈ Λ0, andRA, A ∈ SO(Λ).

1.6.2. The orthogonal character(s)

According to Proposition 1.15,ΓS acts on the sets of elements ofDis(Λ1) with the same
value ofq1, and for

M =

∗ ∗ ∗
∗ A ∗
∗ ∗ ∗

 ∈ ΓS

the action only depends onA ∈ Mat(l; Z). The signs of the permutations of non-trivial
sets of elements ofDis(Λ1) with the same value ofq1 are Abelian characters ofΓS. In all
cases we are considering exactly one such character occurs. We denote this character by
νπ. It is−1 for RA if A is the second generator ofO(Λ) given in Proposition 1.24, and it is
1 for J , Tg, g ∈ Λ0, andRA if A is one of the other generators ofO(Λ) given in Proposition
1.24.

1.6.3. The Siegel character

Let S ∈ {A(3)
1 , A

(2)
1 , S2}. ThenS ≡ 0 (mod 2). In this case another character occurs. It

corresponds to the non-trivial character of the Siegel modular group of degree2.

Proposition 1.26 If S ≡ 0 (mod 2) then the map

ϕ : ΓS → Sp(2; F2),

α ∗ β
∗ ∗ ∗
γ ∗ δ

 7→
(
α β
γ δ

)[
H 0
0 I2

]
mod 2 =

(
HαH Hβ
γH δ

)
mod 2,
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whereα, β, γ, δ ∈ Mat(2; Z), H = ( 0 1
1 0 ) andSp(2; F2) is the symplectic group of degree

2 over the fieldF2 of two elements, is a surjective homomorphism of groups.

PROOF Let S ≡ 0 (mod 2) and

Mj =

αj aj βj

bj Aj cj
γj dj δj

 ∈ ΓS,

whereαj, βj, γj, δj ∈ Mat(2; Z), aj, dj ∈ Mat(2, l; Z), bj, cj ∈ Mat(l, 2; Z), Aj ∈
Mat(l; Z) for j ∈ {1, 2}. If a1 ≡ a2 ≡ d1 ≡ d2 ≡ 0 (mod 2) then

M1M2 ≡

α1α2 + β1γ2 0 α1β2 + β1δ2
∗ A1A2 ∗

γ1α2 + δ1γ2 0 γ1β2 + δ1δ2

 (mod 2).

Since the assumption is true for the generatorsJ , Tg, g ∈ Λ0, andRA, A ∈ O(Λ), of ΓS

we findaj ≡ dj ≡ 0 (mod 2) for all Mj ∈ ΓS. An easy calculation shows that the images
of the generators ofΓS underϕ are inSp(2; F2). Together with

ϕ(M1M2) =

(
Hα1α2H +Hβ1γ2H Hα1β2 +Hβ1δ2
γ1α2H + δ1γ2H γ1β2 + δ1δ2

)
mod 2

=

(
Hα1H Hβ1

γ1H δ1

)(
Hα2H Hβ2

γ2H δ2

)
mod 2

= ϕ(M1)ϕ(M2)

for allM1,M2 ∈ ΓS this yields thatϕ is a homomorphism of groups. Finally, the surjectiv-
ity of this homomorphism follows from the fact thatSp(2; F2) is generated by the following
four matrices

ϕ(J) =

(
0 I2
I2 0

)
, ϕ(Te1) =

(
I2 0 1

1 0

0 I2

)
, ϕ(Te2) =

(
I2 0 0

0 1

0 I2

)
, ϕ(Ue1) =

(
I2 1 0

0 0

0 I2

)
(cf. [Fr83, A 5.4]). �

According to O’Meara [O’M78, 3.1.5]Sp(2; F2) is isomorphic to the symmetric group
S(6). By Igusa [Ig64, p. 398] we can explicitly describe the isomorphism ofSp(2; F2) and
S(6) in the following way: Let

C4 :=

{(
a
b

)
; a, b ∈ F2

2,
tab ≡ 1 (mod 2)

}
be the set of odd theta characteristics mod2. Sp(2; F2) acts on this set via(

M,

(
a
b

))
7→M

{
a
b

}
:=

(
D C
B A

)(
a
b

)
+

(
diag(C tD)
diag(A tB)

)
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forM = ( A B
C D ) ∈ Sp(2; F2), wherediag(T ) is the column vector consisting of the diagonal

entries of a matrixT . SinceC4 contains exactly6 elements the mapping

M 7→ (C4 → C4, ( a
b ) 7→M { a

b })

defines a homomorphismπ : Sp(2; F2) → S(6) (which is an isomorphism according to
Igusa). The non-trivial character ofSp(2; F2) is then given by the sign of the permutation
π(M) for M ∈ Sp(2; F2).

By combining the epimorphismϕ : ΓS → Sp(2; F2) from Proposition 1.26, the isomor-
phismSp(2; F2) → S(6) and thesign map, i.e., by

ΓS
ϕ−−−→ Sp(2; F2)

π−−−→ S(6)
sign−−−→ {±1},

we get an explicit description for the Siegel character of the orthogonal modular groupΓS

if S ≡ 0 (mod 2). We denote this character byν2. Obviously, allRA, A ∈ O(Λ), lie
in the kernel ofϕ and therefore also in the kernel ofν2. Moreover, the kernel contains of
course the commutator subgroupΓ′S and thus, in particular,J . According to the proof of
Proposition 1.25, all matricesTg with g = t(g0, . . . , gl+1) ∈ Λ0 are moduloΓ′S equivalent
to Il+4 wheneverg0 + gl+1 +

∑l
j=1 sjgj/2 ≡ 0 (mod 2) where thesj, 1 ≤ j ≤ l, are the

diagonal entries ofS ∈ {A(3)
1 , A

(2)
1 , S2}. OtherwiseTg is equivalent toTe1 moduloΓ′S. An

easy calculation shows thatν2(Te1) = −1, and so we have

ν2(Tg) = (−1)g0+gl+1+
Pl

j=1 sjgj/2 =

{
(−1)

Pl+1
j=0 gj if S ∈ {A(3)

1 , A
(2)
1 },

(−1)g0+g1+g3 if S = S2.
(1.4)

By applying the above description directly toTg for arbitraryg = (g0, g̃, gl+1) ∈ Λ0 we
get a nicer and more general formula, namely

ν2(T(g0,eg,gl+1)) = (−1)g0+gl+1+q(eg). (1.5)

The value ofν2(MD), D ∈ SL(2; Z), can also be explicitly calculated using the above
description. We get

ν2(MD) = (−1)α+β+γ+δ+βγ for all D =

(
α β
γ δ

)
∈ SL(2; Z). (1.6)

Using representations in terms of the above matrices we can now easily determine the
value ofν2(M) for some of the other matricesM from Proposition 1.16. For the vectors
g = t(g0, . . . , gl+1) ∈ Λ0 with q0(g) = ±1 we define

g∗ := −J〈g〉 = q0(g)
−1 t(gl+1,−g1, . . . ,−gl, g0) ∈ Λ0.
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According to [Kr96, p. 249f],Rg = TgJTg∗JTgJ for everyg ∈ Λ0 with q0(g) = ±1, and
thus

ν2(Rg) = ν2(TgJTg∗JTgJ) = ν2(Tg∗) = ν2(Tg).

Moreover, for allλ ∈ Λ we have

Uλ = MDT(0,λ,0)MD∗ ,

whereD =

(
0 1
−1 0

)
andD∗ =

(
0 −1
1 0

)
. Sinceν2(MD) = ν2(MD∗) we get

ν2(Uλ) = ν2(T(0,λ,0)) = (−1)q(λ). (1.7)

Using the estimation for the index of the commutator subgroupΓ′S in ΓS (Proposition
1.25) and the explicit knowledge of the characters ofΓS we can now derive the structure of
Γab

S .

Proposition 1.27 a) If S ∈ {A(3)
1 , A

(2)
1 , S2} thenΓab

S = 〈det, νπ, ν2〉 ∼= C2 × C2 × C2.
b) If S ∈ {D4, A3, A2} thenΓab

S = 〈det, νπ〉 ∼= C2 × C2.

Moreover, using the explicit knowledge about the generators ofO(Λ) we can determine
which rotationsRA, A ∈ O(Λ), are necessary to generate the commutator subgroupΓ′S,
the discriminant kernelOd(Λ1) ∩ ΓS and the full modular groupΓS.

Corollary 1.28 a) If S ∈ {A(2)
1 , A2, S2, A3} thenΓ′S is a subgroup of〈J, Tg; g ∈ Λ0〉.

If S = A
(3)
1 thenΓ′S is generated byJ , Tg, g ∈ ker ν2, and the rotationRA,A =

(
0 0 1
1 0 0
0 1 0

)
.

If S = D4 thenΓ′S is generated byJ , Tg, g ∈ Λ0, and the rotationRA,A =

(
1 0 −1 0
0 0 −1 0
0 1 −1 0
0 0 2 1

)
.

b) The discriminant kernelOd(Λ1) ∩ ΓS is generated byJ , Tg, g ∈ Λ0, and−Mtr.
c) ΓS is generated byJ , Tg, g ∈ Λ0, the rotationsRB, whereB runs over the representa-

tives of the generators ofO(Λ)ab, and, in case ofS = A
(3)
1 or S = D4, additionally by

the rotationRA from a).

PROOF a) We useGAP ([GAP05]) to calculate the subgroupH ofG = 〈RA; A ∈ O(Λ)′〉
which is generated by allRg1 · Rg2 with gj = (0, λj, 0) ∈ Λ0 such thatq0(gj) = −1,
j = 1, 2. In case ofS ∈ {A(2)

1 , A2, S2, A3} we getH = G which implies our claim.
If S = A

(3)
1 or S = D4 thenH is a subgroup of index3 of G andG = 〈H,RA〉.

SinceJ andTg, g ∈ Λ0, act trivially onDis(Λ1) whileRA does not we obviously have
RA /∈ 〈J, Tg; g ∈ Λ0〉. This completes the proof.

b) It is easy to check that additionally toJ andTg, g ∈ Λ0, the matrix−Mtr also acts
trivially on Dis(Λ1). Note that−Mtr is not contained in〈J, Tg; g ∈ Λ0〉 because of
det(−Mtr) = −1. It remains to be verified that the given matrices generateOd(Λ1)∩ΓS.
This can be done similarly to the proof of part a) since by Proposition 1.24 we explicitly
knowOd(Λ).
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c) This follows from part a) and the fact thatJ andTg, g ∈ Λ0, act trivially onDis(Λ1)
and have determinant1. �

1.7. Parabolic subgroups

An important subgroup ofO+(S1; R) is the parabolic subgroup

PS(R) :=


D∗ ∗ ∗

0 ∗ ∗
0 0 D

 ∈ O+(S1; R); D ∈ SL(2; R)


whereD∗ = ( 0 1

1 0 ) tD−1 ( 0 1
1 0 ) =

(
α −β
−γ δ

)
for D =

(
α β
γ δ

)
∈ SL(2; R). It plays an impor-

tant role in the theory of Jacobi forms (cf. Section 2.3). According to [Bü96, Prop. 2.5]
PS(R) is generated by the matricesMD, D ∈ SL(2; R), RA, A ∈ O(S; R), Uλ, λ ∈ Rl,
andT(0,µ,0), µ ∈ Rl. In fact we have the following

Proposition 1.29 Each elementM of the parabolic subgroupPS(R) can be written in the
form

M = MDRAUλT(κ,µ,0)

withA ∈ O(S; R),D ∈ SL(2; R), λ, µ ∈ Rl andκ ∈ R. This representation is unique.

PROOF Let M =

D∗ ∗ ∗
0 A ∗
0 0 D

 ∈ PS(R). By virtue of [Bü96, Prop. 2.4], we have

A ∈ O(S; R) and get

M ′ = RA−1MD−1M =

I2 tµS
tλS

−κ q(µ)

q(λ) κ+ tλSµ

0 Il λ µ

0 0 I2

 , λ, µ ∈ Rl, κ ∈ R.

Now

U−λM
′ =

I2 tµS
0

−κ q(µ)
0 κ

0 Il 0 µ

0 0 I2

 = T(κ,µ,0).

The uniqueness of the representation is obvious. �

The subgroupH = {UλT(κ,µ,0); λ, µ ∈ Rl, κ ∈ R} of PS(R) is normal inPS(R) and the
center ofPS(R) as well as the center ofH are both given by the subgroup{T(κ,0,0); κ ∈ R}.
Due to the preceding proposition, we have

PS(R)/H ∼= SL(2; R)×O(S; R),
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and thus
PS(R) ∼= (SL(2; R)×O(S; R)) nH.

The structure ofPS(R) and the above unique representation of elements ofPS(R) inspire
the representation ofPS(R) in a different form. Let

JS(R) := {[D,A, (λ, µ), κ]; D ∈ SL(2; R), A ∈ O(S; R), λ, µ ∈ Rl, κ ∈ R}.

Then, by virtue of the preceding proposition the map

JS(R) → PS(R), [D,A, (λ, µ), κ] 7→MDRAUλT(κ/2− tλSµ,µ,0), (1.8)

is bijective. If we define the composition law onJS(R) by

g1g2 = [D1D2, A1A2, (λ̃1, µ̃1) + (λ2, µ2), κ1 + κ2 − tλ1Sµ1 + t̃λ1Sµ̃1 + 2 t̃λ1Sµ2]

for gj = [Dj, Aj, (λj, µj), κj] ∈ JS(R) where (λ̃1, µ̃1) = A−1
2 (λ1, µ1)D2 then JS(R)

becomes a group and the above mapJS(R) → PS(R) becomes an isomorphism of groups.
We callJS(R) the Jacobi group. The Heisenberg group

HS(R) := {[(λ, µ), κ]; λ, µ ∈ Rl, κ ∈ R}

with composition law

[(λ1, µ1), κ1][(λ2, µ2), κ2] = [(λ1, µ1) + (λ2, µ2), κ1 + κ2 + 2 tλ1Sµ2]

for [(λj, µj), κj] ∈ HS(R) is obviously a subgroup ofJS(R). It is isomorphic to the sub-
groupH of PS(R) and thus we have

JS(R) ∼= (SL(2; R)×O(S; R)) nHS(R).

Since we can canonically identify any elementD of SL(2; R), A of O(S; R), (λ, µ) of
Rl×Rl andκ of R with the elements[D, Il, (0, 0), 0], [I2, A, (0, 0), 0], [I2, Il, (λ, µ), 0] and
[I2, Il, (0, 0), κ] of JS(R), respectively, we will often simply write[D], [A], [λ, µ] or [κ]
instead of the corresponding element ofJS(R).

For dealing with Jacobi forms we introduce another Jacobi group, namely the one defined
by Arakawa in [Ar92]. It is given by

GJ := {(D, (λ, µ), ρ); D ∈ SL(2; R), λ, µ ∈ Rl, ρ ∈ Sym(l; R)}

with the composition law

g1g2 = (D1D2, (λ1, µ1)D2 + (λ2, µ2), ρ1 + ρ2 − µ1
tλ1 + µ̃1

t̃λ1 + λ̃1
tµ2 + µ2

t̃λ1)
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for gj = (Dj, (λj, µj), ρj) ∈ GJ where(λ̃1, µ̃1) = (λ1, µ1)D2. The map

GJ → JS(R), (D, (λ, µ), ρ) 7→ [D, Il, (λ, µ), trace(Sρ)] (1.9)

is obviously a homomorphism of groups. By abuse of notation we will also often write[D]
and[λ, µ] instead of the corresponding elements ofGJ .

Next we consider the parabolic subgroup ofΓS. Let

PS(Z) := PS(R) ∩ ΓS = PS(R) ∩Mat(l + 4; Z).

Then the corresponding Jacobi groupJS(Z), defined as preimage ofPS(Z) under the iso-
morphism 1.8, is given by

JS(Z) = {[D,A, (λ, µ), κ]; D ∈ SL(2; Z), A ∈ O(Λ), λ, µ ∈ Λ, κ ∈ 2Z}

and Arakawa’s discrete Jacobi group is given by

ΓJ = {(D, (λ, µ), ρ); D ∈ SL(2; Z), λ, µ ∈ Zl, ρ ∈ Sym(l; Z)}.

Note that the image ofΓJ under the above homomorphismGJ → JS(R) lies inJS(Z).
Finally we take a look at the action of the paramodular subgroup onHS. Let w =

(τ1, z, τ2) ∈ HS andM = MDRAUλT(κ/2− tλSµ,µ,0) ∈ PS(R), D =
(

α β
γ δ

)
∈ SL(2; R),

A ∈ O(S; R), λ, µ ∈ Rl, κ ∈ R. Then

M〈w〉 =

(
τ1 + tλSz + q(λ)τ2 + κ/2− γq(z + λτ2 + µ)

γτ2 + δ
, A
z + λτ2 + µ

γτ2 + δ
,D〈τ2〉

)
(1.10)

whereD〈τ2〉 = ατ2+β
γτ2+δ

is the usual action ofSL(2; R) on the upper half planeH. Since the
second and third component ofM〈w〉 only depend on the second and third component of
w = (∗, z, τ2) the action ofPS(R) onHS induces an action ofJS(R) onH × Cl which is
given by

[D,A, (λ, µ), κ](τ, z) =

(
D〈τ〉, Az + λτ + µ

γτ + δ

)
. (1.11)

This action is compatible with the action of Arakawa’s Jacobi groupGJ onH×Cl ([Ar92,
(3.2)]) via the homomorphism (1.9).



2. Modular Forms

2.1. Orthogonal modular forms

Let S be an even positive definite matrix of degreel. Note that

j : O+(S1; R)×HS → C×, (M,w) 7→M{w},

is a factor of automorphy (cf. [Bü96, La. 2.10]), i.e.,j(M, ·) is holomorphic for allM ∈
O+(S1; R), andj satisfies the cocycle condition

j(M1M2, w) = j(M1,M2〈w〉) j(M2, w) for all M1,M2 ∈ O+(S1; R). (2.1)

Givenf : HS → C, M ∈ O+(S1; R) andk ∈ Z we define a functionf |kM : HS → C
by

(f |kM)(w) := j(M,w)−kf(M〈w〉) for all w ∈ HS.

Thenf |kM is holomorphic wheneverf is holomorphic, and, moreover,

(f |kM1)|kM2 = f |k(M1M2) for all M1,M2 ∈ O+(S1; R).

Thus(M, f) 7→ f |kM defines an action ofO+(S1; R) on the set of holomorphic functions
onHS.

Definition 2.1 Let k ∈ Z, Γ a subgroup ofΓS of finite index andν ∈ Γab an Abelian
character ofΓ of finite order. A holomorphic functionf : HS → C is called an (orthogonal)
modular form of weightk (onHS) with respect toΓ andν if it satisfies

f |kM = ν(M)f for all M ∈ Γ. (2.2)

We denote the vector space of (orthogonal) modular forms of weightk with respect toΓ
and ν by [Γ, k, ν]. If ν = 1 then we sometimes simply write[Γ, k]. Moreover, we write
[Γ′, k, 1] or [Γ′, k] for the vector space of all modular forms of weightk with respect toΓ,
i.e.,

[Γ′, k] = [Γ′, k, 1] =
⊕

ν∈Γab

[Γ, k, ν],

whereΓab is the group of Abelian characters ofΓ.

The constant functions are obviously modular forms of weight0 with respect to the trivial



30 2. Modular Forms

character. Moreover, given two modular formsf ∈ [Γ, k, ν] andg ∈ [Γ, k′, ν ′] we have

fg ∈ [Γ, k + k′, νν ′].

Thus the modular forms with respect to the trivial character and some subgroupΓ of ΓS of
finite index form a graded ring (which is graded by the weight). We denote this graded ring
by

A(Γ) =
⊕
k∈Z

[Γ, k, 1].

If −I ∈ Γ then we get a first necessary condition for the existence of non-trivial modular
forms.

Proposition 2.2 If −I ∈ Γ andν(−I) 6= (−1)k then[Γ, k, ν] = {0}.

PROOF This follows immediately fromf |k(−I) = (−1)kf and (2.2). �

This result allows us to derive some conditions on the weight and/or the characters for the
existence of non-trivial modular forms in the cases we are mainly interested in.

Corollary 2.3 Letk, l,m, n ∈ Z.

a) If S ∈ {D4, A
(2)
1 } andk is odd then[ΓS, k, ν] = {0} for all Abelian charactersν ∈ Γab

S .

b) [Γ
A

(3)
1
, k, detl νm

π ν
n
2 ] = {0} if k + l ≡ 1 (mod 2).

c) [ΓA3 , k, detl νm
π ] = {0} if k + l +m ≡ 1 (mod 2).

d) [ΓA2 , k, detl νm
π ] = {0} if k +m ≡ 1 (mod 2).

e) [ΓS2 , k, detl νm
π ν

n
2 ] = {0} if k +m ≡ 1 (mod 2).

Since our modular forms with respect to the full modular groupΓS and the trivial char-
acter are also modular forms in the sense of [Kr96] we can apply some of Krieg’s results.

Theorem 2.4 Letν ∈ Γab
S be an Abelian character ofΓS of orderh, and letk ∈ Z. Then

[ΓS, 0, ν] =

{
C, if ν = 1,

{0}, if ν 6= 1,

and

[ΓS, k, ν] = {0}, if k <
l

2h
, k 6= 0,

wherel is the rank ofS.

PROOF If f ∈ [ΓS, 0, 1] thenf is a modular form of weight0 in the sense of Krieg, and
thus a constant function by virtue of [Kr96, Cor. 4]. Ifν ∈ Γab

S is of orderh > 1 and
f ∈ [ΓS, 0, ν] thenfh ∈ [ΓS, 0, 1] = C and hence alsof ∈ C. Due toν 6= 1 there is an
M ∈ ΓS such thatν(M) 6= 1. Thenf = f |0M = ν(M)f yieldsf = 0.
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Now letk ∈ Z, k < l/(2h), k 6= 0, and letf ∈ [ΓS, k, ν]. In case of the trivial character
f = 0 follows immediately from [Kr96, Cor. 4]. Otherwise, we again have to consider
fh ∈ [ΓS, hk, 1] = {0}. �

Lemma 2.5 Letk ∈ Z, Γ a subgroup ofΓS of finite index andν ∈ Γab an Abelian charac-
ter ofΓ of finite order. Then eachf ∈ [Γ, k, ν] possesses an absolutely convergent Fourier
expansion of the form

f(w) =
∑
µ∈Λ]

0

αf (µ) e2πi tµS0w/h for all w ∈ HS

for someh ∈ N which depends onΓ and the order ofν.
If M̃ ∈ O+(Λ0) such thatM = (1)× M̃ × (1) ∈ Γ then we have

αf (M̃µ) = ν(M)αf (µ) for all µ ∈ Λ]
0.

PROOF SinceΓ is of finite index inΓS andν is of finite order there is ah ∈ N such that
T h

g = Thg ∈ Γ andν(T h
g ) = ν(Tg)

h = 1 for all g ∈ Λ0. Then

f(w) = (f |kThg)(w) = f(w + hg) for all g ∈ Λ0

yields the existence of an absolutely convergent Fourier expansion of the form

f(w) =
∑
µ∈Λ]

0

αf (µ) e2πi tµS0w/h for all w ∈ HS.

The property of the Fourier coefficients follows fromf(Mw) = (f |kM)(w) = ν(M)f(w)
and the uniqueness of the Fourier expansion. �

Definition 2.6 For a ∈ Rl+2 we writea > 0, if a belongs toPS, and we writea ≥ 0, if a
belongs to the closure

PS = {v = (v0, . . . , vl+1) ∈ Rl+2; q0(v) ≥ 0, v0 ≥ 0}

ofPS. Moreover, givena, b ∈ Rl+2 we define as usual

a > b ⇐⇒ a− b > 0,

a ≥ b ⇐⇒ a− b ≥ 0.

A few properties of positive and semi-positive elements ofRl+2 are given in the following

Proposition 2.7 Letu, v ∈ Rl+2 with u ≥ 0 andv > 0.
a) There existsM ∈ O+(S0; R) such thatMv = t(v′0, 0, v

′
l+1) with v′0, v

′
l+1 > 0.

b) There existsM ∈ O+(S0; R) such thatMu = t(u′0, 0, u
′
l+1) with u′0, u

′
l+1 ≥ 0.

c) If u 6= 0 then we havetuS0v > 0.
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PROOF Let u = (u0, ũ, ul+1) ≥ 0 andv = (v0, ṽ, vl+1) > 0.

a) Due tov > 0 we havevl+1 > 0. Therefore, withM = Ũ−ev/vl+1
∈ O+(S0; R) we get

Mv = t(v′0, 0, v
′
l+1) > 0 which, in particular, impliesv′0, v

′
l+1 > 0.

b) If u0 = 0 or ul+1 = 0 thenũ = 0. So we only have to consider the caseu0, ul+1 > 0. In
this case we can just as in a) chooseM = Ũ−eu/ul+1

∈ O+(S0; R).
c) By virtue of b) we can findM ∈ O+(S0; R) such thatMu = t(u′0, 0, u

′
l+1) =: u′. Then

tuS0v = tu tMS0Mv = tu′S0(Mv) = u′0v
′
l+1 + u′l+1v

′
0

whereMv = (v′0, ∗, v′l+1) > 0. Now u 6= 0 impliesu′0 > 0 or u′l+1 > 0. This yields the
assertion. �

Theorem 2.8 (Koecher’s principle)Let k ∈ Z, ν ∈ Γab
S an Abelian character ofΓS of

orderh ∈ N andf ∈ [ΓS, k, ν] a modular form with Fourier expansion

f(w) =
∑
µ∈Λ]

0

αf (µ) e2πi tµS0w/h for all w ∈ HS.

Thenαf (µ) = 0 unlessµ ≥ 0. Furthermore, givenβ > 0 thenf is bounded in the domain
{w ∈ HS; Im(w) ≥ βe}, wheree = t(1, 0, . . . , 0, 1), and its Fourier series converges
uniformly in this domain.

PROOF Bühler proved this forν = 1 in [Bü96, Satz 3.7]. The proof can easily be extended
to the case of non-trivial characters. Letν ∈ Γab

S be a non-trivial character of orderh ∈ N.
Then, due to Lemma 2.5, we have

αf (hλŨµ0) = ν(hλU)αf (µ0) = ν(λU
h)αf (µ0) = αf (µ0) for all λ ∈ Λ, µ0 ∈ Λ]

0.

If one now replacesλU by hλU in Bühler’s proof then the assertion follows, i.e., we have

f(w) =
∑

µ0∈Λ]
0

µ0≥0

αf (µ0) e
2πi tµ0S0w/h for all w ∈ HS.

Since the Fourier series converges inw = i1
2
βe ∈ HS there existsc > 0 such that

|αf (µ0)e
2πi tµ0S0w/h| = |αf (µ0)| e−πβ(m+n)/h ≤ c

for all µ0 = (m,µ, n) ∈ Λ]
0, µ0 ≥ 0. If v ≥ βe andµ0 ≥ 0 then tµ0S0v ≥ tµ0S0βe =
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β(m+ n). Thus forw = u+ iv ∈ HS with v ≥ βe we have

|f(w)| ≤
∑

µ0∈Λ]
0

µ0≥0

|αf (µ0)| e−2π tµ0S0v/h

≤ c
∑

µ0∈Λ]
0

µ0≥0

e−πβ(m+n)/h.

In order to further estimate this sum we determine an upper bound for the number of vectors
µ0 = (m,µ, n) ∈ Λ]

0 with µ0 ≥ 0 andm + n = t ∈ N0. Due toS−1 > 0 there exists an
r > 0 such thatS−1 − rIl > 0. If λ ∈ Λ = Zl with ||λ||∞ > t2/r then forµ = S−1λ
we haveS[µ] = S−1[λ] > r tλλ > t2. But µ0 = (m,µ, n) ≥ 0 yieldsS[µ] ≤ 2mn ≤
(m + n)2 = t2. Thus there are at most(2 bt2/rc + 1)l vectorsµ0 = (m,µ, n) ∈ Λ]

0 with
µ0 ≥ 0 andm+ n = t. The convergence of the series

∞∑
t=0

(
2

⌊
t2

r

⌋
+ 1

)l

e−πβt/h

completes the proof. �

Definition 2.9 A modular formf ∈ [ΓS, k, ν] with Fourier expansion

f(w) =
∑
µ∈Λ]

0
µ≥0

αf (µ)e2πi tµS0w/h for all w ∈ HS

is called an (orthogonal) cusp formif αf (µ) 6= 0 impliesµ > 0. We denote the subspace of
cusp forms in[ΓS, k, ν] by [ΓS, k, ν]0.

In the theory of symplectic modular forms the space of cusp forms is sometimes defined
as kernel of a certain operator, namely Siegel’sΦ-operator (cf. [Kr85]). We can define
Siegel’sΦ-operator also for orthogonal modular forms, and, ifΛ is Euclidean, then just as
in the symplectic theory the space of cusp forms turns out to be the kernel of this operator.

Proposition 2.10 Let ν ∈ Γab
S be an Abelian character ofΓS such thatν(Tg) = 1 for all

g ∈ Λ0. Then fork ∈ Z the map

Φ : [ΓS, k, ν] → [SL(2; Z), k], f 7→ f |Φ,

(f |Φ)(τ) := lim
y→∞

f(iy, 0, τ) for τ ∈ H,

where[SL(2; Z), k] is the space of elliptic modular forms of weightk, is a homomorphism.
We call this mapSiegel’sΦ-operator.
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If Λ is Euclidean then we have

[ΓS, k, ν]0 = ker Φ,

i.e.,f ∈ [ΓS, k, ν] is a cusp form if and only iff |Φ = 0.

PROOF Due to the condition on the character allf ∈ [ΓS, k, ν] have a Fourier expansion
of the form

f(w) =
∑

µ0∈Λ]
0

µ0≥0

αf (µ0) e
2πi tµ0S0w for all w ∈ HS.

Since the Fourier series is locally uniformly convergent we have

lim
y→∞

f(iy, 0, τ) =
∑

µ0=(m,µ,n)∈Λ]
0

µ0≥0

αf (µ0) e
2πimτ lim

y→∞
e−2πny

=
∑

m∈N0

αf (m, 0, 0) e2πimτ .

Thusf |Φ is well-defined. The linearity ofΦ is obvious, andf |Φ ∈ [SL(2; Z), k] follows
from f |kMD = ν(MD)f = f for allD ∈ SL(2; Z). Note thatν(MD) = 1 is a consequence
of ν(Tg) = 1.

If f is a cusp form thenαf (m, 0, 0) = 0 for all m ∈ N0 yieldsf |Φ = 0. Conversely,
f |Φ = 0 implies αf (m, 0, 0) = 0 for all m ∈ N0. Now suppose thatΛ is Euclidean.
Then, by virtue of Proposition 1.22, for eachµ0 ∈ Λ]

0 with q0(µ0) = 0 there exists an
M ∈ O+(Λ0) such that(1)×M × (1) ∈ ΓS andMµ0 = t(m, 0, . . . , 0). Due to|αf (µ0)| =
|αf (Mµ0)| = 0 we conclude thatf is a cusp form. �

Using the above characterization of cusp forms and common knowledge about elliptic mod-
ular forms we can show that the subspace of cusp forms often coincides with the space of
modular forms.

Corollary 2.11 Suppose thatS is one of the matrices listed in (1.2). Letν ∈ Γab
S be an

Abelian character ofΓS such thatν(Tg) = 1 for all g ∈ Λ0, and letk ∈ N0. If k is odd or
k = 2 or ν 6= 1 then

[ΓS, k, ν] = [ΓS, k, ν]0.

PROOF Let f ∈ [ΓS, k, ν]. If k is odd ork = 2 thenf |Φ ∈ [SL(2; Z), k] = {0}, and
thusf is a cusp form. Ifν 6= 1 then because of the condition onν there existsA ∈ O(Λ)
such thatν(RA) = −1. Thenαf (µ0) = αf (RAµ0) = ν(RA)αf (µ0) = −αf (µ0) for all
µ0 = (m, 0, 0),m ∈ N0, yieldsf |Φ = 0. Hencef is a cusp form. �
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2.2. Rankin-Cohen type differential operators

In this section we introduce a certain holomorphic differential operator for orthogonal mod-
ular forms. The interesting property of this differential operator is that it produces a new
modular form from several given modular forms. In the case of Siegel modular forms dif-
ferential operators with this property were studied by Ibukiyama in [Ib99a]. We restrict
ourselves to considering the equivalent of the Rankin-Cohen type differential operator that
was used by Aoki and Ibukiyama in [AI05].

Let S be an even positive definite matrix of degreel. We writew ∈ HS either, as usual,
in the formw = (τ1, z, τ2), τ1, τ2 ∈ H, z = (z1, . . . , zl) ∈ Cl, or simply in the form
w = (w0, . . . , wl+1). First determine the Jacobian of the modular transformations. Recall
that the Jacobian (determinant) of a functionF : Cn → Cn is given by

det

(
∂F

∂z

)
= det

(
∂(F1, . . . , Fn)

∂(z1, . . . , zn)

)
= det


∂F1

∂z1
· · · ∂F1

∂zn
...

...
...

∂Fn

∂z1
· · · ∂Fn

∂zn

 .

Proposition 2.12 LetΓS be nicely generated. Then

det

(
∂M〈w〉
∂w

)
= (detM) · j(M,w)−l−2

for all M ∈ ΓS and allw ∈ HS.

PROOF LetM1,M2 ∈ ΓS. Due to the chain rule we have

det

(
∂(M1M2)〈w〉

∂w

)
= det

(
∂M1〈M2〈w〉〉
∂M2〈w〉

)
det

(
∂M2〈w〉
∂w

)
.

Moreover,j satisfies the cocycle condition (2.1). Therefore it suffices to prove the assertion
for generatorsJ , Tg, g ∈ Λ0, andRA, A ∈ O(Λ), of ΓS. For the translations the assertion
is trivial, and for the rotationsRA, A ∈ O(Λ), we have

det

(
∂RA〈w〉
∂w

)
= det

(
∂(τ1, Az, τ2)

∂(τ1, z1, . . . , zl, τ2)

)
= detA = (detRA) · j(RA, w)−l−2.

It remains to prove the assertion forM = J . Instead we show the assertion forM( 0 −1
1 0 )

andM∗
( 0 −1

1 0 )
. We have

M( 0 −1
1 0 )〈w〉 =

(
τ1 −

q(z)

τ2
,
z

τ2
,− 1

τ2

)
and M∗

( 0 −1
1 0 )

〈w〉 =

(
− 1

τ1
,
z

τ1
, τ2 −

q(z)

τ1

)
.
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Therefore

det

(
∂M( 0 −1

1 0 )〈w〉

∂w

)
= det


1 ∗ ∗ ∗ ∗
0 τ−1

2 0 0 ∗
0 0

... 0 ∗
0 0 0 τ−1

2 ∗
0 0 0 0 τ−2

2

 = τ−l−2
2 = j(M( 0 −1

1 0 ), w)−l−2

and analogously

det

(∂M∗
( 0 −1

1 0 )
〈w〉

∂w

)
= τ−l−2

1 = j(M∗
( 0 −1

1 0 )
, w)−l−2.

In view of detM( 0 −1
1 0 ) = detM∗

( 0 −1
1 0 )

= 1 andJ = M( 0 −1
1 0 )M

∗
( 0 −1

1 0 )
this completes the

proof. �

Now we define the differential operator.

Definition 2.13 LetΓ be a subgroup ofΓS of finite index. Givenl+ 3 orthogonal modular
formsfj ∈ [Γ, kj, χj] of weightkj with respect to an Abelian characterχj ∈ Γab, 1 ≤ j ≤
l + 3, and with respect toΓ, we define a function{f1, . . . , fl+3} : HS → C by

{f1, . . . , fl+3} = det


k1f1 · · · kl+3fl+3
∂f1

∂w0
· · · ∂fl+3

∂w0
...

...
∂f1

∂wl+1
· · · ∂fl+3

∂wl+1

 .

Under certain conditions this function turns out to be a modular form. We restrict our
considerations to nicely generated modular groups.

Proposition 2.14 Let ΓS be nicely generated. Givenfj ∈ [ΓS, kj, χj] with kj ∈ Z and
χj ∈ Γab

S , 1 ≤ j ≤ l + 3, the function{f1, . . . , fl+3} is a modular form of weightk1 +
. . . + kl+3 + l + 2 with respect toΓS and the Abelian characterχ = χ1χ2 · · ·χl+3 det. If
f1, . . . , fl+3 are algebraically independent, then{f1, . . . , fl+3} does not vanish identically.

PROOF We closely follows the proof of [AI05, Prop. 2.1]. For2 ≤ n ≤ l + 3 we define
functionsFn by Fn := fk1

n /fkn
1 . LetM ∈ ΓS. Then

Fn(M〈w〉) =
fk1

n (M〈w〉)
fkn

1 (M〈w〉)
·
(
j(M,w)−kn

)k1

(j(M,w)−k1)kn
=

(fn|knM)k1 (w)

(f1|k1M)kn (w)

=
χk1

n (M) fk1
n (w)

χkn
1 (M) fkn

1 (w)
=
(
χk1

n χ
−kn
1

)
(M) Fn(w).
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Hence theFn are modular functions, that is meromorphic modular forms of weight0,
with respect to the Abelian charactersχ̃n := χk1

n χ
−kn
1 . Next we consider the Jacobian of

(F2, . . . , Fl+3). We set

F := det

(
∂(F2, . . . , Fl+3)

∂(w0, . . . , wl+1)

)
.

Then forM ∈ ΓS we have

F (w) = det

(
∂(F2(w), . . . , Fl+3(w))

∂(w0, . . . , wl+1)

)
= det

(
∂
(
χ̃−1

2 (M) F2(M〈w〉), . . . , χ̃−1
l+3(M) Fl+3(M〈w〉)

)
∂(w0, . . . , wl+1)

)

= det

(
∂(F2(M〈w〉), . . . , Fl+3(M〈w〉))
∂((M〈w〉)0, . . . , (M〈w〉)l+1)

)
×

× det

(
∂((M〈w〉)0, . . . , (M〈w〉)l+1)

∂(w0, . . . , wl+1)

)
·

l+3∏
n=2

χ̃−1
n (M)

= F (M〈w〉) · (detM) · j(M,w)−l−2 · (χ̃2χ̃3 · · · χ̃l+3)
−1 (M).

ThusF is a meromorphic modular form of weightl+ 2 with respect toΓS and the Abelian
character̃χ := χ̃2χ̃3 · · · χ̃l+3 det. (Note thatdetM = det−1M for all M ∈ ΓS). More-
over, we have

∂Fn

∂wi

=
∂

∂wi

(fk1
n f−kn

1 ) = k1(f
k1−1
n f−kn

1 )
∂fn

∂wi

− kn(fk1
n f−kn−1

1 )
∂f1

∂wi

=

(
k1f

k1−1
n

fkn
1

)(
∂fn

∂wi

− knfn

k1f1

· ∂f1

∂wi

)
.

This yields

{f1, . . . , fl+3} = det


k1f1 0 · · · 0
∂f1

∂w0

∂F2

∂w0
· · · ∂Fl+3

∂w0
...

...
...

...
∂f1

∂wl+1

∂F2

∂wl+1
· · · ∂Fl+3

∂wl+1

 ·
l+3∏
n=2

fkn
1

k1f
k1−1
n

= k1f1 det

(
∂(F2, . . . , Fl+3)

∂(w0, . . . , wl+1)

)
·

l+3∏
n=2

fkn
1

k1f
k1−1
n

=
f

k2+...+kl+3+1
1

kl+1
1 (f2 · . . . · fl+3)k1−1

· F.
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InsertingM〈w〉,M ∈ ΓS, in {f1, . . . , fl+3} we get

{f1, . . . , fl+3}(M〈w〉) =
(f1(M〈w〉))k2+...+kl+3+1

kl+1
1 (f2(M〈w〉) · . . . · fl+3(M〈w〉))k1−1

· F (M〈w〉)

=

(
j(M,w)k1

)k2+...+kl+3+1

(j(M,w)k2 · . . . · j(M,w)kl+3)k1−1
· j(M,w)l+2×

× χ
k2+...+kl+3+1
1

(χ2χ3 · · ·χl+3)
k1−1

(M) · χ̃(M) · {f1, . . . , fl+3}(w)

= j(M,w)k1+...+kl+3+l+2×
× (χ1χ2 · · ·χl+3 det) (M) · {f1, . . . , fl+3}(w).

We conclude that{f1, . . . , fl+3} is a holomorphic modular form of weightk1 + . . .+kl+3 +
l + 2 with respect toΓS and the Abelian characterχ = χ1χ2 · · ·χl+3 det.

The second part of the assertion, that is{f1, . . . , fl+3} 6= 0 if f1, . . . , fl+3 are alge-
braically independent, follows just as in the proof of [AI05, Prop. 2.1]. �

We will use this differential operator in order to give an alternative realization for some of
the generators of the graded rings of modular forms.

2.3. Jacobi forms

LetS be an even positive definite matrix of degreel. As usual we will writew ∈ HS in the
form w = (τ1, z, τ2), τ1, τ2 ∈ H, z ∈ Cl. According to [Kr96, Th. 2] eachf ∈ [ΓS, k, 1],
k ∈ Z, possesses a Fourier-Jacobi expansion of the form

f(w) =
∞∑

m=0

ϕm(τ2, z) e
2πimτ1 for w = (τ1, z, τ2) ∈ HS (2.3)

where

ϕm(τ, z) =
∞∑

n=0

∑
µ∈Λ]

q(µ)≤mn

αf (n, µ,m) e2πi(nτ+ tµSz). (2.4)

This result can easily be generalized to orthogonal modular forms with respect to an
Abelian character of finite order. We restrict our considerations to the cases we are mainly
interested in.So for the rest of this section we assume thatS is one of the matrices
listed in (1.2).

Proposition 2.15 Let k ∈ Z, ν ∈ Γab
S and f ∈ [ΓS, k, ν]. If S ∈ {A(3)

1 , A
(2)
1 , S2} and
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ν ∈ ν2 · 〈νπ, det〉 thenf possesses a Fourier-Jacobi expansion of the form

f(w) =
∑

m∈ 1
2
+N0

ϕm(τ2, z) e
2πimτ1 for w = (τ1, z, τ2) ∈ HS

where
ϕm(τ, z) =

∑
n∈ 1

2
+N0

∑
µ∈γ+Λ]

q(µ)≤mn

αf (n, µ,m) e2πi(nτ+ tµSz) (2.5)

with γ = S−1 diag(S)/4 wherediag(S) is the column vector consisting of the diagonal
entries ofS. Otherwise the Fourier-Jacobi expansion off is of the form (2.3).

PROOF If ν ∈ 〈νπ, det〉 thenf(w + g) = f(w) for all g ∈ Λ0. Thusf has a Fourier
expansion of the form

f(w) =
∑

µ0∈Λ]
0

µ0≥0

αf (µ0) e
2πi tµ0S0w

and consequently a Fourier-Jacobi expansion of the form (2.3). On the other hand, ifS ∈
{A(3)

1 , A
(2)
1 , S2} andν ∈ ν2 · 〈νπ, det〉 thenf(w + 2g) = f(w) for all g ∈ Λ0. Hencef has

a Fourier expansion of the form

f(w) =
∑

µ0∈ 1
2
Λ]

0
µ0≥0

αf (µ0) e
2πi tµ0S0w.

Now f(w + g) = ν2(Tg) f(w) for all g ∈ Λ0 yieldsαf (µ0) = 0 for µ0 ∈ 1
2
Λ]

0 whenever
ν2(Tg) 6= e2πi tµ0S0g for someg ∈ Λ0. In view of 2 tµ0S0g = (m,µ, n)S0g = ng0 +

(g1, . . . , gl)λ + mgl+1 for 2µ0 = (m,µ, n) = S−1
0 (n, λ,m) ∈ Λ]

0 = S−1
0 Λ0 and g =

(g0, . . . , gl+1) ∈ Λ0 the claim follows from (1.4). �

Remark 2.16 Note thatϕ0(τ, z) is independent ofz. In fact we have

ϕ0(τ, z) =
∞∑

n=0

αf (n, 0, 0) e2πinτ = (f |Φ)(τ) for τ ∈ H, z ∈ Cl.

So ifν ∈ Γab
S with ν(Tg) = 1 for all g ∈ Λ0 and if additionallyΛ is Euclidean thenf is a

cusp form if and only if the0-th Fourier-Jacobi coefficient vanishes.

The functionsϕm : H×Cl → C which occur in the Fourier-Jacobi expansion are so called
Jacobi forms. We will give a formal definition a bit further down. First we show how the
action ofO+(S1; R) on the set of holomorphic functions onHS induces an action of the
Jacobi groupJS(R) on the set of holomorphic functions onH× Cl.
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Let ϕ : H × Cl → C be a holomorphic function. Then for eachm ∈ Q, m > 0, we
define the functionϕ∗m : HS → C by

ϕ∗m(τ1, z, τ2) = e2πimτ1ϕ(τ2, z),

and for eachk ∈ Z, m ∈ Q, m > 0, andg ∈ JS(R) we define the functionϕ|k,m,Sg :
H× Cl → C by

(ϕ|k,m,Sg)(τ, z) = e−2πimτ ′(ϕ∗m|kMg)(τ
′, z, τ)

whereMg is the element ofPS(R) which corresponds tog andτ ′ is an arbitrary element of
H. Forg = [D,A, (λ, µ), κ] ∈ JS(R),D =

(
α β
γ δ

)
, we haveMg = MDRAUλT(κ/2− tλSµ,µ,0)

and the above translates to

(ϕ|k,m,Sg)(τ, z) = e−2πimτ ′(γτ + δ)−kϕ∗m(Mg〈(τ ′, z, τ)〉)

= e−2πimτ ′(γτ + δ)−kϕ∗m

(
τ ′ + tλSz + q(λ)τ + κ

2
− γq(z+λτ+µ)

γτ+δ
, A z+λτ+µ

γτ+δ
, D〈τ〉

)
= (γτ + δ)−ke2πim( tλSz+q(λ)τ+κ/2−γq(z+λτ+µ)/(γτ+δ))ϕ

(
D〈τ〉, Az + λτ + µ

γτ + δ

)
.

In particular, we see that the definition ofϕ|k,m,Sg is independent of the choice ofτ ′ ∈ H.

Moreover, due to the definition the map(ϕ, g) 7→ ϕ|k,m,Sg obviously defines an action
of JS(R) on the set of holomorphic functions onH× Cl and

jk,m,S(g, (τ, z)) = (γτ + δ)ke−2πim( tλSz+q(λ)τ+κ/2−γq(z+λτ+µ)/(γτ+δ))

defines a factor of automorphy onJS(R) × (H × Cl). Note that by virtue of (1.9),jk,m,S

corresponds to the factor of automorphyJk, 1
2
mS onGJ × (H×Cl) defined by Arakawa in

[Ar92]. In view of (1.11), the action ofJS(R) on a holomorphic functionϕ : H×Cl → C
can also be written in the form

(ϕ|k,m,Sg)(τ, z) = jk,m,S(g, (τ, z))−1 ϕ(g(τ, z)).

Now we define Jacobi forms onH× Cl.

Definition 2.17 Let k ∈ Z, m ∈ Q, m > 0, andν ∈ Γab
S an Abelian character ofΓS. A

holomorphic functionϕ : H×Cl → C is called aJacobi form of index(m,S) and weight
k with respect toν if it satisfies the following conditions:

(i) For all g ∈ JS(Z) we have
ϕ|k,m,Sg = ν(g) ϕ (2.6)

whereν is considered as character ofJS(Z) via the correspondence ofJS(Z) and
PS(Z).
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(ii) ϕ has a Fourier expansion of the form

ϕ(τ, z) =
∑
n∈Q
n≥0

∑
µ∈ΛQ

q(µ)≤mn

αϕ(n, µ) e2πi(nτ+ tµSz) (2.7)

whereΛQ = Λ⊗Z Q.
If αϕ(n, µ) = 0 wheneverq(µ) = mn then we callϕ a Jacobi cusp form.

We denote the space of Jacobi forms of index(m,S) and weightk with respect toν by
Jk(m,S, ν) and the corresponding space of Jacobi cusp forms byJ0

k (m,S, ν). If ν = 1
then we simply writeJk(m,S) andJ0

k (m,S).

As we already mentioned above the functionsϕm, m > 0, appearing in the Fourier-Jacobi
expansion of a modular form are Jacobi forms.

Proposition 2.18 Letk ∈ Z, ν ∈ Γab
S andf ∈ [ΓS, k, ν] with Fourier-Jacobi expansion

f(w) =
∑
m∈Q

ϕm(τ2, z) e
2πimτ1 for w = (τ1, z, τ2) ∈ HS.

Thenϕm ∈ Jk(m,S, ν) for all m ∈ Q,m > 0.

PROOF Let g = [D,A, (λ, µ), κ] ∈ JS(Z), D =
(

α β
γ δ

)
. Then the corresponding element

of PS(Z) is given byMg = MDRAUλT(κ/2− tλSµ,µ,0) and we have

ν(Mg)f(w) = (f |kMg)(w) = j(Mg, w)−kf(Mg〈w〉) = (γτ2 + δ)−kf(Mg〈w〉)

for w = (τ1, z, τ2) ∈ HS. Replacingf by its Fourier-Jacobi expansion, using (1.10) and
taking into account the uniqueness of the Fourier expansion off with respect toτ1, we get

ν(Mg)ϕm(τ2, z) = (γτ2 + δ)−ke
2πim( tλSz+q(λ)τ2+κ/2− γq(z+λτ2+µ)

γτ2+δ
)
ϕm

(
D〈τ2〉, A z+λτ2+µ

γτ2+δ

)
= jk,m,S(g, (τ2, z))

−1 ϕm(g(τ2, z))

= (ϕm|k,m,Sg)(τ2, z)

for (τ2, z) ∈ H × Cl. Moreover, by virtue of Proposition 2.15, theϕm have a Fourier
expansion of the form (2.7). This completes the proof. �

In view of the structure ofJS(Z), a functionϕ : H× Cl → C satisfies (2.6) if and only if
it satisfies the following conditions:

(i) ν([D]) ϕ(τ, z) = (γτ+δ)−ke−2πim
γq(z)
γτ+δϕ

(
D〈τ〉, z

γτ+δ

)
for allD =

(
α β
γ δ

)
∈ SL(2; Z),

(ii) ν([A]) ϕ(τ, z) = ϕ(τ, Az) for all A ∈ O(Λ),

(iii) ν([λ, µ]) ϕ(τ, z) = e2πim( tλSz+q(λ)τ)ϕ(τ, z + λτ + µ) for all λ, µ ∈ Zl,

(iv) ν([κ]) ϕ(τ, z) = eπimκϕ(τ, z) for all κ ∈ 2Z.
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In particular, we see that in case ofν([2]) = ν(Te1) = 1 there are non-trivial Jacobi
forms only ifm ∈ Z. Moreover, ifk ∈ N, m ∈ N andν ∈ Γab

S with ν(g) = 1 for all
g = [∗, Il, (∗, ∗), ∗] ∈ JS(Z) then the elements ofJk(m,S, ν) are elements of the space
JArakawa

k, 1
2
mS

(SL(2; Z)) of Jacobi forms forSL(2; Z) of index 1
2
mS and weightk in the sense of

Arakawa ([Ar92]) and also elements of the spaceJKrieg
k (Zl, σmS) of Jacobi forms of weight

k with respect to(Zl, σmS) in the sense of Krieg ([Kr96]). Conversely, as we will later see,
for S ∈ {A(2)

1 , A2, S2, A3} we have

JKrieg
k (Zl, σS) = JArakawa

k, 1
2
S

(SL(2; Z)) =
⊕

ν

Jk(1, S, ν)

where the sum runs over all Abelian charactersν ∈ 〈νπ, det〉 ≤ Γab
S . Thus we can apply

Arakawa’s results in order to determine the dimensions of certain spaces of Jacobi cusp
forms.

Proposition 2.19 LetS = A3. If k ≥ 4 then

∑
ν∈Γab

S

dim J0
k (1, S, ν) =


⌊

k
4

⌋
− 1 if k is even,⌊

k
12

⌋
if k is odd, k 6≡ 9 (mod 12),⌊

k
12

⌋
+ 1 if k is odd, k ≡ 9 (mod 12).

PROOF Apply [Ar92, Thm. 5.2]. �

2.4. Maaß spaces

In this section we introduce the Maaß space which consists of modular forms with particu-
larly nice Fourier expansion. LetS be an arbitrary even positive definite matrix of degreel.

Definition 2.20 Let k ∈ Z and ν ∈ Γab
S an Abelian character ofΓS. A modular form

f ∈ [ΓS, k, ν] is called aMaaß formof weightk with respect toν if its Fourier expansion

f(w) =
∑

µ0∈Λ]
0

µ0≥0

αf (µ0)e
2πi tµ0S0w

satisfies

αf (µ0) =
∑

d | gcd(S0µ0)

dk−1αf (mn/d
2, µ/d, 1) for all 0 6= µ0 = (m,µ, n) ∈ Λ]

0. (2.8)

The subspace of[ΓS, k, ν] consisting of Maaß forms is called theMaaß space. We denote it
byM(ΓS, k, ν). If ν = 1 then we simply writeM(ΓS, k).
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The Maaß space considered by Krieg in [Kr96] corresponds to the spaceM(Γ̃S, k) where
Γ̃S = 〈J, Tg; g ∈ Λ0〉 is the subgroup ofΓS which is generated by the inversionJ and the
translationsTg, g ∈ Λ0. Note that for allS in (1.2) we havẽΓS = ΓS ∩Od(Λ1) ∩ SO(Λ1).
If ΓS is nicely generated andΓ′S is a subgroup of̃ΓS then we can decompose the space
M(Γ̃S, k) into a direct sum of certain spacesM(ΓS, k, ν). By virtue of Corollary 1.28
these conditions are fulfilled ifS ∈ {A(2)

1 , A2, S2, A3}.

Proposition 2.21 Suppose thatΓS is nicely generated and thatΓ′S is a subgroup of̃ΓS =
〈J, Tg; g ∈ Λ0〉. Then

M(Γ̃S, k) =
⊕

ν

M(ΓS, k, ν)

for all k ∈ Z where the sum runs over all Abelian charactersν of ΓS for whichΓ̃S ≤ ker ν.

PROOF LetG := {ν ∈ Γab
S ; Γ̃S ≤ ker ν}. If ν ∈ G then we obviously haveM(ΓS, k, ν) ⊂

M(Γ̃S, k). It remains to be shown that allf ∈M(Γ̃S, k) can be written as a linear combi-
nation of functionsfν ∈M(ΓS, k, ν), ν ∈ G.
G is an Abelian group. Therefore there existνj ∈ G, 1 ≤ j ≤ r, such thatG =∏r
j=1 〈νj〉. Let sj be the order ofνj and letζj ∈ C be a primitivesj-th root of unity for

1 ≤ j ≤ r. SinceΓS is generated bỹΓS and the rotationsRA, A ∈ O(Λ), and since
Γ̃S ≤ ker νj, 1 ≤ j ≤ r, we actually haveG ∼= O(Λ)ab. Therefore we findA1, . . . , Ar ∈
O(Λ) such thatνj(RAj

) = ζj andνi(RAj
) = 1 for all 1 ≤ i, j ≤ r, i 6= j. Note that

ΓS = 〈Γ̃S, RA1 , . . . , RAr〉.
Now let f ∈ M(Γ̃S, k) andA ∈ O(Λ). If f has Fourier coefficientsαf (µ0), µ0 ∈ Λ]

0,
thenf |kRA has Fourier coefficientsαf |kRA

(m,µ, n) = αf (m,Aµ, n), (m,µ, n) ∈ Λ]
0. One

easily checks that the Fourier coefficients off |kRA satisfy the Maaß condition. Moreover,
we havef |kRA ∈ [Γ̃S, k] becauseRA commutes moduloΓ′S with all elements of̃ΓS so
that for allM ∈ Γ̃S we have(f |kRA)|kM = (f |kM ′)|kRA with someM ′ ∈ Γ̃S and thus
(f |kRA)|kM = f |kRA for all M ∈ Γ̃S. So for allA ∈ O(Λ) we havef |kRA ∈ M(Γ̃S, k),
and, in particular,f |kRAj

∈M(Γ̃S, k), 1 ≤ j ≤ r.
We define functionsgi, 0 ≤ i ≤ s1 − 1, by

g0

g1
...

gs1−1

 =


1 1 · · · 1
x0 x1 · · · xs1−1
...

...
.. .

...
xs1−1

0 xs1−1
1 · · · xs1−1

s1−1




f
f |kRA1

...
f |kRs1−1

A1


wherexi = ζ i

1, 0 ≤ i ≤ s1 − 1. Obviously, we havegi ∈M(Γ̃S, k) for all 1 ≤ i ≤ s1 − 1.
Furthermore, those functions satisfy

gi|kRA1 =

s1−1∑
s=0

(ζs
1)

i f |kRs+1
A1

= ζ
(s1−1)i
1 f +

s1−1∑
s=1

ζ
(s−1)i
1 f |kRs

A1
= ζ−i

1 gi = ν−i
1 (RA1) gi,
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so that we actually havegi ∈ M(〈Γ̃S, RA1〉, k, ν−i
1 ), 0 ≤ i ≤ s1 − 1. Note thatf is re-

coverable as linear combination of thegi since the transformation matrix is a Vandermonde
matrix and thus invertible.

In the second step we use the functionsgi instead off as input and get functions

h
(i)
j =

s2−1∑
s=0

(ζs
2)

j gi|kRs
A2
∈M(〈Γ̃S, RA1 , RA2〉, k, ν−i

1 ν−j
2 ),

for 0 ≤ i ≤ s1 − 1, 0 ≤ j ≤ s2 − 1. After r iterations we finally get functionsfν ∈
M(ΓS, k, ν), ν ∈ G. Due to the construction we havef ∈ span{fν ; ν ∈ G}. This
completes the proof. �

We can now prove that certain spaces of Maaß forms are isomorphic to certain spaces of
Jacobi forms.

Corollary 2.22 Suppose thatΓS is nicely generated and thatΓ′S ≤ Γ̃S = 〈J, Tg; g ∈ Λ0〉.
Givenk ∈ N and an Abelian characterν of ΓS with Γ̃S ≤ ker ν the map

M(ΓS, k, ν) → Jk(1, S, ν), f 7→ ϕ1(f),

whereϕ1(f) is the first Fourier-Jacobi coefficient off , is an isomorphism of vector spaces.

PROOF We consider the following commutative diagram:⊕
ν
M(ΓS, k, ν)

(fν)ν 7→
P

ν fν−−−−−−−−→ M(Γ̃S, k)

(fν)ν 7→(ϕ1(fν))ν

y yf 7→ϕ1(f)⊕
ν
Jk(1, S, ν)

(ϕν)ν 7→
P

ν ϕν−−−−−−−−→ JKrieg
k (Zl, σS)

The right map and the upper map are isomorphisms of vector spaces according to [Kr96,
Thm. 3] and Proposition 2.21, respectively. Consequently, the lower map has to be sur-
jective. Since the lower map is the canonical injection it is also injective and thus an
isomorphism. Therefore the left map also has to be an isomorphism. This completes the
proof. �

Note that the above isomorphism obviously maps cusp forms to cusp forms. Moreover, by
considering the Fourier-Jacobi expansion of Maaß forms we can show that the dimension
of the Maaß space is at most one greater than the dimension of the space of Maaß cusp
forms. This will allow us to calculate the exact dimension of certain Maaß spaces using
Arakawa’s formulas for the dimension of spaces of Jacobi cusp forms.

Corollary 2.23 Suppose thatS ∈ {A(2)
1 , A2, S2, A3}. Givenk ∈ N and an Abelian char-

acterν of ΓS with ν(Tg) = 1 for all g ∈ Λ0 we have

dimM(ΓS, k, ν) =

{
dim J0

k (1, S, ν) if k is odd ork = 2 or ν 6= 1,

dim J0
k (1, S, ν) + 1 if k > 2 is even andν = 1.
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PROOF If k is odd ork = 2 or ν 6= 1 then according to Corollary 2.11 all Maaß forms are
cusp forms, and thereforeM(ΓS, k, ν) ∼= J0

k (1, S, ν). Now suppose thatk > 2 is even and
thatν = 1. Assume we have two non-cusp formsf, g ∈M(ΓS, k, 1). Letϕ0(f) andϕ0(g)
be the0-th Fourier-Jacobi coefficient off andg, respectively. According to the proof of
[Kr96, Thm. 3] we haveϕ0(f) = 1

γk
αf (e1)Gk andϕ0(g) = 1

γk
αg(e1)Gk where

Gk(τ) = 1− 2k

Bk

∞∑
n=1

σk−1(n) e2πinτ

is the normalized elliptic Eisenstein series in[SL(2; Z), k] for k > 2 even. Nowαg(e1)f −
αf (e1)g ∈ [ΓS, k, 1]0 implies

dimM(ΓS, k, 1) ≤ dim J0
k (1, S, 1) + 1.

ForS ∈ {A(2)
1 , A2, S2} the existence of a non-cusp formf ∈ M(ΓS, k, 1) for k ≥ 4 even

follows from [DK03, Thm. 1] (cf. Section 2.6). ForS = A3 non-cusp forms are given by
the Eisenstein seriesEA3

k ∈ M(ΓA3 , k, 1), k ≥ 4 even, which will be defined in Section
2.5. �

Since the preceding result is applicable in case ofS = A3 we get

Corollary 2.24 LetS = A3. If k ≥ 4 then

dimM(Γ′S, k) =
∑

ν∈Γab
S

dimM(ΓS, k, ν) =


⌊

k
4

⌋
if k is even,⌊

k
12

⌋
if k is odd, k 6≡ 9 (mod 12),⌊

k
12

⌋
+ 1 if k is odd, k ≡ 9 (mod 12).

PROOF Apply Proposition 2.19 and Corollary 2.23. �

2.5. Restrictions of modular forms to submanifolds

In this section we examine the restrictions of orthogonal modular forms living onHS to
submanifolds ofHS.

2.5.1. The general case

Let Λ = Zl with bilinear form(·, ·)S be the lattice associated to an even positive definite
matrix S of rank l ≥ 2. Suppose thatΛT = Zl′ with bilinear form (·, ·)T is the lattice
associated to an even positive definite matrixT of rank l′ < l which can be considered as
sublattice ofΛ via an isometric embedding

ιST : ΛT → Λ, λT 7→MS
T λT ,
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with MS
T ∈ Mat(l, l′; Z) satisfying(a, b)T = (ιST (a), ιST (b))S for all a, b ∈ ΛT (and by

C-linearity also for alla, b ∈ Cl′). This embedding obviously induces an embedding of
ΛT1 = Zl′+4 with bilinear form(·, ·)T1 in Λ1 = Zl+4 with bilinear form(·, ·)1. Analogously,
the corresponding half-spaceHT can be embedded inHS as submanifold. (Actually those
embeddings are induced by the embedding ofΛT1 in Λ1; cf. Section 4.2.) By abuse of
notation we denote those induced embeddings ofΛT1 in Λ1 and ofHT in HS also byιST .
Now those elements ofΓS which stabilize the embedded latticeιST (ΛT1) can be viewed as
elements ofΓT . This yields a homomorphism

ϕT : StabΓS
(ιST (ΛT1)) → ΓT .

A priori, it is not clear whether this homomorphism is surjective, but ifΓS andΓT are both
nicely generated then we only have to check whether

StabO(Λ)(ι
S
T (ΛT )) → O(ΛT )

is surjective (cf. also [FH00, Sec. 4]). This can be easily verified (at least for the cases we
are interested in). In some casesϕT is not injective. In those casesϕ−1

T (Il′) contains non-
trivial elements ofΓS of the formRA, A ∈ O(Λ). Those non-trivial elements can be used
to show that certain modular forms onHS vanish on the submanifoldHT . Moreover, we
will see that in those cases not all Abelian characters ofΓS are the continuation of Abelian
characters ofΓT .

Now we consider the restriction of modular forms.

Theorem 2.25 LetS andT be two even positive definite matrices of rankl ≥ 2 and rank
l′ < l, respectively, such that an isometric embeddingιST : ΛT → Λ, λT 7→ BλT , of
ΛT = Zl′ with bilinear form(·, ·)T in Λ = Zl with bilinear form(·, ·)S exists. Moreover,
suppose thatΓS andΓT are both nicely generated and thatϕT is surjective.

Let k ∈ Z. If χ ∈ Γab
S is the continuation of an Abelian character ofΓT and f ∈

[ΓS, k, χ] then
f |HT ∈ [ΓT , k, χ|ΓT ].

If f has Fourier expansion

f(w) =
∑

m,n∈N0

∑
µ∈Λ]

qS(µ)≤mn

αf (m,µ, n) e2πi(nτ1+mτ2−(µ,z)S)

for w = (τ1, z, τ2) ∈ HS then the Fourier expansion off |HT is given by

(f |HT )(wT ) =
∑

m,n∈N0

∑
µT∈Λ]

T
qT (µT )≤mn

βf (m,µT , n) e2πi(nτ1+mτ2−(µT ,zT )T )
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for wT = (τ1, zT , τ2) ∈ HT where

βf (m,µT , n) =
∑

µ∈Λ],qS(µ)≤mn
T−1 tBSµ=µT

αf (m,µ, n)

for m,n ∈ N0 andµT ∈ Λ]
T with qT (µT ) ≤ mn.

PROOF Let f ∈ [ΓS, k, χ]. We have to show thatf |HT transforms like a modular form for
ΓT . Since we only consider characters ofΓS for which the restriction toΓT exists we only
have to check that

j(M (S), ιST (w)) = j(M,w) (2.9)

for all w ∈ HT and allM ∈ ΓT whereM (S) ∈ ϕ−1
T (M) is an element ofΓS which

corresponds toM . Sinceϕ−1
T (Il′+4) only contains elements ofΓS of the formRA, A ∈

O(Λ), we note thatj(M (S), ιST (w)) is independent of the choice of the preimageM (S) of
M . Moreover,ϕT is a homomorphism, and thus it suffices to verify (2.9) for the generators
of ΓT . ForTg, g ∈ ΛT0, andRA, A ∈ O(ΛT ), this is trivial, and forM = J the fact thatιST
is an isometric embedding implies

j(J (S), ιST (w)) = qS0(ι
S
T (w)) = qT0(w) = j(J, w)

for all w ∈ HT . So for allM ∈ ΓT and allw ∈ HT we have

((f |HT )|kM) (w) = j(M,w)−k (f |HT )(M〈w〉)
= j(M (S), ιST (w))−k f(M (S)〈ιST (w)〉)
= (f |kM (S))(ιST (w))

= χ(M (S)) f(ιST (w))

= (χ|ΓT )(M) (f |HT )(w)

whereM (S) is an arbitrary preimage ofM in ΓS. Hencef |HT ∈ [ΓT , k, χ|ΓT ].
SinceιST is an isometric embedding we haveT = tBSB. Givenµ ∈ Λ] we observe that

(µ, ιST (zT ))S = (T−1 tBSµ, zT )T for all zT ∈ Cl′. Moreover, ifµ ∈ Λ] then(µ, λ)S ∈ Z
for all λ ∈ Λ. So, in particular,(µ, ιST (λT ))S = (T−1 tBSµ, λT )T ∈ Z for all λT ∈ ΛT

which impliesµT = T−1 tBSµ ∈ Λ]
T . It remains to be shown thatqT (µT ) ≤ mn whenever

qS(µ) ≤ mn. Obviously, it suffices to show

qS(µ)− qT (µT ) = tµ(S − SBT−1 tBS)µ ≥ 0 for all µ ∈ Λ].

Let µ ∈ Λ]. There existx ∈ ΛT ⊗ R andy ∈ ιST (ΛT )⊥ (the orthogonal complement of
ιST (ΛT ) in ΛS ⊗ R) such that

µ = ιST (x) + y = Bx+ y.
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Then

tµ(S − SBT−1 tBS)µ

= t(Bx+ y)(S − SBT−1 tBS)(Bx+ y)

= tx( tBSB − tBSBT−1 tBSB︸ ︷︷ ︸
=T−TT−1T=0

)x+ 2( t(Bx)Sy︸ ︷︷ ︸
=0

− t(Bx)SBT−1 tBSy︸ ︷︷ ︸
= t(Bx)Sy=0

)

+ tySy − tySB︸ ︷︷ ︸
=0

T−1 tBSy︸ ︷︷ ︸
=0

= tySy ≥ 0

because due to the choice ofy we havet(Bx)Sy = 0 for all x ∈ ΛT⊗R and thustBSy = 0.
This completes the proof. �

Since we explicitly know how the Fourier expansion of the restriction of a modular form
arises from the Fourier expansion of the restricted modular form we can easily show that
restrictions of Maaß forms are Maaß forms.

Corollary 2.26 LetS, T , ιST ,B andχ be given as in the preceding theorem. Moreover, let
k ∈ N. If f ∈M(ΓS, k, χ) thenf |HT ∈M(ΓT , k, χ|ΓT ).

PROOF Let f ∈ M(ΓS, k, χ). In view of Theorem 2.25 it remains to be shown that the
Fourier coefficients off |HT satisfy the Maaß condition (2.8). Let0 6= (m,µT , n) ∈ Λ]

T0

with m,n ∈ N0 andµT ∈ Λ]
T such thatqT (µT ) ≤ mn. We setg = gcd(m,TµT , n). Note

thatgcd(m,Sµ, n) dividesg whenevertBSµ = TµT becaused|Sµ impliesd| tBSµ due to
B ∈ Mat(l, l′; Z). Thus we have

βf (m,µT , n) =
∑

µ∈Λ],qS(µ)≤mn
T−1 tBSµ=µT

αf (m,µ, n)

=
∑
t|g

∑
µ∈Λ],qS(µ)≤mn
T−1 tBSµ=µT
gcd(m,Sµ,n)=t

αf (m,µ, n)

=
∑
t|g

∑
µ∈Λ],qS(µ)≤mn
T−1 tBSµ=µT
gcd(m,Sµ,n)=t

∑
d|t

dk−1αf (mn/d
2, µ/d, 1)

=
∑
d|g

dk−1
∑

µ∈Λ],qS(µ)≤mn
T−1 tBSµ=µT
d| gcd(m,Sµ,n)

αf (mn/d
2, µ/d, 1)

=
∑
d|g

dk−1βf (mn/d
2, µT/d, 1).

Hencef |HT ∈M(ΓT , k, χ|ΓT ). �
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2.5.2. Restrictions of modular forms living on HD4

We consider restrictions of modular forms living onHD4 to the submanifoldsHA3 and
H

A
(3)
1

. ForT ∈ {A3, A
(3)
1 } the latticesΛT = Z3 with bilinear form(·, ·)T can be viewed as

sublattices ofΛ = Z4 with bilinear form(·, ·)D4 via the isometric embeddings

ιD4
A3

: ΛA3 → Λ, (x1, x2, x3) 7→ (x1, x3, 0, x2),

ιD4

A
(3)
1

: Λ
A

(3)
1
→ Λ, (x1, x2, x3) 7→ (x1, x2, x3, 0).

Correspondingly, the half-spacesHA3 andH
A

(3)
1

can be considered as submanifolds ofHD4

via the embeddings

ιD4
A3

: HA3 → HD4 , (τ1, z1, z2, z3, τ2) 7→ (τ1, z1, z3, 0, z2, τ2),

ιD4

A
(3)
1

: H
A

(3)
1
→ HD4 , (τ1, z1, z2, z3, τ2) 7→ (τ1, z1, z2, z3, 0, τ2).

First we consider restrictions toHA3.

Proposition 2.27 Letk ∈ 2Z.
a) If f ∈ [ΓD4 , k, χ] with χ ∈ {νπ, det} thenf vanishes onHA3.
b) If f ∈ [ΓD4 , k, (νπ det)m],m ∈ {0, 1}, thenf |HA3 ∈ [ΓA3 , k, (νπ det)m].
c) If f ∈M(ΓD4 , k, 1) thenf |HA3 ∈M(ΓA3 , k, 1).

PROOF LetM = R0@ 1 0 −1 0
0 1 −1 0
0 0 −1 0
0 0 2 1

1A ∈ ΓD4. For allw ∈ ιD4
A3

(HA3) we havew = M〈w〉.

a) Letf ∈ [ΓD4 , k, χ], χ ∈ {νπ, det}. Due toχ(M) = −1 we havef(w) = (f |kM)(w) =
χ(M)f(w) = −f(w) for all w ∈ ιD4

A3
(HA3). Thusf vanishes onHA3 .

b) Letχ = (νπ det)m ∈ Γab
D4

,m ∈ {0, 1}. We have to show thatχ|ΓA3 = (νπ det)m ∈ Γab
A3

.
It is easy to check that the above matrixM is the only non-trivial element ofΓD4 acting
trivially on ιD4

A3
(HA3). Due toχ(M) = 1 the restriction ofχ to ΓA3 is well defined.

By explicit calculation of some character values we can verify thatχ|ΓA3 = (νπ det)m

holds.Thus we can apply Theorem 2.25 which proves the assertion.
c) Apply Corollary 2.26. �

Next we show similar results for restrictions of modular forms toH
A

(3)
1

.

Proposition 2.28 Letk ∈ 2Z.
a) If f ∈ [ΓD4 , k, ν

m
π det],m ∈ {0, 1}, thenf vanishes onH

A
(3)
1

.

b) If f ∈ [ΓD4 , k, ν
m
π ],m ∈ {0, 1}, thenf |H

A
(3)
1
∈ [Γ

A
(3)
1
, k, νm

π ].

c) If f ∈M(ΓD4 , k, 1) thenf |H
A

(3)
1
∈M(Γ

A
(3)
1
, k, 1).

PROOF Note thatR 1 0 0 1
0 1 0 1
0 0 1 1
0 0 0 −1

! ∈ ΓD4 acts trivially onιD4

A
(3)
1

(H
A

(3)
1

). Now the assertions can

be proved analogously to Proposition 2.27.
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2.5.3. Restrictions of modular forms living on HA3

Now we look at restrictions of modular forms living onHA3 to the submanifoldsHT ,
T ∈ {A(2)

1 , A2, S2}. The latticesΛT = Z2 with bilinear form(·, ·)T can be considered as
sublattice ofΛ = Z3 with bilinear form(·, ·)A3 via the isometric embeddings

ιA3

A
(2)
1

: Λ
A

(2)
1
→ Λ, (x1, x2) 7→ (x1, 0, x2),

ιA3
A2

: ΛA2 → Λ, (x1, x2) 7→ (x1, x2, 0),

ιA3
S2

: ΛS2 → Λ, (x1, x2) 7→ (x1 − x2, 2x2,−x2).

The corresponding embeddings of the half-spacesHT in HA3 are given by

ιA3

A
(2)
1

: H
A

(2)
1
→ HA3 , (τ1, z1, z2, τ2) 7→ (τ1, z1, 0, z2, τ2),

ιA3
A2

: HA2 → HA3 , (τ1, z1, z2, τ2) 7→ (τ1, z1, z2, 0, τ2),

ιA3
S2

: HS2 → HA3 , (τ1, z1, z2, τ2) 7→ (τ1, z1 − z2, 2z2,−z2, τ2).

For T ∈ {A(2)
1 , S2} each element ofΓT is restriction of two elements ofΓA3 while in

case ofT = A2 each element ofΓT is restriction of exactly one element ofΓA3, i.e., the
homomorphismϕA2 is injective. This allows us to derive a first

Proposition 2.29 Letk ∈ Z.
a) If k is odd andf ∈ [Γ′A3

, k, 1] thenf vanishes onH
A

(2)
1

.

b) If k is odd andf ∈ [ΓA3 , k, det] or k is even andf ∈ [ΓA3 , k, νπ det] thenf vanishes
onHS2.

PROOF a) Let f ∈ [Γ′A3
, k, 1], k odd. Thenf = fνπ + fdet for somefχ ∈ [ΓA3 , k, χ]

since[Γ′A3
, k, 1] = [ΓA3 , k, νπ] ⊕ [ΓA3 , k, det] according to Corollary 2.3. For allw ∈

ιA3

A
(2)
1

(H
A

(2)
1

) we have

w = M〈w〉 for M = R„ 1 1 0
0 −1 0
0 1 1

«,
and thus forχ ∈ {νπ, det}

fχ(w) = (fχ|kM)(w) = χ(M)fχ(w) = −fχ(w) for all w ∈ ιA3

A
(2)
1

(H
A

(2)
1

).

b) Letf ∈ [ΓA3 , k, χ], χ = νk+1
π det. Then for allw ∈ ιA3

S2
(HS2) we have

w = M〈w〉 for M = R„ 1 0 0
0 1 0
0 −1 −1

«,
and thus

f(w) = (f |kM)(w) = χ(M)f(w) = −f(w) for all w ∈ ιA3
S2

(HS2). �
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Now we examine how the Abelian characters ofΓA3 andΓT are related to each other since
this is important to identify the characters of the restrictions of the orthogonal modular
forms.

Proposition 2.30 The following table shows forT ∈ {A(2)
1 , A2, S2}which Abelian charac-

ters ofΓT the nontrivial Abelian characters ofΓA3 correspond to. Those Abelian characters
of ΓT which do not occur in this table do not possess a continuation onΓA3.

χ ∈ Γab
A3

χ|Γ
A

(2)
1

χ|ΓA2 χ|ΓS2

νπ - νπ νπ

det - νπ det -
νπ det νπ det det -

PROOF This can be verified by explicit calculation. In particular, note that the restriction
of χ to ΓT does not exist if the value ofχ is not independent of the choice of the preimage
of M ∈ ΓT in ΓA3. �

Finally we take a look at the restrictions of orthogonal modular forms.

Theorem 2.31 Letk ∈ Z andm ∈ {0, 1}.
a) If k is even andf ∈ [ΓA3 , k, ν

m
π detm] thenf |H

A
(2)
1
∈ [Γ

A
(2)
1
, k, νm

π detm].

b) If f ∈ [ΓA3 , k, ν
m
π detm+k] thenf |HA2 ∈ [ΓA2 , k, ν

k
π detm+k].

c) If f ∈ [ΓA3 , k, ν
k
π ] thenf |HS2 ∈ [ΓS2 , k, ν

k
π ].

PROOF Apply Theorem 2.25 and Proposition 2.30. �

2.5.4. Restrictions of modular forms living on H
A

(3)
1

Finally we look at the restrictions of modular forms living onH
A

(3)
1

to the submanifolds

HT , T ∈ {A(2)
1 , S2}. The latticesΛT = Z2 with bilinear form(·, ·)T can be considered as

sublattice ofΛ = Z3 with bilinear form(·, ·)
A

(3)
1

via the isometric embeddings

ιA3

A
(2)
1

: Λ
A

(2)
1
→ Λ, (x1, x2) 7→ (x1, x2, 0),

ιA3
S2

: ΛS2 → Λ, (x1, x2) 7→ (x1, x2, x2).

The corresponding embeddings of the half-spacesHT in HA3 are given by

ιA3

A
(2)
1

: H
A

(2)
1
→ HA3 , (τ1, z1, z2, τ2) 7→ (τ1, z1, z2, 0, τ2),

ιA3
S2

: HS2 → HA3 , (τ1, z1, z2, τ2) 7→ (τ1, z1, z2, z2, τ2).

Each element ofΓT is restriction of two elements ofΓ
A

(3)
1

. Therefore we get

Proposition 2.32 Letk ∈ Z andm ∈ {0, 1}.
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a) If k is odd andf ∈ [Γ′
A

(3)
1

, k, 1] thenf vanishes onH
A

(2)
1

.

b) If k is odd andf ∈ [Γ
A

(3)
1
, k, νm

2 det] or k is even andf ∈ [Γ
A

(3)
1
, k, νm

2 νπ] then f
vanishes onHS2.

PROOF a) Letf ∈ [Γ
A

(3)
1
, k, χ], k odd,χ ∈ Γab

A
(3)
1

. For allw ∈ ιA
(3)
1

A
(2)
1

(H
A

(2)
1

) we have

w = M〈w〉 for M = R„ 1 0 0
0 1 0
0 0 −1

«,
and thus

f(w) = (f |kM)(w) = χ(M)f(w) = −f(w) for all w ∈ ιA
(3)
1

A
(2)
1

(H
A

(2)
1

)

wheneverχ · det ∈ 〈ν2, νπ〉. On the other hand, ifχ · det /∈ 〈ν2, νπ〉 then, according to
Corollary 2.3,f vanishes identically onH

A
(3)
1

. Hencef vanishes onH
A

(2)
1

.

Now let f ∈ [Γ′
A

(3)
1

, k, 1]. Then there existfχ ∈ [Γ
A

(3)
1
, k, χ], χ ∈ Γab

A
(3)
1

, such that

f =
∑

χ fχ. Due to the above allfχ vanish onH
A

(2)
1

, and consequentlyf also vanishes.

b) Letf ∈ [Γ
A

(3)
1
, k, χ], χ = νm

2 ν
k+1
π detk,m ∈ {0, 1}. For allw ∈ ιA

(2)
1

S2
(HS2) we have

w = M〈w〉 for M = R„ 1 0 0
0 0 1
0 1 0

«,
and thus

f(w) = (f |kM)(w) = χ(M)f(w) = −f(w) for all w ∈ ιA
(3)
1

S2
(HS2).

Hencef vanishes onHS2. �

Next we examine how the Abelian characters ofΓ
A

(3)
1

andΓT are related to each other.

Proposition 2.33 The following table shows forT ∈ {A(2)
1 , S2} which Abelian characters

of ΓT the Abelian characters ofΓ
A

(3)
1

correspond to (ν∗2 stands for an arbitrary power of
ν2). Those Abelian characters ofΓT which do not occur in this table do not possess a
continuation onΓ

A
(3)
1

.

χ ∈ Γab

A
(3)
1

χ|Γ
A

(2)
1

χ|ΓS2

ν∗2 ν∗2 ν∗2
ν∗2νπ ν∗2νπ -
ν∗2 det - -
ν∗2νπ det - ν∗2νπ

PROOF This can be proved analogously to Proposition 2.30. �
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Finally we again take a look at the restrictions of orthogonal modular forms.

Theorem 2.34 Letk ∈ Z andm,n ∈ {0, 1}.
a) If k is even andf ∈ [Γ

A
(3)
1
, k, νm

2 ν
n
π ] thenf |H

A
(2)
1
∈ [Γ

A
(2)
1
, k, νm

2 ν
n
π ].

b) If f ∈ [Γ
A

(3)
1
, k, νm

2 ν
k
π detk] thenf |HS2 ∈ [ΓS2 , k, ν

m
2 ν

k
π ].

PROOF Apply Theorem 2.25 and Proposition 2.33. �

2.6. Hermitian modular forms of degree 2

The orthogonal modular forms which live onHS, S ∈ {A(2)
1 , A2, S2}, can also be con-

sidered as Hermitian modular forms. Since we will later need results about graded rings
of orthogonal modular forms for the aforementionedS in order to derive our results about
the graded rings of orthogonal modular forms forO(2, 5) we briefly show how the results
about graded rings of Hermitian modular forms of degree2 stated in [De01], [DK03] and
[DK04] can be translated to our setting. For details confer [De01].

TheHermitian half-spaceH(2; C) of degree2 is given by

H(2; C) =

{
Z =

(
τ1 z1

z2 τ2

)
∈ Mat(2; C);

1

2i
(Z − tZ) > 0

}
.

Let K = Q(
√
−∆K) be an imaginary quadratic number field with discriminant−∆K and

class numberh(−∆K) = 1, and let

oK = Z + ZωK, ωK =

{
i
√

∆K/2 if ∆K ≡ 0 (mod 4),

(1 + i
√

∆K)/2 if ∆K ≡ 3 (mod 4),

be its ring of integers. Theunitary groupof degree2 over K is defined byU(2; K) =
{M ∈ Mat(4; K); tMJHerM = JHer} whereJHer =

(
0 −I2
I2 0

)
, thespecial unitary groupis

defined bySU(2; K) = U(2; K) ∩ SL(4; K), and theHermitian modular groupis defined
by Γ(2; K) = U(2; oK) = U(2; K) ∩ Mat(4; oK). The unitary group acts onH(2; C) as
group of biholomorphic automorphisms via

(M,Z) 7→M〈Z〉 = (AZ +B)(CZ +D)−1, M =

(
A B
C D

)
.

Obviously, scalar matrices act trivially onH(2; C). The group of all biholomorphic au-
tomorphismsBihol(H(2; C)) is generated bySU(2; C) and the additional biholomorphic
automorphism

Itr : H(2; C) → H(2; C), Z 7→ tZ.

To be precise, we have

Bihol(H(2; C)) ∼= PSU(2; C) o 〈Itr〉,



54 2. Modular Forms

wherePSU(2; C) = U(2; C)/(C× · I4) (cf. [Kr85, Thm. II.1.8]). Therefore in case of
K = Q(

√
−3) we only need to consider elements ofΓ(2; K) of determinant1. We set

Γ̃(2; K) :=

{
Γ(2; K) ∩ SL(4; K), if ∆K = 3,

Γ(2; K), if ∆K 6= 3,

and we define theextended Hermitian modular groupΓK as subgroup ofBihol(H(2; C))
by

ΓK :=
〈
{Z 7→M〈Z〉; M ∈ Γ̃(2; K)}, Itr

〉
.

A Hermitian modular formof weightk ∈ Z with respect toΓK and with respect to an
Abelian characterχ ∈ Γab

K is a holomorphic functionf : H(2; C) → C satisfying

(f |kM)(Z) := det(CZ +D)−k f(M〈Z〉) = χ(M) f(Z)

for all M = ( A B
C D ) ∈ Γ̃(2,K) and, additionally,

f ◦ Itr = χ(Itr) f.

If f satisfiesf ◦ Itr = f , i.e., we haveχ(Itr) = 1, then we callf symmetric,otherwise
we callf skew-symmetric. We denote the vector space of those forms by[ΓK, k, χ]. The
subspace of cusp forms which is as usual defined as kernel of Siegel’sΦ-operator (note that
this relies onh(−∆K) = 1) is denoted by[ΓK, k, χ]0.

Examples of Hermitian modular forms are given by the Hermitian Eisenstein series

EK
k (Z) :=

∑
M=(A B

C D )∈Γ(2;K)0\Γ(2;K)

(detM)k/2 det(CZ +D)−k

for evenk > 4 whereΓ(2; K)0 = {( A B
C D ) ∈ Γ(2; K); C = 0}. Additionally, we defineEK

4

as Maaß lift (cf. [Kr91]) with constant Fourier coefficient equal to1. According to [DK03]
we haveEK

k ∈ [ΓK, k, det−k/2] for all evenk ≥ 4. In particular, the Eisenstein series are
symmetric modular forms.

Let

SK =

(
2 2 Re(ω)

2 Re(ω) 2|ω|2
)
.

Then

ϕK : HSK → H(2; C), (x1, u1, u2, x2) + i(y1, v1, v2, y2) 7→(
x1 + iy1 (u1 + ωu2) + i(v1 + ωv2)

(u1 + ωu2) + i(v1 + ωv2) x2 + iy2

)
biholomorphically maps the orthogonal half-spaceHSK to the Hermitian half-spaceH(2; C).
Via this map we can identifyBihol(HSK) andBihol(H(2; C)). Thus according to Remark
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1.12 we have
PO+(SK

1 ; R) ∼= PSU(2; C) o 〈Itr〉. (2.10)

Now we consider the three imaginary quadratic number fieldsQ(
√
−1), Q(

√
−3) and

Q(
√
−2) of discriminant−4, −3 and−8, respectively. The corresponding matricesSK

areA(2)
1 , A2 andS2, respectively. The isomorphism (2.10) allows us to identify the ex-

tended Hermitian modular groupΓK with a subgroup ofPO+(SK
1 ; R). We get

ΓQ(
√
−1)

∼= Γ
A

(2)
1
/{±I6}, ΓQ(

√
−3)

∼= ΓA2/{±I6}, ΓQ(
√
−2)

∼= ΓS2/{±I6}.

In Appendix B we list the generators ofΓK and the elements ofΓSK those generators
correspond to, and we determine the characters ofΓK. We have

Γab
Q(
√
−1) = 〈det, ν℘, νskew〉 , Γab

Q(
√
−3) = 〈νskew〉 , Γab

Q(
√
−2) = 〈ν℘, νskew〉 .

Theorem 2.35 Letk ∈ Z andl,m, n ∈ {0, 1}.
a) If k is even andf ∈ [ΓQ(

√
−1), k, detl νm

℘ ν
n
skew] thenf◦ϕQ(

√
−1) ∈ [Γ

A
(2)
1
, k, ν

l+k/2
π νm

2 detn].

b) If f ∈ [ΓQ(
√
−3), k, ν

n
skew] thenf ◦ ϕQ(

√
−3) ∈ [ΓA2 , k, ν

k
π detn+k].

c) If f ∈ [ΓQ(
√
−2), k, ν

m
℘ ν

n
skew] thenf ◦ ϕQ(

√
−2) ∈ [ΓS2 , k, ν

m
2 ν

k
π detn+k].

PROOF Let f ∈ [ΓK, k, χ]. We have to show that̃f := f ◦ ϕK : HSK → C transforms like
a modular form with respect toΓSK and the character̃χ given above. Let̃N ∈ ΓSK. Then
Ñ = M r

trM̃ for someM̃ ∈ ΓSK ∩ SO(SK
1 ; R) andr ∈ {0, 1}. Let γ = Ir

tr ◦ (Z 7→ M〈Z〉)
with M = ( A B

C D ) ∈ Γ̃(2,K), be the corresponding element ofΓK, i.e.,

γ(Z) = Ir
tr(M〈Z〉) = ϕK(Ñ〈ϕ−1

K (Z)〉) for all Z ∈ H(2; C).

Then forw ∈ HSK andZ = ϕK(w) we have

f̃(Ñ〈w〉) = f(ϕK(Ñ〈w〉)) = f(Ir
tr(M〈Z〉)) = χ(Ir

tr) f(M〈Z〉)
= χ(Ir

tr) det(CZ +D)k χ(M) f(Z)

= χ(Ir
tr) det(CZ +D)k χ(M) f̃(w),

and thus(
f̃ |kÑ

)
(w) = j(Ñ , w)−k f̃(Ñ〈w〉) = j(Ñ , w)−k χ(Ir

tr) det(CϕK(w)+D)k χ(M) f̃(w).

So we have to show that

j(Ñ , w)−k χ(Ir
tr) det(CϕK(w) +D)k χ(M) = χ̃(Ñ) = χ̃(M r

tr) χ̃(M̃)

for all Ñ ∈ ΓSK and allw ∈ HSK. Sincej(Ñ , w) andjHer(M,Z) := det(CZ + D) are
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factors of automorphy and, moreover,j(Mtr, w) = 1 we only have to verify that

j(M̃, w)−k det(CϕK(w) +D)k χ(M) = χ̃(M̃)

holds for the generators ofΓSK ∩ SO(SK
1 ; R) and that

χ(Itr) = χ̃(Mtr).

The second equation is true, and the first equation can easily be checked forTg, g ∈ ΛK
0 ,

and forRA, A ∈ SO(ΛK). Finally, forJ we have

j(J, w) = qSK
0
(w) = det(ϕK(w)) = jHer(JHer, ϕK(w)).

This completes the proof. �

Fork ≥ 4, k even, we define orthogonal Eisenstein seriesESK
k by

ESK
k := EK

k ◦ ϕK.

According to the above theorem we haveESK
k ∈ [ΓSK , k, 1].

Using the above theorem we can now translate the results about graded rings of Hermi-
tian modular forms of degree2 stated in [De01], [DK03] and [DK04] to our setting.

Theorem 2.36 a) LetS = A
(2)
1 . The graded ringA(Γ′S) =

⊕
k∈Z[Γ′S, k, 1] is generated

by
E4, φ4, E6, E10, φ10, E12 and φ30,

where theEk = ES
k are orthogonal Eisenstein series of weightk, φ4 ∈ [ΓS, 4, ν2νπ det]0,

φ10 ∈ [ΓS, 10, νπ]0 andφ30 ∈ [ΓS, 30, ν2]0.
Moreover, the subringA(ΓS) =

⊕
k∈Z[ΓS, 2k, 1] is a polynomial ring in

E4, E6, φ
2
4, E10 and E12,

i.e.,E4, E6, φ2
4, E10 andE12 are algebraically independent.

b) LetS = A2. The graded ringA(Γ′S) =
⊕

k∈Z[Γ′S, k, 1] is generated by

E4, E6, φ9, E10, E12 and φ45,

where theEk = ES
k are the orthogonal Eisenstein series of weightk, φ9 ∈ [ΓS, 9, νπ]0

andφ45 ∈ [ΓS, 45, νπ det]0.
Moreover, the subringA(ΓS) =

⊕
k∈Z[ΓS, 2k, 1] is a polynomial ring in

E4, E6, E10, E12 and φ2
9,

i.e.,E4, E6, E10, E12 andφ9 are algebraically independent.

PROOF [DK03, Thm. 10, Cor. 9] and [DK03, Thm. 6, Thm. 7]. �
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2.7. Quaternionic modular forms of degree 2

Similar to Hermitian modular forms quaternionic modular forms of degree2 can also be
considered as orthogonal modular forms. We consider the caseS = D4 which corresponds
to the case of quaternionic modular forms with respect to the extended modular group for
the Hurwitz integers. Since we only need this case in order to define certain examples of
modular forms forO(2, 5) we only state the necessary facts. For details confer [Kr85].

Recall that we denote the canonical basis of the skew fieldH of Hamilton quaternions
by 1, i1, i2, i3. Forz = z1 + z2i1 + z3i2 + z4i3 ∈ H with zj ∈ R the conjugate ofz is given
by z = z1−z2i1−z3i2−z4i3 and the norm ofz is given byN(z) = zz = z2

1 +z2
2 +z2

3 +z2
4 .

Thehalf-space of quaternionsH(2; H) of degree2 is given by

H(2; H) =
{
Z = X + iY ∈ Mat(2; H)⊗R C; Z = tZ := tX + i tY , Y > 0

}
.

Let
O = Z + Zi1 + Zi2 + Zω, ω = 1

2
(1 + i1 + i2 + i3)

be the Hurwitz order, and let

℘ = (1 + i1)O = O(1 + i1) = {a ∈ O; N(a) ∈ 2Z}

be the ideal of even Hurwitz quaternions. Thesymplectic groupof degree2 over H is
defined by

Sp(2; H) = {M ∈ Mat(4; H); tMJHM = JH}, JH =
(

0 −I2
I2 0

)
.

It acts onH(2; H) as group of biholomorphic automorphisms via the symplectic transfor-
mations

(M,Z) 7→M〈Z〉 = (AZ +B)(CZ +D)−1, M =

(
A B
C D

)
.

The group of all biholomorphic automorphismsBihol(H(2; H)) is generated bySp(2; H)
and the additional biholomorphic automorphism

Itr : H(2; H) → H(2; H), Z 7→ tZ.

We define theextended quaternionic modular groupΓH as subgroup ofBihol(H(2; H)) by

ΓH := 〈{Z 7→M〈Z〉; M ∈ Sp(2;O) orM = ρI}, Itr〉

whereSp(2;O) = Sp(2; H) ∩Mat(4;O) andρ = (1 + i1)/
√

2.
A quaternionic modular formof weight k ∈ 2Z with respect toΓH and an Abelian

characterχ ∈ Γab
H is a holomorphic functionf : H(2; H) → C satisfying

(f |kM)(Z) := (det(CZ +D)∨)
−k/2

f(M〈Z〉) = χ(M) f(Z) and f ◦ Itr = χ(Itr) f
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for all M = ( A B
C D ) ∈ 〈Sp(2;O), ρI〉 where∨ denotes the representation of quaternions as

complex2× 2 matrices. We denote the space of all those functions by[ΓH, k, χ].
Let

S :=

{(
n t
t m

)
; m,n ∈ N0, t ∈ O], N(t) = tt ≤ mn

}
whereO] is the dual lattice ofO with respect to the bilinear form(a, b)H = 2 Re(ab) for
a, b ∈ H which isC-linearly extended toHC = H⊗R C. Each quaternionic modular form
f ∈ [ΓH, k, χ] has a Fourier expansion of the form

f(Z) =
∑
T∈S

αf (T ) eπi trace(T tZ+Z tT ) =
∑

n,m∈N0

∑
t∈O]

N(t)≤mn

αf

(
n t
t m

)
e2πi(nτ1+mτ2+(t,z)H)

forZ = ( τ1 z
∗ τ2 ) ∈ H(2; H). If the Fourier coefficients off ∈ [Γ′H, k, 1] satisfy the condition

αf (T ) =
∑

d|ε(T )

dk−1αf

(
1 t/d
t/d mn/d2

)
for all T =

(
n t
t m

)
∈ S, T 6= 0, (2.11)

whereε(T ) = max{d ∈ N; d−1T ∈ S} thenf belongs to theMaaß spaceM(ΓH, k) (cf.
[Kr87]). Note that, according to Krieg,f ∈ [Γ′H, k, 1] satisfies the Maaß condition (2.11) if
and only if a functionα∗f : N0 → C exists such that

αf (T ) =
∑

d|ε(T )

dk−1α∗f (4 detT/d2) for all T =

(
n t
t m

)
∈ S, T 6= 0. (2.12)

Due todet( tT ) = det(T ) = det(ρTρ) andε( tT ) = ε(T ) = ε(ρTρ) for all T ∈ S the
alternative Maaß condition (2.12) impliesαf (

tT ) = αf (T ) = αf (ρTρ) and thusf( tZ) =
f(Z) = (f |k(ρI))(Z) for all f ∈M(ΓH, k). HenceM(ΓH, k) ⊂ [ΓH, k, 1].

Examples of quaternionic modular forms are given by the quaternionic Siegel-Eisenstein
series

EH
k (Z) :=

∑
(A B

C D )∈Sp(2;O)0\Sp(2;O)

(det(CZ +D)∨)
−k/2

for evenk > 6 whereSp(2;O)0 = {( A B
C D ) ∈ Sp(2;O); C = 0}. The Fourier expansion

of the Eisenstein series can be explicitly calculated (cf. [Kr90, Thm. 3]). In particular,
the Eisenstein series are normalized, i.e., the constant term in the Fourier expansion equals
1. Additionally, we defineEH

4 andEH
6 as Maaß lifts (cf. [Kr90]) with constant Fourier

coefficient equal to1. According to [Kr90], we haveEH
k ∈ M(ΓH, k) for all evenk ≥ 4,

and thus, in particular,EH
k ∈ [ΓH, k, 1] for all evenk ≥ 4.

The orthogonal half-spaceHD4 is biholomorphically mapped toH(2; H) by

ϕH : HD4 → H(2; H), (x1, u, x2)+i(y1, v, y2) 7→
(

x1 + iy1 ιD4(u) + i ιD4(v)

ιD4(u) + i ιD4(v) x2 + iy2

)
,
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whereιD4 : R4 → H is defined as in Proposition 1.17. This map allows us to identify
Bihol(HD4) andBihol(H(2; H)). In particular, we get

ΓH ∼= ΓD4/{±I8}.

In Appendix A we list the generators ofΓH and the elements ofΓD4 they correspond to.
According to [KW98] we have

Γab
H = 〈νρ, νtr〉

where

νρ(ρI) = −1, νρ(Itr) = 1, νρ(M) = 1 for all M ∈ Sp(2;O),

νtr(ρI) = 1, νtr(Itr) = −1, νtr(M) = 1 for all M ∈ Sp(2;O).

Theorem 2.37 Letk ∈ 2Z andr, s ∈ {0, 1}. If f ∈ [ΓH, k, ν
r
ρν

s
tr] with Fourier expansion

f(Z) =
∑

n,m∈N0

∑
t∈O]

N(t)≤mn

αf

(
n t
t m

)
e2πi(nτ1+mτ2+(t,z)H), Z = ( τ1 z

∗ τ2 ) ∈ H(2; H),

theng := f ◦ ϕH ∈ [ΓD4 , k, ν
r
π dets] with Fourier expansion

g(w) =
∑

m,n∈N0

∑
µ∈Λ]

q(µ)≤mn

αg(m,µ, n) e2πi(nτ1+mτ2+(µ, ew)S), w = (τ1, w̃, τ2) ∈ HS,

where

αg(m,µ, n) = αf

(
n ιD4(µ)
∗ m

)
. (2.13)

PROOF The assertionf ◦ ϕH ∈ [ΓD4 , k, ν
r
π dets] can be proved analogously to Theorem

2.35 if one notes thatjH(M,Z) := (det(CZ +D)∨)k/2 is a factor of automorphy of weight
k (cf. [KW98]) and that

j(J, w)k = q(D4)0(w)k = (det(ϕH(w)∨))
k/2

= jH(JH, ϕH(w)).

Since we haveO] = ιD4(Λ
]) and(a, b)D4 = (ιD4(a), ιD4(b))H the Fourier expansion of

f ◦ ϕH can easily be derived from the expansion off . �

Since we explicitly know how the Fourier expansion off ◦ ϕH arises from the Fourier
expansion off ∈ [ΓH, k, χ] we can show that Maaß forms are mapped to Maaß forms.

Corollary 2.38 Given an evenk > 0, the map

M(ΓH, k) →M(ΓD4 , k), f 7→ f ◦ ϕH,
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is an isomorphism. In particular, we have

dimM(ΓD4 , k) =

⌊
k + 2

6

⌋
.

PROOF The map[ΓH, k] → [ΓD4 , k], f 7→ f ◦ϕH, is obviously an isomorphism. Moreover,
by virtue of (2.13) the validity of the Maaß condition (2.8) for the Fourier coefficients of
f ◦ ϕH follows immediately from the validity of the Maaß condition (2.11) for the Fourier
coefficients off and vice versa. According to [Kr87, Thm. 1], we havedimM(ΓH, k) =⌊

k+2
6

⌋
. This completes the proof. �

Fork ≥ 4, k even, we define the orthogonal Eisenstein seriesED4
k by

ED4
k := EH

k ◦ ϕH,

and forT ∈ {A3, A
(3)
1 } we define the orthogonal Eisenstein seriesET

k : HT → C as
restrictions of the Eisenstein seriesED4

k toHT , i.e.,

EA3
k := ED4

k |HA3 and E
A

(3)
1

k := ED4
k |H

A
(3)
1
.

According to the above corollary, we haveED4
k ∈M(ΓD4 , k) for all evenk ≥ 4. By virtue

of Proposition 2.27 and Proposition 2.28 this impliesEA3
k ∈ M(ΓA3 , k) andEA

(3)
1

k ∈
M(Γ

A
(3)
1
, k) for all evenk ≥ 4. Since theEH

k are normalized the same is true for theED4
k .

Moreover, note that theET
k are no cusp forms (and consequently do not vanish identically)

since the constant term in the Fourier expansion equals1.

2.8. Quaternionic theta series

In this section we consider the theta series

Y1 = Θ( 0
0 ), Y2 = Θ( 0

2 ), Y3 = Θ( 2
0 ), Y4 = Θ( 2

2 ), Y5 = Θ( 2
2ω ), Y6 = Θ( 2

2ω )

introduced in [FH00, Sect. 10], where for alla ∈ O2 the theta seriesΘa are defined by

Θa(Z) := ϑ1(a)(Z) =
∑
g∈℘2

eπiZ[g+a/2] for all Z ∈ H(2; H).

According to [FH00], theYj are modular forms of weight2 with respect to the principal
congruence subgroup

Sp(2;O)[℘] := {M ∈ Sp(2;O); M ≡ I4 (mod ℘)}
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and the trivial character, i.e., we haveYj ∈ [Sp(2;O)[℘], 2, 1] for 1 ≤ j ≤ 6. Moreover,
according to [Krb], for allZ ∈ H(2; H) we have

Θa+2b(Z) = Θa(Z) for all b ∈ ℘2,

Θa(Z[U ]) = ΘUa(Z) for all U ∈ GL(2;O),

Θaε(Z) = Θa(Z) for all ε ∈ O×,

whereO× = {ε ∈ O; N(ε) = 1} is the unit group ofO. Additionally, Krieg showed that

Yj(Z[ρI]) = Yj(
tZ) = Yπ(j)(Z), 1 ≤ j ≤ 6,

whereπ = (1)(2)(3)(4)(5 6) ∈ S(6).
We are particularly interested in the restrictions of theYj to the submanifold

H(2; H
A

(3)
1

) =

{(
τ1 z
∗ τ2

)
∈ H(2; H); z = z1 + z2i1 + z3i2 + z4i3, z4 = 0

}
of H(2; H) which corresponds viaϕH ◦ ιD4

A
(3)
1

: H
A

(3)
1
→ H(2; H) to the orthogonal half-

spaceH
A

(3)
1

. We denote those restrictions bỹYj. Note that for allZ ∈ H(2; H
A

(3)
1

) we have
tZ = Z[i3I]. Thus, by applying the above transformation formulas it is easy to check that

Y6(Z) = Y5(
tZ) = Y5(Z[i3I]) = Y5(Z)

holds for allZ ∈ H(2; H
A

(3)
1

). HenceỸ5 andỸ6 coincide.

We want to examine how thẽYj behave under the generators of

Γ∗ := Bihol(H(2; H
A

(3)
1

)) ∩ ΓH ∼= Bihol(H
A

(3)
1

) ∩O(Λ1) ∼= (Γ
A

(3)
1
/{±I}),

whereΛ1 = Z7 is the lattice associated withA(3)
1 . Due to Corollary 1.28 and the table in

Section A.2 we know thatΓ∗ is generated by the modular transformations corresponding
to

JH, Trans(H) :=

(
I2 H
0 I2

)
(H ∈ Her(2;O

A
(3)
1

)), R1 := Rot

(
ω + i2 0

0 ω + i1

)
and

R2 := Rot

(
(i2 − i1)/

√
2 0

0 (i1 − i2)/
√

2

)
= Rot

(
−ω − i1 0

0 ω + i1

)
Rot

(
ρ 0
0 ρ

)
,

whereO
A

(3)
1

= Z + Zi1 + Zi2 andRot(U) =

(
tU 0
0 U−1

)
.

Theorem 2.39 Let Θ = t(Ỹ1, . . . , Ỹ5) : H(2; H
A

(3)
1

) → C5. There exists a unique homo-
morphism of groups

Ψ : Γ∗ → GL(5; C)
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given by
Θ|2M = Ψ(M) Θ, M ∈ Γ∗.

We have
Ψ(R1) = Ψ(R2) = I5,

Ψ(Trans(H)) =


[1, 1,−1,−1,−1], if H = ( 1 0

0 0 ) ,

[1,−1, 1,−1,−1], if H = ( 0 0
0 1 ) ,

[1, 1, 1, 1,−1], if H = ( 0 1
1 0 ) ,

and

Ψ(JH) =
1

4


1 3 3 3 6
1 −1 3 −1 −2
1 3 −1 −1 −2
1 −1 −1 3 −2
1 −1 −1 −1 −2

 .

PROOF Using the above transformation formulas we can easily verify thatΘ is invari-
ant under the two rotationsR1 andR2. Moreover,Θ transforms under the translations
Trans(H) and underJH as stated above according to [Kra]. In view of their Fourier expan-
sions theỸ1, . . . , Ỹ5 are obviously linearly independent. ThusΨ is uniquely determined.�

Note thatTrans(H) ∈ ker Ψ wheneverH ∈ Her(2;℘
A

(3)
1

), where

℘
A

(3)
1

= ℘ ∩ O
A

(3)
1

= Z2 + Z(1 + i1) + Z(1 + i2).

Obviously we haveO
A

(3)
1
/℘

A
(3)
1

∼= Z/2Z. Thus in view of the above theorem the mapΨ

defines a five-dimensional representation of the finite group

Γ∗/ ker Ψ ∼= Sp(2; F2) ∼= S(6).

We denote the orthogonal theta seriesYj ◦ ϕH ◦ ιD4

A
(3)
1

again byYj. Moreover, we denote

ther-th elementary symmetric polynomial inY n
2 , Y n

3 , Y n
4 by er(Y

n). Using MAGMA (cf.
[BCP97]) we compute the invariant ring of the representationΨ.

Theorem 2.40 There are5 algebraically independent modular forms

hk ∈ [Γ
A

(3)
1
, k, 1], k = 4, 6, 8, 10, 12,

given by

h4 = Y 2
1 + 3e1(Y

2) + 6Y 2
5 = Y 2

1 + 3(Y 2
2 + Y 2

3 + Y 2
4 + 2Y 2

5 ),

h6 = Y 3
1 − 9Y1(e1(Y

2)− 4Y 2
5 ) + 54e3(Y ),

h8 = Y 4
1 + 6Y 2

1 e1(Y
2) + 24Y1e3(Y ) + 6e2(Y

2) + 9e1(Y
4) + 48e1(Y

2)Y 2
5 + 24Y 4

5 ,
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h10 = Y 5
1 − 6Y 3

1 e1(Y
2) + 12Y 2

1 e3(Y ) + 3Y1(10e2(Y
2)− 9e1(Y

4) + 32e1(Y
2)Y 2

5 + 16Y 4
5 )

+ 36e1(Y
2)e3(Y ) + 576e3(Y )Y 2

5 ,

h12 = Y 6
1 + 45Y 2

1 (e1(Y
4) + 2Y 4

5 ) + 1080Y1e3(Y )Y 2
5 + 18e1(Y

6) + 270e3(Y
2)

+ 540e2(Y
2)Y 2

5 + 270e1(Y
2)Y 4

5 + 36Y 6
5 .

The restrictions of those modular forms toH
A

(2)
1

generate the graded ringA(Γ
A

(2)
1

).

PROOF Thehk are primary invariants of the representationΨ. This implies that they are el-
ements of[Γ

A
(3)
1
, k, 1]. In order to show that they are algebraically independent we consider

their restrictions̃hk := hk|HA
(2)
1

toH
A

(2)
1

. Due to Theorem 2.34 we havẽhk ∈ [Γ
A

(2)
1
, k, 1].

According to Theorem 2.36, the graded ringA(Γ
A

(2)
1

) is a polynomial ring in five mod-

ular forms of weight4, 6, 8, 10 and12. Thusdim[Γ
A

(2)
1
, 4, 1] = dim[Γ

A
(2)
1
, 6, 1] = 1,

dim[Γ
A

(2)
1
, 8, 1] = dim[Γ

A
(2)
1
, 10, 1] = 2 and dim[Γ

A
(2)
1
, 12, 1] = 3. By calculating the

Fourier expansion of thẽhk we can easily verify that the vector spaces[Γ
A

(2)
1
, k, 1], k =

4, 6, 8, 10, 12, are spanned by suitable products of theh̃k. So, in particular, the five genera-
tors ofA(Γ

A
(2)
1

) can be written as polynomials in thẽhk which implies that thẽhk generate

the graded ringA(Γ
A

(2)
1

). Since the five generators ofA(Γ
A

(2)
1

) are algebraically indepen-

dent the same must be true for theh̃k and thus of course also for thehk. �

Since the invariantshk are polynomials in the theta seriesY1, . . . , Y5 the algebraic indepen-
dence of thehk implies the algebraic independence of the theta series (onH

A
(3)
1

). Accord-
ing to the proof of the above theorem, we even have the following

Corollary 2.41 The theta seriesY1, . . . , Y5 are algebraically independent onH
A

(3)
1

and
also onH

A
(2)
1

.





3. Vector-valued Modular Forms

In this chapter we introduce vector-valued elliptic modular forms of half-integral weight.
They will be used as input for the construction of Borcherds products. The facts presented
in this chapter are mostly well-known so we will not go into too much detail.

3.1. The metaplectic group

As usual, the action ofSL(2; R) onH (or Ĉ = C ∪ {∞}) is defined by

M〈τ〉 =
aτ + b

cτ + d
, M =

(
a b
c d

)
∈ SL(2; R).

Since we will have to consider modular forms of half-integral weight we have to introduce
the metaplectic groupMp(2; R) which is the double cover ofSL(2; R). Its elements can be
written in the form

(M,ϕ),

whereM = ( a b
c d ) ∈ SL(2; R), andϕ is a holomorphic function onH such that

ϕ2(τ) = cτ + d for all τ ∈ H,

i.e.,ϕ is a holomorphic root ofτ 7→ cτ+d. We define the action of(M,ϕ) ∈ Mp(2; R) on
H (or Ĉ) to be the same as that ofM . The product of two elements(M1, ϕ1), (M2, ϕ2) ∈
Mp(2; R) is given by

(M1, ϕ1)(M2, ϕ2) = (M1M2, ϕ1(M2〈·〉)ϕ2).

As in [Br02] we define the embedding ofSL(2; R) into Mp(2; R) as(
a b
c d

)
7→
(̃
a b
c d

)
:=

((
a b
c d

)
,
√
cτ + d

)
.

Let Mp(2; Z) be the inverse image ofSL(2; Z) under the covering mapMp(2; R) →
SL(2; R). It is well known thatMp(2; Z) is generated by

T =

((
1 1
0 1

)
, 1

)
and J =

((
0 −1
1 0

)
,
√
τ

)
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and that the center ofMp(2; Z) is generated by

C := J2 = (JT )3 =

((
−1 0
0 −1

)
, i

)
.

ForN ∈ N we denote the principal congruence subgroup ofMp(2; Z) of levelN by

Mp(2; Z)[N ] := {(M,ϕ) ∈ Mp(2; Z); M ≡ I2 (mod N)} .

Moreover, we set

Γ∞ :=

{(
1 n
0 1

)
; n ∈ Z

}
≤ SL(2; Z)

and

Γ̃∞ :=

{((
1 n
0 1

)
, 1

)
; n ∈ Z

}
= 〈T 〉 ≤ Mp(2; Z).

3.2. Vector-valued modular forms

Let V be a finite dimensional vector space overC, and letk ∈ 1
2
Z. For vector-valued

functionsf : H → V and(M,ϕ) ∈ Mp(2; Z) we define the Petersson slash operator by

(f |k(M,ϕ)) (τ) = ϕ(τ)−2k f(M〈τ〉).

This defines an action ofMp(2; Z) on functionsf : H → V .

Definition 3.1 Suppose thatρ is a finite representation ofMp(2; Z) on a finite dimensional
complex vector spaceV , and letk ∈ 1

2
Z. A (holomorphic) modular formof weightk with

respect toρ andMp(2; Z) is a functionf : H → V satisfying
(i) f |kg = ρ(g)f for all g ∈ Mp(2; Z),

(ii) f is holomorphic onH,
(iii) f is bounded on{τ ∈ C; Im(τ) > y0} for all y0 > 0.
If f additionally satisfieslimIm(τ)→∞ f(τ) = 0 thenf is called acusp form. We denote
the space of (holomorphic) modular forms of weightk with respect toρ andMp(2; Z) by
[Mp(2; Z), k, ρ] and the subspace of cusp forms by[Mp(2; Z), k, ρ]0.

Remark 3.2 a) AsMp(2; Z) is generated byS andT condition (i) is equivalent to
(i’) f(τ + 1) = ρ(T )f(τ) and f(−τ−1) =

√
τ

2k
ρ(J)f(τ).

b) Sinceρ is a finite representation there exists anN ∈ Z such thatTN ∈ ker ρ, and thus
f(τ+N) = f(τ), i.e.,f is periodic with periodN . LetB be a basis ofV . We denote the
components off byfv, so thatf =

∑
v∈B fv v. Obviously,f is holomorphic if and only

if all its componentsfv are holomorphic. Therefore eachfv has a Fourier expansion of
the form

fv(τ) =
∑
n∈Z

cv(n/N)e2πinτ/N .
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Condition (iii) is then equivalent to
(iii’) f has a Fourier expansion of the form

f(τ) =
∑
v∈B

∑
n∈Z
n≥0

cv(n/N)e2πinτ/N v.

f is a cusp form ifcv(0) = 0 for all v ∈ B.

Example 3.3 The Dedekind eta functionη : H → C defined by

η(τ) = eπiτ/12

∞∏
n=1

(1− e2πinτ )

is a cusp form of weight1
2

with respect toMp(2; Z) and the Abelian characterνη with

νη(T ) = eπi/12 and νη(J) = e−πi/4

(cf. [Ap90, Ch. 3] or [Le64, Thm. XI.1C]).

We note a few simple facts about vector-valued modular forms.

Proposition 3.4 Suppose thatρ1 andρ2 are two finite representations ofMp(2; Z) on finite
dimensional complex vector spacesV1 andV2, respectively. Iffj ∈ [Mp(2; Z), kj, ρj], j =
1, 2, thenf1⊗f2 : H → V1⊗V2, τ 7→ f1(τ)⊗f2(τ) is a modular form of weightk1+k2 with
respect toρ1⊗ρ2. In particular, if f1 is scalar-valued thenf1f2 ∈ [Mp(2; Z), k1+k2, ρ1ρ2].

Proposition 3.5 Suppose thatρ is a representation ofMp(2; Z) on a finite dimensional
complex vector spaceV such thatρ factors through the double coverMp(2; Z/NZ) of
the finite groupSL(2; Z/NZ) for some positive integerN , i.e.,ker ρ ⊂ Mp(2; Z)[N ] is a
congruence subgroup of levelN . Then
a) [Mp(2; Z), k, ρ] = {0} if k < 0,
b) [Mp(2; Z), 0, ρ] ∼= Cg whereg is the multiplicity of the trivial one-dimensional repre-

sentation inρ,
c) dim[Mp(2; Z), k, ρ] <∞ for all k ∈ Z.

PROOF All componentsfv of f are elliptic modular forms with respect to the congru-
ence subgroupker ρ. Thus a) and c) follow immediately from the well known facts about
[ker ρ, k, 1]. By considering the decomposition ofρ into irreducible representationsρj :
Mp(2; Z) → GL(Vj) b) follows from [ker ρ, 0, 1] ∼= C, [Mp(2; Z), 0, χ] = {0} for all
non-trivial Abelian charactersχ : Mp(2; Z) → C and the fact that

span{ρj(Mp(2; Z))(f |Vj
(τ)); τ ∈ H} = Vj

wheneverf |Vj
6= 0. �
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For the construction of Borcherds products we need a certain type of non-holomorphic
modular forms.

Definition 3.6 A nearly holomorphic modular formof weightk with respect toρ and
Mp(2; Z) is a functionf : H → V satisfying

(i) f |kg = ρ(g)f for all g ∈ Mp(2; Z),
(ii) f is holomorphic onH,

(iii) f has at most a pole in∞, i.e., there exists ann0 ∈ Z, n0 < 0 such thatf has a
Fourier expansion of the form

f(τ) =
∑
v∈B

∑
n∈Z
n≥n0

cv(n/N)e2πinτ/N v.

We denote the space of nearly holomorphic modular forms of weightk with respect toρ
andMp(2; Z) by [Mp(2; Z), k, ρ]∞. Theprincipal partof f is given by∑

v∈B

∑
n∈Z
n<0

cv(n/N)e2πinτ/N v.

3.3. The Weil representation

In this section we introduce a special representation which plays an important role in the
theory of Borcherds products.

Suppose thatS ∈ Sym(l; R) is an even matrix of signature(b+, b−). Let Λ = Zl be the
associated lattice with bilinear form(·, ·) = (·, ·)S and the corresponding quadratic form
q = qS. Let (eµ)µ∈Λ]/Λ be the standard basis of the group ringC[Λ]/Λ]. Then there is a
unitary representationρS of Mp(2; Z) onC[Λ]/Λ] which is defined by

ρS(T )eµ = e2πiq(µ)eµ,

ρS(J)eµ =

√
i
b−−b+√
| detS|

∑
ν∈Λ]/Λ

e−2πi(µ,ν)eν .

Note that this implies
ρS(C)eµ = ib

−−b+e−µ. (3.1)

This representation is essentially the Weil representation of the quadratic module(Λ]/Λ, q).
Let N be the level ofΛ. Then the representationρS factors through the finite group
SL(2; Z/NZ) if l is even, and through a double cover ofSL(2; Z/NZ) if l is odd. In
particular,ρS is a finite representation.

We denote the dual representation ofρS by ρ]
S. SinceρS is a unitary representation the

valuesρ]
S((M,ϕ)), understood as element ofMat(l; C), are simply the complex conjugate

of ρS((M,ϕ)). Note thatρ−S = ρS. Therefore all the results we state forρS also hold for
ρ]

S if one replacesS by−S.
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Now we consider modular forms with respect to those special representations. Assume
that f ∈ [Mp(2; Z), k, ρS]. In this case we denote the components off by fµ, so that
f =

∑
µ∈Λ]/Λ fµ eµ. Now f satisfyingf |k(T ) = ρS(T )f implies thate−2πiq(µ)τfµ(τ) is

periodic with period1 for all µ ∈ Λ]/Λ. Thereforef has a Fourier expansion of the form

f(τ) =
∑

µ∈Λ]/Λ

∑
n∈q(µ)+Z

n≥0

cµ(n)qn eµ, (3.2)

where, as usual,q = e2πiτ (not to be confused with the quadratic formq = qS). Analo-
gously,f ∈ [Mp(2; Z), k, ρ]

S] has a Fourier expansion of the form

f(τ) =
∑

µ∈Λ]/Λ

∑
n∈−q(µ)+Z

n≥0

cµ(n)qn eµ. (3.3)

Considering thatC2 acts trivially onτ ∈ H we can deduce a first necessary condition on
the weight for the existence of non-trivial modular forms.

Proposition 3.7 If 2k 6≡ b+ − b− (mod 2) then

[Mp(2; Z), k, ρS] = {0}.
PROOF Let f ∈ [Mp(2; Z), k, ρS]. Then

(−1)−2kf = f |k(C2) = ρS(C2)f = (−1)b−−b+f,

and thusf = 0 unless2k ≡ b+ − b− (mod 2). �

The functional equation for modular forms with respect toρS underC ∈ Mp(2; Z) implies

Proposition 3.8 Let 2k ≡ b+ − b− (mod 2) andf ∈ [Mp(2; Z), k, ρS] with Fourier ex-
pansion (3.2). Then

c−µ(n) = (−1)(2k+b−−b+)/2cµ(n)

for all µ ∈ Λ]/Λ andn ∈ Z + q(µ).

PROOF Let f ∈ [Mp(2; Z), k, ρS]. Then

i−2kf = f |kC = ρS(C)f = ib
−−b+

∑
µ∈Λ]/Λ

fµ e−µ

yieldsf−µ = i2k+b−−b+fµ = (−1)(2k+b−−b+)/2fµ for all µ ∈ Λ]/Λ. �

If µ ≡ −µ (mod Λ) for all µ ∈ Λ] then we get another necessary condition on the weight
for the existence of non-trivial modular forms.

Corollary 3.9 If 2k + b− − b+ ≡ 2 (mod 4) andµ = −µ for all µ ∈ Λ]/Λ then

[Mp(2; Z), k, ρS] = {0}.
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3.4. A dimension formula

If the representationρ of Mp(2; Z) satisfies certain conditions then fork ≥ 2 the dimen-
sion of [Mp(2; Z), k, ρ] can be calculated explicitly. In [Sk84] (see also [ES95]) Skoruppa
determined a dimension formula using the Eichler-Selberg trace formula.

Theorem 3.10 Letk ∈ 1
2
Z, and letρ : Mp(2; Z) → GL(V ) be a finite representation such

that ρ(C) = e−πik idV . Then the dimension of[Mp(2; Z), k, ρ] is given by the following
formula

dim[Mp(2; Z), k, ρ]− dim[Mp(2; Z), 2− k, ρ]0 =

k + 5

12
n+

1

4
Re(eπik/2 trace ρ(J)) +

2

3
√

3
Re(eπi(2k+1)/6 trace ρ(JT ))−

n∑
j=1

λj,

wheren = dimV andλ1, . . . , λn ∈ Q, 0 ≤ λj < 1, such that the eigenvalues ofρ(T ) are
e2πiλj .

PROOF We show how this follows from the formula given in [ES95]. Sinceρ is a finite
representation we can findλj ∈ Q with 0 ≤ λj < 1 such that the eigenvalues ofρ(T ) are
e2πiλj . Then

1

2
a(ρ)−

n∑
j=1

B1(λj) =
1

2

∑
1≤j≤n
λj∈Z

1−
∑

1≤j≤n
λj /∈Z

(λj−bλjc−
1

2
) = −

n∑
j=1

(λj−bλjc−
1

2
) =

n

2
−

n∑
j=1

λj,

wherea(ρ) andB1(λj) are defined as in [ES95] and whereb·c is the greatest integer func-
tion. �

Remark 3.11 a) If k ≥ 2 thendim[Mp(2; Z), k, ρ] can be calculated directly using the
above formula since the dimension of the spaces of cusp forms of non-positive weight
is 0. In the casesk = 1

2
and k = 3

2
the dimension of[Mp(2; Z), k, ρ] can also be

calculated explicitly (cf. [Sk84]). For the casek = 1 an explicit formula is not known
to the author.

b) In [Bo99, Sec. 4] Borcherds gives another dimension formula.

In general the dimension formula is not directly applicable to the Weil representationρS

because the condition onC acting as a scalar onC[Λ]/Λ] is usually not satisfied. But
we can apply the formula to the induced representation ofMp(2; Z) on the subspace of
C[Λ]/Λ] on whichC acts ase−πik. According to (3.1) this space is spanned by{eµ +
e−µ; µ ∈ Λ]/Λ} whenever2k + b− − b+ ≡ 0 (mod 4) and by{eµ − e−µ; µ ∈ Λ]/Λ}
whenever2k + b− − b+ ≡ 2 (mod 4).

Luckily, according to Proposition 3.8, allf ∈ [Mp(2; Z), k, ρS] belong to the subspace
spanned by{eµ + e−µ; µ ∈ Λ]/Λ} if 2k + b− − b+ ≡ 0 (mod 4) and to the subspace
spanned by{eµ − e−µ; µ ∈ Λ]/Λ} if 2k + b− − b+ ≡ 2 (mod 4). So in those cases we
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can calculate the dimension of[Mp(2; Z), k, ρS] by considering the induced representation
of Mp(2; Z) on those subspaces ofC[Λ]/Λ]. We denote those induced representations by
ρ+

S andρ−S , respectively.
First we look at the caseS = A3. Then the Weil representation acts as follows.

ρA3(T ) = [1, e3πi/4,−1, e3πi/4],

ρA3(J) =
e−3πi/4

2


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 , ρA3(C) = i ·


1 · · ·
· · · 1
· · 1 ·
· 1 · ·

 .

SinceC does not act as a scalar we have to consider the induced representationsρ+
A3

and
ρ−A3

. We get

ρ+
A3

(T ) = [1, e3πi/4,−1], ρ+
A3

(J) =
e−3πi/4

2

1 1 1
2 0 −2
1 −1 1

 , ρ+
A3

(C) = e−3πi/2 · I3

and
ρ−A3

(T ) = e3πi/4, ρ−A3
(J) = e−πi/4, ρ−A3

(C) = e−πi/2.

Lemma 3.12 Suppose thatS = A3. Then fork ∈ 1
2
Z, k ≥ 0, we have

dim[Mp(2; Z), k, ρS] =



⌊
k− 3

2

4

⌋
+ 1 if k ∈ 3

2
+ 2Z,⌊

k− 9
2

12

⌋
+ 1 if k ∈ 1

2
+ 2Z, k − 13

2
6≡ 0 (mod 12),⌊

k− 9
2

12

⌋
if k ∈ 1

2
+ 2Z, k − 13

2
≡ 0 (mod 12),

0 if k ∈ Z.

PROOF The assertion fork ∈ Z follows from Proposition 3.7. Fork ∈ 1
2

+ Z, k ≥ 2, we
apply Theorem 3.10 onρ+

S andρ−S , respectively.

Since the eigenvaluee3πi/4 of ρ−S (T ) is not of the forme2πi n2

8 with n ∈ Z, the sup-
plement to the dimension formula in [ES95, Sec. 4.2] yieldsdim[Mp(2; Z), 1

2
, ρS] =

dim[Mp(2; Z), 1
2
, ρ−S ] = 0. By the same argument we getdim[Mp(2; Z), 1

2
, ρ+

S ] = 0, and

thusdim[Mp(2; Z), 1
2
, ρ+

S ]0 = 0. Then Theorem 3.10 yieldsdim[Mp(2; Z), 3
2
, ρ+

S ] = 1.
This completes the proof. �

Corollary 3.13 Suppose thatS = A3. If k ∈ 1
2

+ 2Z, k ≥ 9
2

then [Mp(2; Z), k, ρS] is
isomorphic to the space of (elliptic) modular forms of (even) weightk − 9

2
with respect to

the full modular groupSL(2; Z). The isomorphism is given by

[SL(2; Z), k − 9
2
, 1] → [Mp(2; Z), k, ρS], f 7→ η9 · f · (e( 1

4
, 1
2
,− 1

4
) − e(− 1

4
, 1
2
, 1
4
)).
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PROOF Let f ∈ [SL(2; Z), k − 9
2
, 1]. According to Example 3.3,η9 is a modular form of

weight 9
2

with respect toρ−S . Thus Proposition 3.5 yieldsη9 · f ∈ [Mp(2; Z), k, ρ−S ] and by
Proposition 3.8 we have

η9 · f · (e( 1
4
, 1
2
,− 1

4
) − e(− 1

4
, 1
2
, 1
4
)) ∈ [Mp(2; Z), k, ρS].

A comparison of the dimension of the spaces completes the proof. �

Next we consider the caseS = A
(3)
1 . Then the Weil representation acts as follows.

ρ
A

(3)
1

(T ) = [1, i, i, i,−1,−1,−1,−i],

ρ
A

(3)
1

(J) =
e−3πi/4

2
√

2



1 1 1 1 1 1 1 1
1 −1 1 1 1 −1 −1 −1
1 1 −1 1 −1 1 −1 −1
1 1 1 −1 −1 −1 1 −1
1 1 −1 −1 1 −1 −1 1
1 −1 1 −1 −1 1 −1 1
1 −1 −1 1 −1 −1 1 1
1 −1 −1 −1 1 1 1 −1


,

ρ
A

(3)
1

(C) = e−3πi/2 · I8.

SinceC acts as a scalar we can immediately apply the dimension formula onρ
A

(3)
1

.

Lemma 3.14 Suppose thatS = A
(3)
1 . Then fork ∈ 1

2
Z, k ≥ 0 we have

dim[Mp(2; Z), k, ρS] =

{⌊
2k+2

3

⌋
if k ∈ 3

2
+ 2Z,

0 if k /∈ 3
2

+ 2Z.

PROOF For k ∈ Z the assertion follows from Proposition 3.7, and fork ∈ 1
2

+ 2Z the
assertion follows from Corollary 3.9. A similar argument as in the proof of Lemma 3.12
yieldsdim[Mp(2; Z), 1

2
, ρS]0 = 0. Then application of Theorem 3.10 completes the proof.�

Finally we consider the caseS = D4. Then the Weil representation acts as follows.

ρD4(T ) = [1,−1,−1,−1],

ρD4(J) = −1

2


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 ,

ρD4(C) = I4.

AgainC acts as a scalar so that we can immediately apply the dimension formula onρD4.



3.5. Examples of vector-valued modular forms 73

Lemma 3.15 Suppose thatS = D4. Then fork ∈ Z, k ≥ 0 we have

dim[Mp(2; Z), k, ρS] =


⌊

k
3

⌋
if k ≡ 0 (mod 4),⌊

k
3

⌋
+ 1 if k ≡ 2 (mod 4),

0 if k odd.

PROOF The assertion for oddk follows from Corollary 3.9, the assertion for positive even
k follows from Theorem 3.10, and the assertion fork = 0 follows from Proposition 3.5 b)
and the fact thatρS decomposes into one irreducible two-dimensional representation and
two non-trivial one-dimensional representations. �

3.5. Examples of vector-valued modular forms

In this section we introduce two important examples of vector-valued modular forms,
Eisenstein series and theta series.

3.5.1. Eisenstein series

Throughout this section we suppose thatS ∈ Sym(l; R) is an even matrix of signature
(b+, b−), and we setΛ = Zl.

Definition 3.16 Let k ∈ 1
2
Z, k > 2, such that2k − b+ + b− ≡ 0 (mod 4). Moreover, let

v ∈ C[Λ]/Λ] such thatρS(T )v = v. Then we define the Eisenstein seriesEk(·; v, S) :
H → C[Λ]/Λ] by

Ek(τ ; v, S) =
1

2

∑
g:eΓ∞\Mp(2;Z)

ρS(g)−1 (v|kg)(τ),

where the sum runs over a set of representatives ofΓ̃∞\Mp(2; Z) and wherev is considered
as constant functionH → C[Λ]/Λ].

Remark a) Due toρS(T )v = v the definition is independent of the choice of represen-
tatives ofΓ̃∞\Mp(2; Z). Moreover, just as in the scalar case, the series converges
normally onH if (and only if)k > 2.

b) The definition can be extended to allow arbitraryv ∈ C[Λ]/Λ] by taking the sum over
a set of representatives of(Γ̃∞ ∩ ker ρS)\Mp(2; Z) (cf. [De01, Sec. 3.2]).

Let v =
∑

µ∈Λ]/Λ a(µ)eµ ∈ C[Λ]/Λ]. Then the conditionρS(T )v = v is obviously
equivalent toa(µ) = 0 for all µ ∈ Λ]/Λ with q(µ) /∈ Z. Moreover,Ek(·; v, S) =∑

µ∈Λ]/Λ a(µ)Ek(·; eµ, S) if ρS(T )v = v. Therefore it is sufficient to consider the Eisen-
stein seriesEk(·; eβ, S) for β ∈ Λ]/Λ with q(β) ∈ Z.
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Proposition 3.17 Letk ∈ 1
2
Z, k > 2, such that2k − b+ + b− ≡ 0 (mod 4). Moreover, let

β ∈ Λ]/Λ with q(β) ∈ Z. Then

Ek(·; eβ, S) ∈ [Mp(2; Z), k, ρS].

PROOF Ek(·; eβ, S) converges normally onH and thus defines a holomorphic function
onH. SinceΓ̃∞\Mp(2; Z) → Γ̃∞\Mp(2; Z), Γ̃∞g 7→ Γ̃∞gh, is a bijection for allh ∈
Mp(2; Z) we have

Ek(·; eβ, S)|kh =
1

2

∑
g:eΓ∞\Mp(2;Z)

ρS(g)−1 (eβ|kg)|kh

=
1

2

∑
g:eΓ∞\Mp(2;Z)

ρS(ghh−1)−1 eβ|k(gh)

=
1

2

∑
g′:eΓ∞\Mp(2;Z)

ρS(h)ρS(g′)−1 eβ|kg′

= ρS(h)Ek(·; eβ, S)

for all h ∈ Mp(2; Z). Finally, we have

lim
y→∞

Ek(iy; eβ, S) =
1

2

∑
g∈〈C〉

ρS(g)−1 eβ|kg = eβ + e−β,

i.e.,Ek(·; eβ, S) is bounded on{τ ∈ C; Im(τ) > y0} for all y0 > 0. �

In [BK01] Bruinier and Kuss defined certain Eisenstein seriesEBK
β and gave explicit for-

mulas for the Fourier coefficients ofEBK
0 . TheirEBK

β are defined via the dual representation

ρ]
S while our Eisenstein series are defined viaρS, but, according to the remarks in Section

3.3,ρ]
S is essentially the same asρ−S, and thus we haveEBK

β = Ek(·; eβ,−S). Due to this
identification we can use their formulas to calculate the Fourier coefficients ofEk(·; e0, S).

3.5.2. Theta series

In this section we introduce vector-valued theta series. Our definition is based on the one
used in [Pf53] and [Sh73].

Definition 3.18 Suppose thatS ∈ Sym(l; R) is an even positive definite matrix. LetΛ =
Zl.
a) Letr ∈ Z, r ≥ 0, and additionallyr ≤ 1 if l = 1. Ahomogeneous spherical polynomial

of degreer with respect toS is a functionp : Rl → C of the form

p(x) =
∑
v∈Cl

αv ( tvSx)r
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with αv 6= 0 for finitely many vectorsv ∈ Cl satisfyingS[v] = 0 if r > 1.
b) Letpr be a homogeneous spherical polynomial of degreer with respect toS. Then we

define the theta seriesΘ(·;S, pr) : H → C[Λ]/Λ] by

Θ(τ ;S, pr) =
∑

µ∈Λ]/Λ

θµ(τ ;S, pr) eµ

where
θµ(τ ;S, pr) =

∑
λ∈µ+Λ

pr(λ) eπiS[λ]τ for τ ∈ H.

According to Pfetzer ([Pf53]) and Shimura ([Sh73]), those theta series are holomorphic
modular forms.

Theorem 3.19 Suppose thatS ∈ Sym(l; R) is an even positive definite matrix and thatpr

is a homogeneous spherical polynomial of degreer with respect toS. ThenΘ(·;S, pr) is a
modular form of weightl/2 + r with respect to the Weil representationρS, i.e.,

Θ(·;S, pr) ∈ [Mp(2; Z), l/2 + r, ρS].

If r > 0 thenΘ(·;S, pr) is a cusp form.
The Fourier expansion of the componentsθµ, µ ∈ Λ]/Λ, of Θ is given by

θµ(τ ;S, pr) =
∑

n∈q(µ)+Z
n≥0

cµ(n; pr) e
2πinτ , where cµ(n; pr) =

∑
λ∈µ+Λ
q(λ)=n

pr(λ).

Concrete examples of theta series will be constructed in Section 5.2.





4. Borcherds Products

In this chapter we apply the results of [Bo98] and [Br02] to our special case.
Let S ∈ Pos(l; R) be an even positive definite matrix of degreel ∈ N. Recall the

definition ofS0 andS1 as well as the definitions of the associated bilinear forms(·, ·), (·, ·)0

and(·, ·)1 and the corresponding quadratic formsq, q0 andq1 from Section 1.2. Moreover,
let Λ = Zl, Λ0 = Zl+2, Λ1 = Zl+4 andV = Rl, V0 = Rl+2, V1 = Rl+4. Note thatΛ1

together with(·, ·)1 is an even lattice of signature(2, l + 2). Furthermore, note thatq = qS
and thusq1((∗, ∗, x, ∗, ∗)) + Z = q0((∗, x, ∗)) + Z = −q(x) + Z for all x ∈ V .

Recall that the discriminant groups ofΛ, Λ0 andΛ1 are canonically isomorphic. There-
fore we will make no distinction between those groups or between the corresponding group
algebras, i.e., we will often writeµ(∈ Λ]/Λ) andeµ or µ0(∈ Λ]

0/Λ0) andeµ0 instead of the
corresponding elements ofΛ]

1/Λ1 andC[Λ]
1/Λ1]. In particular, we will often denote the

Fourier coefficients of a vector-valued modular formf : HS → C[Λ]
1/Λ1] by cµ(n) or

cµ0(n). Also, since the Weil representationρS1 is essentially the same as the dual Weil rep-
resentationρ]

S(∼= ρ−S), we will always use the latter even though using the former would
be more correct. Moreover, by abuse of notation we will sometimes write an elementµ
of a discriminant group in place of an elementλ of the corresponding dual lattice or vice
versa. In this case we always mean an arbitrary element of the cosetµ or the cosetλ lies
in, respectively. For example we often writeq(µ) + Z andµ + Λ for µ ∈ Λ]/Λ, and we
sometimes writecλ(n) instead ofcλ+Λ(n) for λ ∈ Λ]. In any case it will always be clear
from the context what is meant.

In order to apply Borcherds’s theory we have to choose a primitive isotropic vectorz ∈
Λ1 and a second vectorz] ∈ Λ]

1 such that(z, z])1 = 1. We choose and fixz = (1, 0, . . . , 0)
andz] = (0, . . . , 0, 1). This choice allows us to identify(Λ1 ∩ z⊥)/Zz with the Lorentzian
latticeΛ0

∼= {0} × Λ0 × {0} = Λ1 ∩ z⊥ ∩ (z])⊥.

4.1. Weyl chambers and the Weyl vector

We consider the Lorentzian latticeΛ0, and setz0 = (1, 0, . . . , 0) andz]
0 = (0, . . . , 0, 1).

Thenz0 is a primitive isotropic element ofΛ0 andz0 ∈ Λ]
0 with (z0, z

]
0)0 = 1. Therefore

we can identify(Λ0 ∩ z⊥0 )/Zz0 with the negative definite latticeΛ ∼= {0} × Λ × {0} =
Λ0 ∩ z⊥0 ∩ (z]

0)
⊥. Note thatz0 is in the closure of the conePS of positive norm vectors of

V0 = Λ0 ⊗ R we fixed in section 1.2.

Definition 4.1 LetP1
S = {v ∈ PS; q0(v) = 1} be the subset of norm1 vectors inPS.
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a) For µ ∈ Λ]/Λ andn ∈ −q(µ) + Z, n < 0, we define the subsetH0(µ, n) ofP1
S by

H0(µ, n) =
⋃

λ0∈(0,µ,0)+Λ0

q0(λ0)=n

λ⊥0

whereλ⊥0 is the orthogonal complement ofλ0 in P1
S. Then the connected components

ofP1
S −H0(µ, n) are calledWeyl chambers ofP1

S of index(µ, n).
b) Letf : HS → C[Λ]

1/Λ1] be a nearly holomorphic modular form of weightk = −l/2
with respect to the dual Weil representationρ]

S. Suppose thatf has Fourier expansion∑
µ∈Λ]/Λ

∑
n∈−q(µ)+Z

cµ(n)qn eµ.

Then the connected components of

P1
S −

⋃
µ∈Λ]/Λ

⋃
n∈−q(µ)+Z

n<0, cµ(n) 6=0

H0(µ, n)

are calledWeyl chambers ofP1
S with respect tof .

c) LetW be a Weyl chamber (of either type) andλ0 ∈ Λ]
0. Then we write(λ0,W )0 > 0 if

(λ0, w)0 > 0 for all w ∈ W .

The Weyl chambers are usually not explicitly given. Therefore a condition of the form
(λ0,W )0 > 0 is hard to verify. Luckily, it often suffices to check the condition for a single
element of a Weyl chamber.

Lemma 4.2 LetW be a Weyl chamber ofP1
S with respect to a nearly holomorphic modular

formf with Fourier expansion∑
µ∈Λ]/Λ

∑
n∈−q(µ)+Z

cµ(n)qn eµ.

If λ0 ∈ Λ]
0 with cλ0(q0(λ0)) 6= 0 and(λ0, v)0 > 0 for one vectorv ∈ W then(λ0,W )0 > 0,

i.e.,(λ0, w)0 > 0 for all w ∈ W .

PROOF Obviously we have

W =
⋂

µ∈Λ]/Λ

⋂
n∈−q(µ)+Z

n<0, cµ(n) 6=0

Wµ,n

for suitable Weyl chambersWµ,n of index(µ, n) (cf. [Br02, p. 88]). Sincecλ0(q0(λ0)) 6= 0
we either haveq0(λ0) ≥ 0 or q0(λ0) = n < 0 andλ0 ∈ (0, µ, 0) + Λ0 for one of the Weyl
chambersWµ,n which occur in the above section. Therefore we can apply [Br02, La. 3.2]
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(where, in case ofq0(λ0) ≥ 0, we choose an arbitrary Weyl chamberWµ,n occurring in the
section) and get(λ0, w)0 > 0 for all w ∈ Wµ,n ⊃ W . �

Definition 4.3 Letf be a nearly holomorphic modular form with Fourier expansion∑
µ∈Λ]/Λ

∑
n∈−q(µ)+Z

cµ(n)qn eµ,

and letW be a Weyl chamber ofP1
S with respect tof such thatz0 lies in the closure of

the positive cone generated byW . Then we define theWeyl vector%f (W ) ∈ V0 of W by
%f (W ) = (%z0 , %, %z]

0
) where

%z0 =
1

24

∑
λ∈Λ]

cλ(−q(λ)),

% = −1

2

∑
λ∈Λ]

((0,λ,0),W )0>0

cλ(−q(λ))λ, (4.1)

%z]
0

= %z0 −
∞∑

n=1

σ1(n)
∑
λ∈Λ]

cλ(−n− q(λ)),

andσ1(n) =
∑

d|n d is the sum of divisors ofn.

Note that the sums which occur in the definition of the components of the Weyl vector
are all finite sinceq = qS is positive definite. Therefore and due to Lemma 4.2 we can
explicitly calculate the Weyl vector of the Weyl chamberW with respect tof if the Fourier
coefficients of the principal part off are known and if we find a suitablev ∈ W .

Proposition 4.4 Our definition of the Weyl vector is compatible with Borcherds’s definition
in [Bo98, Sec. 10].

PROOF According to [Bo98, Th. 10.4] and the correction in the introduction of [Bo00] the
Weyl vector defined in [Bo98, Sec. 10] is equal to(%z0 , %, %z]

0
) with

%z0 = −q0(z]
0)%z]

0
+

1

4

∑
λ∈Λ]

∑
δ∈Λ]

0/Λ0

δ=(0,λ,0)+Λ0

cδ(−q(λ))B2((δ, z
]
0)0),

% = −1

2

∑
λ∈Λ], (0,λ,0)∈Λ]

0
((0,λ,0),W )0>0

c(0,λ,0)(−q(λ))λ,

%z]
0

= constant term ofΘΛ(τ)fΛ(τ)E2(τ)/24,
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whereB2(x) = x2 − x+ 1
6

for 0 ≤ x ≤ 1 is a Bernoulli piecewise polynomial,

ΘΛ(τ) =
∑

µ∈Λ]/Λ

∑
λ∈µ+Λ

e2πiq(λ)τ e−µ

is a certain vector-valued theta series,fΛ (as defined in [Bo98, p. 512]) is in our situation
equal tof ,

E2(τ) = 1− 24
∞∑

n=1

σ1(n)qn

is the elliptic Eisenstein series of weight2, andΘΛfΛ is the inner product ofΘΛ andfΛ

with (eµ, eµ′) = 1 for µ, µ′ ∈ Λ]/Λ if µ+ µ′ = 0 and0 otherwise.

Sinceq0(z
]
0) = 0 the first term in the formula for%z0 vanishes. Moreover,(δ, z]

0)0 = 0
for all δ ∈ Λ]

0/Λ0 with δ = (0, λ, 0) + Λ0. Thus the formula for%z0 can be simplified to

%z0 =
1

4

∑
λ∈Λ]

c(0,λ,0)(−q(λ))B2(0) =
1

24

∑
λ∈Λ]

cλ(−q(λ)).

Because ofΛ]
0 = Z × Λ] × Z the additional condition(0, λ, 0) ∈ Λ]

0 in the formula for%
can be omitted.

Finally we calculate the constant term ofΘΛ(τ)f(τ)E2(τ)/24. Let α(g;n) denote the
n-th Fourier coefficient ofg. Then

%z]
0

= α(ΘΛfE2/24; 0) =
1

24
α(ΘΛf ; 0)−

∞∑
n=1

σ1(n)α(ΘΛf ;−n). (4.2)

With the above Fourier expansions forf andΘΛ we get

ΘΛ(τ)f(τ) =

 ∑
µ∈Λ]/Λ

( ∑
λ∈µ+Λ

qq(λ)

)
e−µ

 ·

 ∑
µ∈Λ]/Λ

 ∑
n∈−q(µ)+Z

cµ(n)qn

 eµ


=
∑

µ∈Λ]/Λ

( ∑
λ∈µ+Λ

qq(λ)

)
·

 ∑
n∈−q(µ)+Z

cµ(n)qn


and thus

α(ΘΛf ;−n) =
∑

µ∈Λ]/Λ

∑
λ∈µ+Λ

cµ(−n− q(λ)) =
∑
λ∈Λ]

cλ(−n− q(λ)).
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Inserting this into (4.2) yields

%z]
0

=
1

24

∑
λ∈Λ]

cλ(−q(λ))−
∞∑

n=1

σ1(n)
∑
λ∈Λ]

cλ(−n− q(λ))

= %z0 −
∞∑

n=1

σ1(n)
∑
λ∈Λ]

cλ(−n− q(λ)). �

Remark For the special case whereΛ is the maximal order of an imaginary quadratic
field with quadratic formq(z) = |z|2 this result can already be found in [DK03].

Next we will define a special Weyl chamberWf which will allow us to replace the hard-
to-check condition(λ,W )0 > 0 appearing in the definition of the Weyl vector by a much
nicer condition.

Proposition 4.5 For x ∈ R, x > 0, we define the vectorsα(x) := (1, . . . , xl−1) ∈ Rl and
v(x) := (1,−x2α(x), x) ∈ Rl+2. Moreover, we setv1(x) := v(x)/

√
q0(v(x)) whenever

q0(v(x)) > 0.
a) For small positive values ofx we havev(x) ∈ PS andv1(x) ∈ P1

S.
b) Suppose thatf is a nearly holomorphic modular form with Fourier expansion∑

µ∈Λ]/Λ

∑
n∈−q(µ)+Z

cµ(n)qn eµ.

Then there exists a Weyl chamberW of P1
S with respect tof such thatv1(x) ∈ W for

small values ofx > 0, i.e., there exists anx0 ∈ R, x0 > 0, such that{v1(x); 0 < x <
x0} ∩ λ⊥0 = ∅ for all λ0 ∈ Λ]

0 with q0(λ0) < 0 andcλ0(q0(λ0)) 6= 0.

PROOF a) Forx→ 0 we haveq0(v(x)) = x−x4q(α(x)) = x+O(x4). Thus the definition
of PS implies thatv(x) ∈ PS for small positive values ofx. For thosex we obviously
havev1(x) ∈ P1

S.
b) By virtue of a) we havev1(x) ∈ P1

S for small values ofx > 0. Suppose that for
arbitrary small values ofx0 > 0 there is aλ0 = (m,λ, n) ∈ Λ]

0 with q0(λ0) < 0 and
cλ0(q0(λ0)) 6= 0 such thatv1(x) ∈ λ⊥0 for some0 < x < x0. Then

0 = (v1(x), λ0) = (v(x), λ0) = mx+ n+ x2(α(x), λ).

Case 1:(m,n) 6= (0, 0). Due to the Cauchy-Schwarz inequality we have

(mx+ n)2 = x4(α(x), λ)2 ≤ x4(α(x), α(x)) · (λ, λ) = 4x4q(α(x))q(λ),

and thus

q0(λ0) = mn− q(λ) ≤ mn− (mx+ n)2

4x4q(α(x))
.
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This implies thatq0(λ0) tends to−∞ for small values ofx > 0 which is impossible
becausecλ0(m) = 0 for m� 0.
Case 2:(m,n) = (0, 0). SinceΛ] = S−1Λ there is at = t(t1, . . . , tl) ∈ Λ = Zl such
thatλ = S−1t. Note thatt 6= 0 becauseq0(λ0) = −q(λ) < 0. Because ofm = n = 0
we have

0 = (α(x), λ) = (α(x), S−1t) =
l∑

j=1

tjx
j−1. (4.3)

Let r := min1≤j≤l{j; tj 6= 0} ands := max1≤j≤l{j; tj 6= 0}. Then (4.3) andx 6= 0
imply r 6= s. We get

ts = −
s−1∑
j=r

tjx
j−s = − tr

xs−r
+O

(
1

xs−r−1

)
for x ↓ 0. Now we consider

−q0(λ0) = q(λ) = qS−1(t) =
∑

r≤j,k≤s

(S−1)j,ktjtk

=
∑

r≤j,k≤s−1

(S−1)j,ktjtk + 2
s−1∑
j=r

(S−1)j,stjts + (S−1)s,st
2
s

= (S−1)s,s
t2r

x2s−2r
+O

(
1

x2s−2r−1

)
. �

SinceS is positive definite we have(S−1)s,s > 0. Thus, just as in the first case, we get
a contradiction becauseq0(λ0) tends to−∞ for small values ofx > 0.

Definition 4.6 For x ∈ R, 0 < x � 1, let v1(x) be defined as in Proposition 4.5. Let
f be a nearly holomorphic modular form. Then we denote the uniquely determined Weyl
chamber ofP1

S with respect tof that containsv1(x) for small values ofx byWf and call
it the Weyl chamber off . Moreover, we denote the corresponding Weyl vector%f (Wf )
simply by%f and call it the Weyl vector off .

Note thatz0 = (1, 0 . . . , 0) is contained in the closure of the positive cone of the Weyl
chamberWf sincev(x) (as defined in Proposition 4.5) is contained in the positive cone for
small values ofx and converges toz0 for x→ 0. Thus the Weyl vector%f is well-defined.

Next we define a certain type of positive vectors. As we will show this positiveness
coincides with positiveness with respect to the Weyl chamberWf . The definition differs
from the definition of positive vectors introduced in Section 2.1, but this should not lead to
confusion.

Definition 4.7 Let t = t(t1, . . . , tl) ∈ Λ = Zl . We writet > 0 if there is aj ∈ N,
1 ≤ j ≤ l, such thatt1 = . . . = tj−1 = 0 andtj > 0. For λ = S−1t ∈ Λ] we writeλ > 0
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if t > 0, and forλ0 = (m,λ, n) ∈ Λ]
0 we writeλ0 > 0 if n > 0 or n = 0 andm > 0 or

m = n = 0 andλ > 0. Additionally, we writet < 0, λ < 0 andλ0 < 0 if −t > 0,−λ > 0
and−λ0 > 0, respectively.

Note that for eacht ∈ Zl we have eithert > 0 or t < 0 or t = 0. Analogous assertions
hold forλ ∈ Λ] andλ0 ∈ Λ]

0.

Proposition 4.8 Suppose thatf is a nearly holomorphic modular form with Fourier ex-
pansion ∑

µ∈Λ]/Λ

∑
n∈−q(µ)+Z

cµ(n)qn eµ.

LetWf be the corresponding Weyl chamber ofP1
S. Then for allλ0 ∈ Λ]

0 with cλ0(q0(λ0)) 6=
0 we have(λ0,Wf ) > 0 if and only ifλ0 > 0.

PROOF Let λ0 = (m,λ, n) ∈ Λ]
0 with cλ0(q0(λ0)) 6= 0, and lett = t(t1, . . . , tl) ∈ Λ =

Zl such thatλ = S−1t. For x ∈ R, 0 < x � 1 let v(x) and v1(x) be defined as in
Proposition 4.5. By virtue of Lemma 4.2 we have(λ0,Wf ) > 0 if and only if (λ0, v1(x)) >
0 (wheneverx > 0 such thatv1(x) ∈ Wf ). Sincev1(x) is a positive multiple ofv(x) we
have(λ0, v1(x)) > 0 if and only if (λ0, v(x)) > 0. The claim now follows from the fact
that the inequality

(λ0, v(x)) = n+mx+ x2(t1 + . . .+ tlx
l−1) > 0

is satisfied for arbitrary small values ofx if and only if λ0 > 0. �

4.2. Quadratic divisors

For the purpose of this chapter we introduce a different realization ofHS as subvariety of
the projective spaceP (V1(C)) := {[Z]; Z ∈ V1(C)} associated to the complexification
V1(C) = V1 ⊗ C of V1. We extend the bilinear form(·, ·)1 : V1 × V1 → R to aC-bilinear
form onV1(C). Let

N := {[Z] ∈ P (V1(C)); q1(Z) = 0}

be the zero-quadric inP (V1(C)) and

K := {[Z] ∈ N ; (Z,Z)1 > 0}.

If Z = X + iY ∈ V1(C) then[Z] ∈ K if and only if q1(X) = q1(Y ) > 0 and(X, Y )1 = 0.
We define a mapι : HS ∪ (−HS) → P (V1(C)) by

ι(w) = [(−q0(w), w, 1)] for all w ∈ HS ∪ (−HS).

Letw = u+ iv ∈ HS ∪ (−HS). Thenι(w) = [X+ iY ] withX = (q0(v)− q0(u), u, 1) and
Y = (−(u, v)0, v, 0). Because ofq1(X) = q1(Y ) = q0(v) > 0 and(X, Y )1 = (u, v)0 −
(u, v)0 = 0 for all w ∈ HS ∪ (−HS) we concludeι(w) ∈ K for all w ∈ HS ∪ (−HS).
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Conversely, let[Z] = [X + iY ] ∈ K. SinceX andY span a two-dimensional (and thus
maximal) positive definite subspace ofV1 we have(Z, z)1 6= 0, wherez = (1, 0, . . . , 0)
is the isotropic vector we fixed at the begin of this chapter. Therefore[Z] has a unique
representation of the form[(−q0(Z0), Z0, 1)], Z0 ∈ V0(C) ∼= Cl+2. Now as above[Z] ∈ K
impliesq0(Im(Z0)) > 0 and thusZ0 ∈ HS ∪ (−HS).

We conclude thatι biholomorphically mapsHS ∪ (−HS) toK, and we denote the image
of HS underι byK+.

OnK the orthogonal groupO(S1; R) acts in a natural way (induced by the action onV1).
This action is (of course) exactly the same as the action ofO(S1; R) onHS ∪ (−HS) we
introduced in Section 1.2. The subgroupO+(S1; R) of O(S1; R) mapsK+ onto itself.

Definition 4.9 Suppose0 6= λ = (l−1, λ0, ll+2) ∈ Λ]
1. We define therational quadratic

divisorλ⊥ for λ by

λ⊥ = {w ∈ HS; l−1 + (λ0, w)0 − ll+2q0(w) = 0}.

Letλp ∈ Qλ ∩ Λ]
1 be primitive. Then thediscriminantδ(λ⊥) of λ⊥ is defined by

δ(λ⊥) = −Nq1(λp)

whereN is the level ofΛ1.

Remark 4.10 The discriminant is well-defined since the primitive vectorλp corresponding
to λ is uniquely determined up to the sign.

We havew ∈ λ⊥ if and only if (λ, (−q0(w), w, 1))1 = 0. ThusO+(S1; R) acts on the set
of all rational quadratic divisors via

Mλ⊥ := (Mλ)⊥ = {M〈w〉; w ∈ λ⊥}.

Obviously, the discriminant is invariant under this action.

Proposition 4.11 Let S be one of the matrices listed in (1.2). ThenΓS acts transitively
on the set of rational quadratic divisors of fixed discriminant, i.e., ifλ1, λ2 ∈ Λ]

1 such that
δ(λ⊥1 ) = δ(λ⊥2 ) then there exists anM ∈ ΓS such thatλ⊥1 = Mλ⊥2 .

PROOF Each rational quadratic divisor is generated by a uniquely (up to the sign) deter-
mined primitive vector inΛ]

1. According to [FH00, La. 4.6] the groupΓS acts transitively
on the set of primitive vectors inΛ]

1 of the same norm. ThusΓS also acts transitively on
the set of rational quadratic divisors of the same discriminant. �

4.3. Borcherds products

Now we can state the main result of [Bo98] adapted to our situation.
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Theorem 4.12 Suppose thatS is an even positive definite matrix of degreel. Given a
nearly holomorphic modular formf ∈ [Mp(2; Z),−l/2, ρ]

S]∞ of weight−l/2 with respect
to the dual Weil representationρ]

S with Fourier expansion

f(τ) =
∑

µ∈Λ]/Λ

∑
n∈−q(µ)+Z

cµ(n)qn eµ

such thatc0(0) ∈ 2Z and cµ(n) ∈ Z whenevern < 0, there exists a Borcherds product
ψk : HS → C with the following properties:

a) ψk is a meromorphic modular form of weightk = c0(0)/2 with respect toOd(Λ1) ∩ ΓS

and some Abelian characterχ of finite order.
b) The only zeros and poles ofψk lie on rational quadratic divisors. Ifλ ∈ Λ]

1 is primitive
with q1(λ) < 0 then the order ofψk alongλ⊥ is given by

∞∑
r=1

crλ(r
2q1(λ)).

c) Let%f be the Weyl vector off . Moreover, letn0 := min{n ∈ Q; cγ(n) 6= 0}, and letS
be the set of poles ofψk. Then on{w = u + iv ∈ HS; q0(v) > |n0|} − S the function
ψk is given by the normally convergent product expansion

ψk(w) = e2πi(%f ,w)0
∏

λ0∈Λ]
0

λ0>0

(
1− e2πi(λ0,w)0

)cλ0
(q0(λ0))

. (4.4)

PROOF Apply [Bo98, Thm. 13.3] and [Br02, Thm. 3.22] to our special case and take the
other results from this chapter into account. �

Note that the theorem only gives us modular forms with respect to the subgroupOd(Λ1) ∩
ΓS of the full modular groupΓS. But due to the explicitly given product expansion (4.4) we
can explicitly check how the Borcherds productψk transforms under the additional genera-
tors ofΓS which do not fix the discriminant group, and thus we can show that the Borcherds
products are in fact modular forms with respect to the full modular group. Moreover, we
get explicit formulas for the values of the characters of the Borcherds products. By virtue
of Proposition 1.15 we only have to consider howψk transforms under matrices of the form
RA, A ∈ O(Λ).

Proposition 4.13 LetA ∈ O(Λ), and letψ be a Borcherds product with product expansion
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(4.4). Then

ψ(RA〈w〉)
ψ(w)

=
∏
t∈Zl

t>0, tAt<0
λ=S−1t

(
eπi t( tAt−t)z 1− e−2πi t( tAt)z

1− e−2πi ttz

)cλ(−q(λ))

×

×
∏
t∈Zl

t>0, tAt>0
λ=S−1t

(
eπi t( tAt−t)z

)cλ(−q(λ))
(4.5)

for all w = (τ1, z, τ2) in the domain of convergence.

PROOF First of all note that for allw in the domain of convergenceRA〈w〉 = R̃Aw, where
R̃A = I1 × A × I1, also lies in the domain of convergence. Thus we can insertRA〈w〉 in
the product expansion ofψ and get

ψ(RA〈w〉)
ψ(w)

= e2πi(%f ,RA〈w〉−w)0
∏

λ0∈Λ]
0

λ0>0

(
1− e2πi(λ0,RA〈w〉)0

1− e2πi(λ0,w)0

)cλ0
(q0(λ0))

.

First we look at(λ0, RA〈w〉)0. Letλ0 = (m,S−1t, n) andw = (τ1, z, τ2). We have

(S−1t, Az) = t(S−1t)SAz = t( tAt)z

and
S−1 tA = A−1S−1

sinceA ∈ O(Λ). Therefore

(λ0, RA〈w〉)0 =
(
(m,S−1t, n), (τ1, Az, τ2)

)
0

= mτ2 + nτ1 − (S−1t, Az)

= mτ2 + nτ1 − t( tAt)z =
(
(m,S−1( tAt), n), w

)
0

= (R̃A−1λ0, w)0.

Because of̃RA−1Λ]
0 = Λ]

0 all terms for whichR̃A−1λ0 = (m,S−1( tAt), n) > 0 cancel out,
and thus we get

ψ(RA〈w〉)
ψ(w)

= e2πi(%f ,RA〈w〉−w)0
∏
t∈Zl

t>0, tAt<0
λ0=(0,S−1t,0)

(
1− e−2πi t( tAt)z

1− e−2πi ttz

)cλ0
(q0(λ0))

= e2πi(%f ,RA〈w〉−w)0
∏
t∈Zl

t>0, tAt<0
λ=S−1t

(
1− e−2πi t( tAt)z

1− e−2πi ttz

)cλ(−q(λ))

.
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Next we consider(%f , RA〈w〉 −w)0 = (%f , (0, Az− z, 0))0 = −(%,Az− z). Inserting the
explicit formula (4.1) for% yields

(%f , RA〈w〉 − w)0 =
1

2

∑
t∈Zl, t>0
λ=S−1t

cλ(−q(λ)) tλS(Az − z)

=
1

2

∑
t∈Zl, t>0
λ=S−1t

cλ(−q(λ)) t( tAt− t)z.

This completes the proof. �

In order to construct concrete Borcherds products with known weight and known zeros and
poles we need nearly holomorphic modular forms of weight−l/2 with respect to the dual
Weil representationρ]

S with known principal part and constant term. In [Bo99] Borcherds
gives a necessary and sufficient condition for the existence of nearly holomorphic modular
forms with prescribed principal part and constant term. Note that, according to [Br02, Prop.
1.12], nearly holomorphic modular forms are uniquely determined by their principal part.

Theorem 4.14 Suppose thatS is an even positive definite matrix of degreel. There exists a
nearly holomorphic modular formf ∈ [Mp(2; Z),−l/2, ρ]

S]∞ of weight−l/2 with respect
to the dual Weil representationρ]

S with principal part and constant term∑
µ∈Λ]/Λ

∑
n∈−q(µ)+Z

n≤0

cµ(n)qn eµ,

if and only if ∑
µ∈Λ]/Λ

∑
n∈−q(µ)+Z

n≤0

cµ(n)αµ(−n) = 0

for all holomorphic modular formsg ∈ [Mp(2; Z), 2 + l/2, ρS] (the so-calledobstruction
space) with Fourier expansion

g(τ) =
∑

µ∈Λ]/Λ

∑
n∈q(µ)+Z

n≥0

αµ(n)qn eµ.

PROOF [Bo99, Thm. 3.1] �

4.3.1. Borcherds products for S = A3

In this case we only have to check how the Borcherds products transform underMtr = RA,

A =
(

1 1 0
0 −1 0
0 0 −1

)
, because, according to Corollary 1.23 and Proposition 1.24, we haveΓS =

〈Od(Λ1) ∩ ΓS, Mtr〉.
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Proposition 4.15 Letψ be a Borcherds product with product expansion (4.4). Then

ψ(Mtr〈w〉) =

( ∏
t2,t3∈Z

(t2,t3)>0

(−1)cλ(−q(λ))

)
ψ(w)

for all w in the domain of convergence whereλ = S−1 t(0, t2, t3). In particular, all
Borcherds products are modular forms with respect to the full modular group.

PROOF We apply Proposition 4.13. Lett = (t1, t2, t3) ∈ Z3, t > 0. Then

tAt =

 t1
t1 − t2
−t3

 and tAt− t =

 0
t1 − 2t2
−2t3

 .

Thus

t > 0 and tAt > 0 ⇐⇒ t1 > 0, t2, t3 ∈ Z,
t > 0 and tAt < 0 ⇐⇒ t1 = 0, (t2, t3) > 0.

First we consider the caset > 0 and tAt < 0, i.e.,t = (0, t2, t3) > 0. In this case

eπi t( tAt−t)z 1− e−2πi t( tAt)z

1− e−2πi ttz
= eπi(−2t2z2−2t3z3) 1− eπi(2t2z2+2t3z3)

1− eπi(−2t2z2−2t3z3)
= −1.

Therefore the first product in (4.5) becomes∏
t2,t3∈Z

(t2,t3)>0

(−1)cλ(−q(λ))

whereλ = S−1 t(0, t2, t3).
Next we consider the caset > 0 and tAt > 0, i.e.,t = (t1, t2, t3), t1 > 0. We will show

that the second product in (4.5) equals1. The set{t ∈ Z3; t1 > 0} splits into the disjoint
sets

{t ∈ Z3; t1 > 0, 2t2 > t1}, {t ∈ Z3; t1 > 0, 2t2 < t1},
{t ∈ Z3; t1 > 0, 2t2 = t1, t3 > 0}, {t ∈ Z3; t1 > 0, 2t2 = t1, t3 < 0},

{t ∈ Z3; t1 > 0, 2t2 = t1, t3 = 0}.

For eacht = (t1, t2, t3) in the first or third sett′ = (t′1, t
′
2, t

′
3) = (t1, t1 − t2,−t3) = At is

in the second or fourth set, respectively. We have

eπi t( tAt−t)z = eπi((t1−2t2)z2+(−2t3z3))
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and
eπi t( tAt′−t′)z = e−πi((t1−2t2)z2+(−2t3z3)).

Moreover, forλ = S−1t andλ′ = S−1t′ one easily verifies thatλ + Λ = −λ′ + Λ and
q(λ) = q(λ′). Thuscλ(−q(λ)) = cλ′(−q(λ′)), and consequently the terms fort in the first
and third set and the terms for the correspondingt′ in the second and fourth set cancel each
other out in the second product in (4.5). The remaining terms fort in the fifth set are all
equal to1. This completes the proof. �

4.3.2. Borcherds products for S = A
(3)
1

According to Corollary 1.23 and Proposition 1.24, we haveΓS = 〈Od(Λ1) ∩ ΓS, RA, RB〉,
whereA =

(
−1 0 0
0 0 1
0 1 0

)
andB =

(
0 0 1
1 0 0
0 1 0

)
. So in order to show that the Borcherds products

are modular forms with respect to the full modular groupΓS we have to consider how the
Borcherds products transform underRA andRB (or some alternative generators). This will
also help us to determine the Abelian characters of the Borcherds products.

Proposition 4.16 Suppose thatψ is a Borcherds product forS = A
(3)
1 with product expan-

sion (4.4). Let

A =

1 0 0
0 0 −1
0 −1 0

 , B =

0 1 0
1 0 0
0 0 −1

 .

Then

ψ(RA〈w〉) =

(
∞∏

t=1

(−1)c(0,t/2,t/2)(−t2/2)

)
ψ(w)

and

ψ(RB〈w〉) =

(
∞∏

t=1

(−1)c(t/2,t/2,0)(−t2/2)+c(0,0,t/2)(−t2/4)

)
ψ(w)

for all w in the domain of convergence. In particular, all Borcherds products are modular
forms with respect to the full modular group.

PROOF This can be proved analogously to Proposition 4.15. �





5. Graded Rings of Orthogonal
Modular Forms

5.1. The graded ring for S = A3

In this section we will determine generators and algebraic structure of the graded ring of
orthogonal modular forms in the caseS = A3, i.e.,

A(Γ′S) =
⊕
k∈Z

[Γ′S, k, 1].

First we construct some suitable Borcherds products. As input we need nearly holomor-
phic modular formsf ∈ [Mp(2; Z),−3/2, ρ]

S]∞ of small pole order. According to Theorem
4.14, the Fourier coefficients of those forms have to satisfy a certain condition for all ele-
ments of the obstruction space[Mp(2; Z), 7/2, ρS]. By virtue of Lemma 3.12 the obstruc-
tion space has dimension1. It is spanned by the Eisenstein seriesE7/2 = E7/2(·; e0, A3).
Using the formulas in [BK01] we can calculate the Fourier expansion of this Eisenstein
series. (We used the programeiswhich is available for download on Bruinier’s homepage
and verified the results with independent calculations.) We get

E7/2,(0,0,0)(τ) = 1− 108q − 450q2 − 1656q3 +O(q4),

E7/2,±( 1
4
, 1
2
,− 1

4
)(τ) = −8q3/8 − 216q11/8 − 792q19/8 +O(q27/8),

E7/2,( 1
2
,0, 1

2
)(τ) = −18q1/2 − 232q3/2 − 1080q5/2 +O(q7/2),

whereq = e2πiτ . Using Theorem 4.14 we deduce the following condition for principal part
and constant term of elements of[Mp(2; Z),−3/2, ρ]

S]∞:

c0(0) = 8
(
c( 1

4
, 1
2
,− 1

4
)(−3

8
) + c(− 1

4
, 1
2
, 1
4
)(−3

8
)
)

+ 18 c( 1
2
,0, 1

2
)(−1

2
) + 108 c0(−1) + · · · .

Thus possible principal parts and constant terms of nearly holomorphic modular forms
are given by

q−3/8
(
e1/4 + e−1/4

)
+ 16 e0,

q−1/2 e1/2 + 18 e0,

q−1 e0 + 108 e0,
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where we use the following abbreviations for the basis elements ofC[Λ]/Λ]: e0 = e0+Λ,
e±1/4 = e±( 1

4
, 1
2
,− 1

4
)+Λ, e1/2 = e( 1

2
,0, 1

2
)+Λ. By applying Theorem 4.12 we obtain Borcherds

productsψk which have zeros along rational quadratic divisors with discriminant≤ 8.
According to Proposition 4.11 the modular groupΓS acts transitively on the set of rational
quadratic divisors of fixed discriminant. Therefore it suffices to consider the following
representativesλ⊥δ of discriminantδ:

λ⊥3 = {w ∈ HS; z3 = 0} ∼= HA2 ,

λ⊥4 = {w ∈ HS; z2 = 0} ∼= H
A

(2)
1
,

λ⊥8 = {w ∈ HS; z3 = −z1} ∼= HS2 ,

wherew = (τ1, z1, z2, z3, τ2).

Theorem 5.1 LetS = A3. Then there exist Borcherds products

ψ8 ∈ [ΓS, 8, 1]0, ψ9 ∈ [ΓS, 9, νπ]0 and ψ54 ∈ [ΓS, 54, νπ det]0.

The zeros of the products are all of first order and are given by⋃
M∈ΓS

M〈HA2〉,
⋃

M∈ΓS

M〈H
A

(2)
1
〉 and

⋃
M∈ΓS

M〈HS2〉,

respectively.

PROOF Theorem 4.12 yields the existence of holomorphic modular forms of the given
weights with respect toOd(Λ1) ∩ ΓS and some Abelian characterχ and with the given
zeros (and no poles). By virtue of Proposition 4.15 theψk are in fact modular forms with
respect to the full modular groupΓS, and thusχ ∈ Γab

S . Moreover, the proposition allows
us to calculate the value ofχ(Mtr) explicitly. In view of Corollary 2.3 the character is
uniquely determined by this value. Finally, the Borcherds productsψk obviously vanish on
H× {0}3 ×H ⊂ λ⊥δ which yieldsψk|Φ = 0. This completes the proof. �

Remark 5.2 a) The Borcherds productsψ8 and ψ9 occurred already in [FH00, 13.11,
13.12]. Using Theorem 2.31 and Theorem 2.36 we can identify the restrictions of the
Borcherds products to the submanifoldsH

A
(2)
1

andHA2. We get

ψ8|HA
(2)
1

= (φ
A

(2)
1

4 )2 and ψ54|HA
(2)
1
∈ φA

(2)
1

4 φ
A

(2)
1

30 · [Γ
A

(2)
1
, 20, 1],

ψ9|HA2 = φA2
9 and ψ54|HA2 = φA2

9 φA2
45 .

b) In [Kra] Krieg constructed lifts ofψ8 andψ2
9 to quaternionic modular forms.ψKrieg

8 =
2ψ8 is given as restriction of the sum of a certain Maaß form and a twisted version of the
same Maaß form. This allows us to calculate the Fourier expansion ofψKrieg

8 . Moreover,
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he writes that there areα, β ∈ C \ {0} such that

αψKrieg
8 (E10 − E4E6) + βψ2

9 = F |HA3 ,

for some cusp formF ∈ [ΓD4 , 18, 1] which is explicitly given as polynomial of Eisen-
stein series.ψ9 vanishes onH

A
(2)
1

, butF does not vanish onH
A

(2)
1

. Therefore we can

determineα by restricting the above equation toH
A

(2)
1

. We getα = 17
161280

andβ = 9

(where we chooseβ such that the Fourier coefficients ofψ2
9 are minimal but still inte-

gral). In particular, we can explicitly calculate the Fourier coefficients ofψ8 andψ2
9.

The Borcherds products vanish on quadratic divisors of first order. Therefore, if a modular
form vanishes on a quadratic divisor one of the Borcherds products vanishes on, then we
can divide this modular form by the Borcherds product. Luckily, for some of the quadratic
divisors the Borcherds products vanish on there exist non-trivial elements ofΓS stabilizing
those quadratic divisors pointwise. Now, if a modular form is not stabilized by such a
non-trivial elementM ∈ ΓS, then this modular form must vanish on the quadratic divisor
which is stabilized byM . This way we can show that modular forms with respect to
certain Abelian characters must be divisible by certain Borcherds products. The result is
summarized in the following

Lemma 5.3 LetS = A3 andk ∈ Z.
a) If k is odd,m ∈ {0, 1}, andf ∈ [ΓS, k, ν

m+1
π detm] thenf vanishes onH

A
(2)
1

and we

havef/ψ9 ∈ [ΓS, k − 9, νm
π detm].

b) If f ∈ [ΓS, k, ν
k+1
π det] thenf vanishes onHS2 andf/ψ54 ∈ [ΓS, k − 54, νk

π ].

PROOF a) Let k ∈ Z be odd andf ∈ [ΓS, k, ν
m+1
π detm]. Thenf vanishes onH

A
(2)
1

according to Corollary 2.29. Therefore Theorem 5.1 yieldsf/ψ9 ∈ [ΓS, k−9, νm
π detm].

b) Let f ∈ [ΓS, k, ν
k+1
π det]. By virtue of Corollary 2.29f vanishes onHS2. Thus Theo-

rem 5.1 yieldsf/ψ54 ∈ [ΓS, k − 54, νk
π ]. �

The preceding result allows us to give some more information aboutψ9.

Corollary 5.4 ψ9 is a Maaß form.

PROOF According to Corollary 2.24 there is, up to a scalar factor, exactly one Maaß form
f9 of weight 9. By virtue of the preceding lemma we havef9 = ψ9 · f0 for somef0 ∈
[Γ′S, 0] = C which yields the assertion. �

Due to the above lemma we can reduce any modular form of odd weight and any modular
form with respect to a non-trivial Abelian character to a modular form of even weight with
respect to the trivial character by dividing the modular form by a suitable produce ofψ9

andψ54. This way we have reduced the problem of determining the graded ring

A(Γ′S) =
⊕
k∈Z

[Γ′S, k, 1]
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of modular forms with respect toΓ′S to the problem of determining the graded ring

A(ΓS) =
⊕
k∈Z

[ΓS, k, 1] =
⊕
k∈Z

[ΓS, 2k, 1],

of modular forms of even weight with respect to the full modular groupΓS (and trivial
character). Elements of this graded ring are given by the Eisenstein seriesEk = EA3

k ,
k ≥ 4, we defined in Section 2.5.2 and, of course, also byψ8, ψ2

9 andψ2
54. Using our

knowledge about the graded ring of modular forms onHA2 we will now show that for each
f ∈ A(ΓS) we can find a polynomial inE4, E6, E10, E12 andψ2

9 such that the restriction
of f toHA2 coincides with the restriction of this polynomial.

Lemma 5.5 Let S = A3, k ∈ 2Z, andf ∈ [ΓS, k, 1]. Then there exists a polynomialp
such that

f − p(E4, E6, E10, E12, ψ
2
9)

vanishes onHA2.

PROOF Let k ∈ Z, k even, andf ∈ [ΓA3 , k, 1]. Then due to Theorem 2.31f |HA2 ∈
[ΓA2 , k, 1]. By virtue of Theorem 2.36 b)f |HA2 is a polynomial inEA2

4 , EA2
6 , EA2

10 , EA2
12

andφ2
9. SincedimM(ΓA2 , k) = 1 for k ∈ {4, 6} andEk|HA2 ∈ M(ΓA2 , k) we have

E4|HA2 = EA2
4 andE6|HA2 = EA2

6 . Moreover, we haveψ9|HA2 = φ9. It remains to
be shown thatEA2

10 andEA2
12 can be expressed as polynomials inEA2

4 , EA2
6 , E10|HA2 and

E12|HA2. This can easily be verified by comparing some Fourier coefficients. �

The Eisenstein seriesE10 andE12 can be replaced by the cusp forms

f10 := E10 − E4 · E6 and f12 := E12 −
441

691
E3

4 −
250

691
E2

6 .

If we denote the normalized elliptic Eisenstein series of weightk byGk, then we obtain

f10|Φ = G10 −G4 ·G6 = 0 and f12|Φ = G12 −
441

691
G3

4 −
250

691
G2

6 = 0.

Thusf10 andf12 are indeed cusp forms according to Proposition 2.10. By explicitly cal-
culating the first Fourier coefficients off10 andf12 we can verify thatf10 andf12 do not
vanish identically onHA2.

Now we can prove our main result in the caseS = A3.

Theorem 5.6 LetS = A3.
a) The graded ringA(ΓS) =

⊕
k∈Z[ΓS, 2k, 1] is generated by

E4, E6, ψ8, E10, E12 and ψ2
9.

b) The graded ringA(Γ′S) =
⊕

k∈Z[Γ′S, k, 1] is generated by

E4, E6, ψ8, ψ9, E10, E12 and ψ54.
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c) The ideal of cusp forms inA(Γ′S) is generated by

ψ8, ψ9, f10, f12 and ψ54.

PROOF a) Letk ∈ Z be even, and letf ∈ [ΓS, k, 1]. According to Lemma 5.5, there exists
a polynomialp such that

f̃ := f − p(E4, E6, E10, E12, ψ
2
9)

vanishes onHA2 . Then Theorem 5.1 leads to

f̃/ψ8 ∈ [ΓS, k − 8, 1],

and an induction yields the assertion.
b) Let f ∈ [Γ′S, k, 1]. If k is odd then, according to Lemma 5.3, the functionf vanishes

onH
A

(2)
1

and we havef/ψ9 ∈ [Γ′S, k − 9, 1]. So we can assume thatk is even. Due

to Corollary 2.3 we know that[Γ′S, k, 1] = [ΓS, k, 1] ⊕ [ΓS, k, νπ det] for evenk. Thus
f = f1 + fνπ det with fχ ∈ [ΓS, k, χ]. The functionfνπ det vanishes onHS2, and we
getfνπ det/ψ54 ∈ [ΓS, k − 54, 1]. Applying part a) onf1 andfνπ det/ψ54 completes the
proof.

c) Let I be the ideal generated by the cusp formsψ8, ψ9, f10, f12 andψ54, and letf ∈
[Γ′S, k]0. According to part b) we can writef as a polynomial inE4, E6, ψ8, ψ9, E10,
E12 andψ54. In view of the above comments aboutf10 andf12 we can also writef as
a polynomial inE4, E6, ψ8, ψ9, f10, f12 andψ54. Therefore there exists a polynomial
p ∈ C[X1, X2] such that

f − p(E4, E6) ∈ I.

Application of Siegel’sΦ-operator yields

0 = (f − p(E4, E6))|Φ = p(E4|Φ, E6|Φ) = p(G4, G6)

whereG4 andG6 are the normalized elliptic Eisenstein series of the indicated weight.
SinceG4 andG6 are algebraically independent, we havep = 0, and thusf ∈ I. �

Some more results are given in the following

Theorem 5.7 LetS = A3.
a) The orthogonal modular formsE4, E6, ψ8, ψ9, E10 andE12 are algebraically indepen-

dent.
b) There is a unique polynomialp ∈ C[X1, . . . , X6] such that

ψ2
54 = p(E4, E6, ψ8, ψ9, E10, E12).

c) We have
A(Γ′S) ∼= C[X1, . . . , X7]/(X

2
7 − p(X1, . . . , X6))
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and

∞∑
k=0

dim[Γ′S, k]t
k =

1 + t54

(1− t4)(1− t6)(1− t8)(1− t9)(1− t10)(1− t12)
.

PROOF a) The restrictions ofE4, E6, ψ9, E10 andE12 toHA2 are algebraically indepen-
dent due to Theorem 2.36. Moreover,ψ8 vanishes onHA2 according to Theorem 5.1.
This yields the assertion.

b) Because ofψ2
54 ∈ [ΓS, 108, 1] the existence ofp follows from Theorem 5.6. The unique-

ness ofp is a consequence of part a).
c) Let Q ∈ C[X1, . . . , X7] such thatQ(E4, E6, ψ8, ψ9, E10, E12, ψ54) = 0. There exist

polynomialsQ0, Q1 ∈ C[X1, . . . , X6] such thatQ−Q0−X7Q1 ∈ (X2
7−p(X1, . . . , X6)),

hence

Q0(E4, E6, ψ8, ψ9, E10, E12) + ψ54 ·Q1(E4, E6, ψ8, ψ9, E10, E12) = 0. (5.1)

LetM = R(−I3)Mtr. Then the modular substitutionw 7→M〈w〉 mapsψ54 to−ψ54 and
leavesE4, E6, ψ8, ψ9, E10 andE12 invariant. Therefore, by applying this substitution
on (5.1) we get

Q0(E4, E6, ψ8, ψ9, E10, E12)− ψ54 ·Q1(E4, E6, ψ8, ψ9, E10, E12) = 0.

SinceE4,E6,ψ8,ψ9,E10 andE12 are algebraically independentQ0 andQ1 both have to
vanish identically. Thus we haveQ ∈ (X2

7 − p(X1, . . . , X6)). The dimension formula
is a direct consequence of the algebraic structure ofA(Γ′S). �

The dimension formula for the Maaß space in Corollary 2.24 and Theorem 5.7 imply that
all modular forms of weightk ≤ 10 are Maaß forms, i.e., we get the following

Corollary 5.8 For k ≤ 10 we have

[Γ′S, k, 1] = M(Γ′S, k).

In particular, the Borcherds productsψ8 andψ9 are Maaß forms.

Similarly to Aoki-Ibukiyama [AI05] and Krieg [Kra] we can construct the Borcherds prod-
uctψ54 from the algebraically independent primary generators ofA(Γ′A3

) via the Rankin-
Cohen type differential operator we introduced in Section 2.2.

Corollary 5.9 There exists a constantc ∈ C, c 6= 0, such that

{E4, E6, ψ8, ψ9, E10, E12} = cψ54.

PROOF SinceE4, E6, ψ8, ψ9, E10 andE12 are algebraically independent, we have0 6=
g := {E4, E6, ψ8, ψ9, E10, E12} ∈ [ΓA3 , 54, νπ det] according to Proposition 2.14. Due to
the character Lemma 5.3 yieldsg/ψ54 ∈ [ΓA3 , 0, 1] = C. �
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In [Kra] Krieg determines the graded ringsA(ΓD4) andA(Γ′D4
) of quaternionic modular

forms of degree2. He shows thatA(ΓD4) is generated by the Eisenstein seriesED4
6 and

six modular formsfj, j ∈ {2, 5, 6, 8, 9, 12}, of weight2j (not to be confused with the cusp
formsf10 andf12) given as polynomials in six theta series. We examine the restrictions of
those generators (where we denote the restrictions of thefj again byfj) toHA3. Computing
the Fourier expansions we get

E4 = f2,

51E10 = 35f5 + 16f2E6,

21421E12 = 22050f6 + 400E2
6 − 1029f 3

2 ,

382205952ψ2
8 = 27f8 − 30f2f6 − 4E6f5 + 2f2E

2
6 + 5f 4

2 ,

2779890176ψ2
9 = −54f9 − 9E6f6 − 41472ψ8(f5 − f2E6) + 2f 2

2 f5 + E3
6 + 6f 3

2E6.

So obviously we can replace some of the generators of the graded ringA(ΓA3) by some of
the restrictions of thefj.

Corollary 5.10 The graded ringA(ΓS) =
⊕

k∈Z[ΓS, 2k, 1] is generated by

f2|HA3 , E6, ψ8, f5|HA3 , f6|HA3 and f9|HA3 .

Due to Baily-Borel’s theory of compactification of arithmetic quotients of bounded sym-
metric domains ([BB66]) each orthogonal modular function, i.e., each meromorphic mod-
ular form of weight0, is a quotient of two orthogonal modular forms of the same weight.
Therefore the above results allow us to determine the algebraic structure of the field of or-
thogonal modular functions. We denote this field byK(ΓS). Moreover, we denote the space
of meromorphic modular forms with respect to an Abelian characterχ by [ΓS, k, χ]mer.

Theorem 5.11 LetS = A3.
a) The fieldK(ΓS) of orthogonal modular functions with respect toΓS and the trivial

character is a rational function field in the generators

E2
6

E3
4

,
ψ8

E2
4

,
E10

E4E6

,
E12

E3
4

and
ψ2

9

E3
6

.

b) The fieldK(Γ′S) of all orthogonal modular functions with respect toΓ′S is an extension
of degree2 overK(ΓS) generated byψ54/ψ

6
9.

PROOF a) Let f ∈ K(ΓS). Due to Baily-Borel ([BB66, Cor. 10.12]) there existg, h ∈
[Γ′S, k] such thatf = g/h. Sincef is a modular function with respect to the trivial char-
acterg andh have to be modular forms with respect to the same characterχ. Because
of Lemma 5.3 we can assumeχ = 1 andk even. Then, due to Theorem 5.6,f is a
quotient of polynomials inE4,E6, ψ8,E10,E12 andψ2

9. After dividing the polynomials
by a suitable modular formEl4

4 E
l6
6 of weight4l4 + 6l6 = k it remains to be shown that
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all monomialsEk4
4 E

k6
6 ψ

k8
8 E

k10
10 E

k12
12 ψ

2k18
9 with kj ∈ Z and

∑
j j · kj = 0 can be written

in the above generators. This follows from

Ek4
4 E

k6
6 ψ

k8
8 E

k10
10 E

k12
12 ψ

2k18
9 =(

E2
6

E3
4

)−k4−k6−2k8−2k10−3k12−3k18
(
ψ8

E2
4

)k8
(
E10

E4E6

)k10
(
E12

E3
4

)k12
(
ψ2

9

E3
6

)k18

.

HenceK(ΓS) is a function field in the above generators which are algebraically inde-
pendent according to Theorem 5.7.

b) The functiong = ψ54/ψ
6
9 is obviously a modular function with respect to the char-

acterχ = νπ det. If f is another modular function with respect toχ then f/g ∈
[ΓS, 0, 1]mer = K(ΓS). Therefore

K(Γ′S) = [Γ′S, 0, 1]mer = [ΓS, 0, 1]mer ⊕ [ΓS, 0, νπ det]mer

= K(ΓS)⊕ g · K(ΓS) = K(ΓS)[g].

Due to Theorem 5.7 we haveg2 ∈ K(ΓS). ThusK(Γ′S) is an extension of degree2 over
K(ΓS). �

Remark There are no non-trivial modular functions with respect toΓS and the Abelian
charactersdet or νπ.

5.2. The graded ring for S = A
(3)
1

In this section we will determine the algebraic structure of the graded ring of orthogonal
modular forms in the caseS = A

(3)
1 , i.e.,

A(Γ′S) =
⊕
k∈Z

[Γ′S, k, 1].

Just as in the caseS = A3 we will construct suitable Borcherds products in order to reduce
this problem to the problem of determining the structure of

A(ΓS) =
⊕
k∈Z

[ΓS, 2k, 1].

The structure of this algebra can be easily derived from the structure of

A(Γ
A

(2)
1

) =
⊕
k∈Z

[Γ
A

(2)
1
, 2k, 1].

First we will again construct some suitable Borcherds products. In this case, by virtue
of Lemma 3.14, the obstruction space[Mp(2; Z), 7/2, ρS] has dimension3. So in addition
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to the Eisenstein seriesE7/2 = E7/2(·; e0, A(3)
1 ) we need two more generators. They are

given by theta series. According to Theorem 3.19 we have to find homogeneous spherical
polynomialsp of degree2 with respect toS in order to get suitable theta seriesΘ(·;S, p).
We can choosep1(x) = x2

1 − x2
2 andp2(x) = x2

2 − x2
3.

Using the formulas in [BK01] we can calculate the Fourier expansion of the Eisenstein
series. (Again we used the programeisand verified the results with independent calcula-
tions.) We get

E7/2,(0,0,0)(τ) = 1− 66q − 396q2 +O(q3),

E7/2,( 1
2
,0,0)(τ) = E7/2,(0, 1

2
,0)(τ) = E7/2,(0,0, 1

2
)(τ) = −2q1/4 − 120q5/4 +O(q9/4),

E7/2,(0, 1
2
, 1
2
)(τ) = E7/2,( 1

2
,0, 1

2
)(τ) = E7/2,( 1

2
, 1
2
,0)(τ) = −12q1/2 − 184q3/2 +O(q7/2),

E7/2,( 1
2
, 1
2
, 1
2
)(τ) = −40q3/4 − 192q7/4 +O(q11/4),

whereq = e2πiτ . According to Theorem 3.19, for the components of the two theta series
we get the Fourier expansions

θ(0,0,0)(τ ;S, p1) = 0,

θ( 1
2
,0,0)(τ ;S, p1) =

1

2
q1/4 − 2q5/4 − 3

2
q9/4 +O(q13/4),

θ(0, 1
2
,0)(τ ;S, p1) = −θ( 1

2
,0,0)(τ ;S, p1),

θ(0,0, 1
2
)(τ ;S, p1) = 0,

θ(0, 1
2
, 1
2
)(τ ;S, p1) = −q1/2 + 6q3/2 − 10q5/2 +O(q7/2),

θ( 1
2
,0, 1

2
)(τ ;S, p1) = −θ(0, 1

2
, 1
2
)(τ ;S, p1),

θ( 1
2
, 1
2
,0)(τ ;S, p1) = 0,

θ( 1
2
, 1
2
, 1
2
)(τ ;S, p1) = 0,

and

θ(0,0,0)(τ ;S, p2) = 0,

θ( 1
2
,0,0)(τ ;S, p2) = 0,

θ(0, 1
2
,0)(τ ;S, p2) = θ( 1

2
,0,0)(τ ;S, p1),

θ(0,0, 1
2
)(τ ;S, p2) = θ(0, 1

2
,0)(τ ;S, p1),

θ(0, 1
2
, 1
2
)(τ ;S, p2) = 0,

θ( 1
2
,0, 1

2
)(τ ;S, p2) = θ(0, 1

2
, 1
2
)(τ ;S, p1)

θ( 1
2
, 1
2
,0)(τ ;S, p2) = θ( 1

2
,0, 1

2
)(τ ;S, p1),

θ( 1
2
, 1
2
, 1
2
)(τ ;S, p2) = 0.
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Inserting the theta series into the obstruction condition (cf. Theorem 4.14) yields

h( 1
2
,0,0) = h(0, 1

2
,0) = h(0,0, 1

2
) and h(0, 1

2
, 1
2
) = h( 1

2
,0, 1

2
) = h( 1

2
, 1
2
,0)

for all h ∈ [Mp(2; Z),−3/2, ρ]
S]∞. Thus, using the Fourier expansion of the Eisenstein

seriesE7/2, we see that the terms

3 · q−1/4 + 6,

3 · q−1/2 + 36,

q−3/4 + 40,

q−1 −3 · q−1/4 + 60,

where the Fourier expansion of the components can be easily reconstructed from, are valid
principal parts and constant terms of nearly holomorphic modular forms of weight−3/2
with respect toρ]

S. By applying Theorem 4.12 we obtain Borcherds productsψk with zeros
along rational quadratic divisors of discriminant≤ 8. Just as in the caseS = A3 it suffices
to consider the following representativesλ⊥δ of discriminantδ:

λ⊥2 = {w ∈ HS; z3 = 0} ∼= H
A

(2)
1
,

λ⊥4 = {w ∈ HS; z2 = z3} ∼= HS2 ,

λ⊥6 = {w ∈ HS; z3 = z1 + z2} ∼= H2A2 ,

λ⊥8 = {w ∈ HS; z3 = 1
2
} =: H8,

wherew = (τ1, z1, z2, z3, τ2).

Theorem 5.12 LetS = A
(3)
1 . Then there exist Borcherds products

ψ3 ∈ [ΓS, 3, ν2νπ det]0, ψ18 ∈ [ΓS, 18, νπ]0, ψ20 ∈ [ΓS, 20, 1]0 and ψ30 ∈ [ΓS, 30, ν2]0.

The zeros of the products are all of first order and are given by⋃
M∈ΓS

M〈H
A

(2)
1
〉,

⋃
M∈ΓS

M〈HS2〉,
⋃

M∈ΓS

M〈H2A2〉 and
⋃

M∈ΓS

M〈H8〉,

respectively.

PROOF Theorem 4.12 yields the existence of holomorphic modular forms of the given
weights with respect toOd(Λ1) ∩ ΓS and some Abelian characterχ and with the given
zeros. By virtue of Proposition 4.16 theψk are in fact modular forms with respect to the
full modular groupΓS and thusχ ∈ Γab

S . Moreover, the proposition allows us to explicitly
calculate the value ofχ for two elements ofΓS. In view of Corollary 2.3 the character is
uniquely determined by those values. The Borcherds productsψ3, ψ18 andψ30 are cusp
forms since they are modular forms with respect to a non-trivial character. Moreover,ψ20
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obviously vanishes onH× {0}3 ×H ⊂ λ⊥6 which impliesψ20|Φ = 0. This completes the
proof. �

Remark 5.13 Using Theorems 2.34 and 2.36 and comparing the divisors of the Borcherds
products we can identify the restrictions of the Borcherds products to the submanifold
H

A
(2)
1

. For exampleψ18 vanishes onHS2 , and thus, in particular, onH(2; R) ∼= HA1 ⊂

HS2. This implies that its restriction toH
A

(2)
1

is divisible byφ
A

(2)
1

4 . Due to the character we

then conclude thatψ18|HA
(2)
1

= (φ
A

(2)
1

4 )2φ
A

(2)
1

10 . For the other two Borcherds products we get

ψ20|HA
(2)
1
∈ φA

(2)
1

10 · [Γ
A

(2)
1
, 10, 1] and ψ30|HA

(2)
1

= φ
A

(2)
1

30 .

The restriction ofψ3 toHS2 is equal to the Borcherds productφ3 occurring in [DK04].
Let f = X1 · . . . · X10 be the product of the ten theta series in [FH00, Def. 10.3].

According to [FH00, Prop. 11.9] this product is a non-trivial modular form of weight20
with respect toΓ

A
(3)
1

vanishing onH2A2. Hencef/ψ20 is a holomorphic modular form of
weight0, and thus

f = cψ20

for somec ∈ C \ {0}.

Just as in the caseS = A3 the fact that the Borcherds products vanish on quadratic divisors
of first order allows us to conclude that modular forms with respect to certain Abelian
characters must be divisible by certain Borcherds products. The result is summarized in
the following

Lemma 5.14 LetS = A
(3)
1 , k ∈ Z, andm ∈ {0, 1}.

a) If k is odd andf ∈ [Γ′S, k, 1] thenf vanishes onH
A

(2)
1

andf/ψ3 ∈ [Γ′S, k − 3, 1].

b) If f ∈ [ΓS, k, ν
m
2 ν

k+1
π detk] thenf vanishes onHS2 andf/ψ18 ∈ [ΓS, k−18, νm

2 ν
k
π detk].

c) If f ∈ [ΓS, k, ν
k+1
2 νm

π detk] thenf vanishes onH8 andf/ψ30 ∈ [ΓS, k−30, νk
2ν

m
π detk].

PROOF a) Letk ∈ Z be odd andf ∈ [Γ′S, k, 1]. Thenf vanishes onH
A

(2)
1

according to

Corollary 2.32. Therefore Theorem 5.12 yieldsf/ψ3 ∈ [Γ′S, k − 3, 1].
b) Let f ∈ [ΓS, k, ν

m
2 ν

k+1
π detk]. By virtue of Corollary 2.32f vanishes onHS2 . Thus

Theorem 5.12 yieldsf/ψ18 ∈ [ΓS, k − 18, νm
2 ν

k
π detk].

c) We have

H8 =

w ∈ HS; w =

1 0 0
0 1 0
0 0 −1

w + t(0, 0, 0, 1, 0) =

(
Te4R

„
1 0 0
0 1 0
0 0 −1

«)〈w〉
 .

Let χ = νk+1
2 νm

π detk andf ∈ [ΓS, k, χ]. Then for allw ∈ H8 we have

f(w) = (f |kM)(w) = χ(M)f(w) = −f(w)
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if M = Te4R
„

1 0 0
0 1 0
0 0 −1

«. Hencef vanishes onH8, and by virtue of Theorem 5.12 we

concludef/ψ30 ∈ [ΓS, k − 30, νk
2ν

m
π detk]. �

Due to the above lemma we can reduce any modular form of odd weight and any modular
form with respect to a non-trivial Abelian character ofΓS to a modular form of even weight
with respect to the trivial character by dividing the modular form by suitable powers ofψ3,
ψ18 andψ30. This way we have reduced the problem of determining the graded ring

A(Γ′S) =
⊕
k∈Z

[Γ′S, k, 1]

of modular forms with respect toΓ′S to the problem of determining the graded ring

A(ΓS) =
⊕
k∈Z

[ΓS, k, 1] =
⊕
k∈Z

[ΓS, 2k, 1],

of modular forms of even weight with respect to the full modular groupΓS (and trivial

character). Elements of this ring are given by the Eisenstein seriesEk = E
A

(3)
1

k , k ≥ 4,
we defined in Section 2.5.2, by the invariantshk, we determined in Section 2.8, and, of
course, also byψ2

3, ψ20, ψ2
18 andψ2

30. The structure of this ring can be easily derived from
the structure of the graded ringA(Γ

A
(2)
1

).

Theorem 5.15 LetS = A
(3)
1 . The graded ringA(ΓS) is a polynomial ring in

h4, h6, ψ
2
3, h8, h10 andh12.

PROOF Let k ∈ Z be even, and letf ∈ [ΓS, k, 1]. By virtue of Theorem 2.40, the restric-
tions of thehj generate the graded ringA(Γ

A
(2)
1

). Thus there exists a polynomialp such
that

f̃ := f − p(h4, h6, h8, h10, h12)

vanishes onH
A

(2)
1

. Since the Borcherds productψ3 vanishes onH
A

(2)
1

of first order we can

divide f̃ by ψ3 and get
f̃/ψ3 ∈ [ΓS, k − 3, ν2νπ det].

Due to Lemma 5.14 the quotient̃f/ψ3 also vanishes onH
A

(2)
1

. Hence we can divide a
second time byψ3 and get

f̃/ψ2
3 ∈ [ΓS, k − 6, 1].

By induction we conclude that the graded ring is generated by the given functions. The
algebraic independence of the generators follows from the algebraic independence of the
restrictions of thehj toH

A
(2)
1

and the fact thatψ2
3 vanishes onH

A
(2)
1

. �

Remark 5.16 In a forthcoming paper (cf. [FSM]) Freitag and Salvati Manni determine
the structure of this ring using completely different methods.
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Of course, it is possible to express the Eisenstein seriesE4,E6,E10 andE12 as polynomials
in the generators. The result is

E4 = h4,

E6 = h6 − 3456ψ2
3,

17E10 = 15h10 + 2h4h6 − 18432h4ψ
2
3,

21421E12 = 22050h12 + 400h2
6 − 2764800h6ψ

2
3 − 1029h3

4 + 4777574400ψ4
3.

Corollary 5.17 The graded ringA(Γ
A

(3)
1

) is a polynomial ring in

E4, E6, ψ
2
3, h8, E10 andE12.

Now we can determine the structure of the full ringA(Γ′S) =
⊕

k∈Z[Γ′S, k, 1] of modular

forms with respect toΓS for S = A
(3)
1 .

Theorem 5.18 LetS = A
(3)
1 .

a) The graded ringA(Γ′S) =
⊕

k∈Z[Γ′S, k, 1] is generated by the modular forms

ψ3, E4, E6, h8, E10, E12, ψ18 and ψ30

of whichψ3, E4, E6, h8, E10 andE12 are algebraically independent.
b) There are uniquely determined polynomialsp, q ∈ C[X1, . . . , X6] such that

ψ2
18 = p(ψ3, E4, E6, h8, E10, E12),

ψ2
30 = q(ψ3, E4, E6, h8, E10, E12).

c) We have

A(Γ′S) ∼= C[X1, . . . , X8]/
(
X2

7 − p(X1, . . . , X6), X
2
8 − q(X1, . . . , X6)

)
and

∞∑
k=0

dim[Γ′S, k]t
k =

(1 + t18)(t+ t30)

(1− t3)(1− t4)(1− t6)(1− t8)(1− t10)(1− t12)
.

PROOF a) This follows analogously to the corresponding result forS = A3 from Theorem
5.15 and Lemma 5.14.

b) Theorem 5.15 yields existence and uniqueness of the polynomials.
c) LetQ ∈ C[X1, . . . , X8] such thatQ(ψ3, E4, E6, F8, E10, E12, ψ18, ψ30) = 0. There exist

polynomialsQ0, Q1, Q2, Q3 ∈ C[X1, . . . , X6] such thatQ − Q0 − X7Q1 − X8Q2 −
X7X8Q3 ∈ (X2

7 − p(X1, . . . , X6), X
2
8 − q(X1, . . . , X6)), hence

Q0(ψ3, E4, E6, F8, E10, E12) + ψ18 ·Q1(E4, E6, ψ8, ψ9, E10, E12)

+ ψ30 ·Q2(ψ3, E4, E6, F8, E10, E12) + ψ18ψ30 ·Q3(ψ3, E4, E6, F8, E10, E12) = 0.
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Applying the modular substitutionw 7→M〈w〉,M = R„ 1 0 0
0 0 1
0 1 0

«, to this equation we get

Q0(ψ3, E4, E6, F8, E10, E12)− ψ18 ·Q1(E4, E6, ψ8, ψ9, E10, E12)

+ ψ30 ·Q2(ψ3, E4, E6, F8, E10, E12)− ψ18ψ30 ·Q3(ψ3, E4, E6, F8, E10, E12) = 0,

and thus

Q0(ψ3, E4, E6, F8, E10, E12) + ψ30 ·Q2(ψ3, E4, E6, F8, E10, E12) = 0,

Q1(ψ3, E4, E6, F8, E10, E12) + ψ30 ·Q3(ψ3, E4, E6, F8, E10, E12) = 0.

Applying the modular substitutionw 7→M〈w〉,M = Te4R
„

1 0 0
0 1 0
0 0 −1

«, to those equations

yields

Q0(ψ3, E4, E6, F8, E10, E12)− ψ30 ·Q2(ψ3, E4, E6, F8, E10, E12) = 0,

Q1(ψ3, E4, E6, F8, E10, E12)− ψ30 ·Q3(ψ3, E4, E6, F8, E10, E12) = 0.

Now the algebraic independence ofψ3, E4, E6, F8, E10 andE12 implies thatQ0, Q1,
Q2 andQ3 vanish identically. ThusQ ∈ (X2

7 − p(X1, . . . , X6), X
2
8 − q(X1, . . . , X6)).

The dimension formula is a direct consequence of the algebraic structure ofA(Γ′S). �

As in the caseS = A3 we can apply the Rankin-Cohen type differential operator we
introduced in Section 2.2 to the algebraically independent primary generators ofA(Γ′

A
(3)
1

).

The result is

Corollary 5.19 There exists a constantc ∈ C, c 6= 0, such that

{ψ3, E4, E6, h8, E10, E12} = cψ18ψ30.

PROOF Sinceψ3, E4, E6, h8, E10 andE12 are algebraically independent, we have0 6=
g := {ψ3, E4, E6, h8, E10, E12} ∈ [Γ

A
(3)
1
, 48, ν2νπ] according to Proposition 2.14. Due to

the character Lemma 5.14 yieldsg/(ψ18ψ30) ∈ [Γ
A

(3)
1
, 0, 1] = C. �

Just as in the caseS = A3 we can replace some of the generators by cusp forms. We
replace the Eisenstein seriesE10 andE12 by the cusp forms

f10 := E10 − E4 · E6 and f12 := E12 −
441

691
E3

4 −
250

691
E2

6 ,

and we replaceh8 by the cusp form

f8 := h8 − E2
4 .

Since the constant term off8 vanishes and due to

f8|Φ ∈ [SL(2; Z), 8] = C ·G8,



5.2. The graded ring for S = A
(3)
1 105

whereG8 denotes the normalized elliptic Eisenstein series of weight8, we conclude

f8|Φ = 0,

and thusf8 is indeed a cusp form.
Analogously to the corresponding result forS = A3 we can now determine the genera-

tors of the ideal of cusp forms inA(Γ′
A

(3)
1

).

Corollary 5.20 The ideal of cusp forms inA(Γ′S) is generated by

ψ3, f8, f10, f12, ψ18 and ψ30.

Finally, we can again determine the algebraic structure of the field of orthogonal modular
functions.

Theorem 5.21 LetS = A
(3)
1 .

a) The fieldK(ΓS) of orthogonal modular functions with respect toΓS and the trivial
character is a rational function field in the generators

ψ2
3

E6

,
h8

E2
4

,
E10

E4E6

,
E12

E3
4

and
E2

6

E3
4

.

b) The fieldK(Γ′S) of all orthogonal modular functions with respect toΓ′S is an extension
of degree4 overK(ΓS) generated byψ18/E

3
6 andψ30/E

5
6 .

PROOF a) Let f ∈ K(ΓS). Due to Baily-Borel ([BB66, Cor. 10.12]) there existg, h ∈
[Γ′S, k] such thatf = g/h. Just as in the caseS = A3 we can assume thatg andh are
modular forms of even weight with respect to the trivial character. Thusf is a quotient
of polynomials inE4, E6, ψ2

3, h8, E10 andE12. Again it remains to be shown that all
monomialsEk4

4 E
k6
6 ψ

2k3
3 hk8

8 E
k10
10 E

k12
12 with kj ∈ Z and3k3 +

∑
j j ·kj = 0 can be written

in the above generators. This follows from

Ek4
4 E

k6
6 ψ

2k3
3 hk8

8 E
k10
10 E

k12
12 =(

E2
6

E3
4

)−k4−k6−k3−2k8−2k10−3k12
(
ψ2

3

E6

)k3
(
h8

E2
4

)k8
(
E10

E4E6

)k10
(
E12

E3
4

)k12

.

HenceK(ΓS) is a function field in the above generators which are algebraically inde-
pendent according to Theorem 5.15.

b) We haveg := ψ18/E
3
6 ∈ [ΓS, 0, νπ]mer andh := ψ30/E

5
6 ∈ [ΓS, 0, ν2]mer. Just as in the

case of holomorphic modular forms the vector space of modular functions splits into
the eigenspaces of the characters ofΓS. Since some eigenspaces vanish we have

K(Γ′S) = [ΓS, 0, 1]mer ⊕ [ΓS, 0, νπ]mer ⊕ [ΓS, 0, ν2]mer ⊕ [ΓS, 0, ν2νπ]mer

= K(ΓS)⊕ g · K(ΓS)⊕ h · K(ΓS)⊕ gh · K(ΓS) = K(ΓS)[g, h].
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Due to Theorem 5.18 we haveg2, h2 ∈ K(ΓS), and thusK(Γ′S) is an extension of degree
4 overK(ΓS). �



A. Orthogonal and Symplectic
Transformations

We use the notation introduced in Section 2.7. Moreover, we denote the most common
elements of the symplectic groupSp(2; H) by

Trans(H) =

(
I2 H
0 I2

)
for H ∈ Her(2; H),

Rot(U) =

(
tU 0
0 U−1

)
for U ∈ GL(2; H).

According to [Kr85], Sp(2;O) is generated byJH, Trans(H), H ∈ Her(2;O), and
Rot(U), U ∈ GL(2;O) whereU = ( ε 0

0 1 ), ε ∈ O× = 〈ωi2, ωi3〉. Thus the extended
modular group

ΓH = 〈{Z 7→M〈Z〉; M ∈ Sp(2;O) orM = ρI}, Itr〉 , ρ =
1 + i1√

2
,

is generated by the following biholomorphic transformations ofH(2; H):

Z 7→ JH〈Z〉 = −Z−1,

Z 7→ Trans(H)〈Z〉 = Z +H, H ∈ Her(2;O),

Z 7→ Rot ( ε 0
0 1 ) 〈Z〉 =

(
τ1 ε(x+iy)

(x+iy)ε τ2

)
, ε ∈ {ωi2, ωi3},

Z 7→ (ρI)〈Z〉 = Rot
(

ρ 0
0 ρ

)
〈Z〉 =

(
τ1 ρ(x+iy)ρ

ρ(x+iy)ρ τ2

)
,

Z 7→ Itr(Z) = tZ,

whereZ =

(
τ1 x+ iy

x+ iy τ2

)
, τ1, τ2 ∈ H, x, y ∈ H.
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A.1. The case S = D4

The orthogonal half-spaceHD4 is biholomorphically mapped toH(2; H) by

ϕH : HD4 → H(2; H), (x1, u, x2)+i(y1, v, y2) 7→
(

x1 + iy1 ιD4(u) + i ιD4(v)

ιD4(u) + i ιD4(v) x2 + iy2

)
whereιD4 : R4 → H is given by

(x1, x2, x3, x4) 7→ x1 + x2i1 + x3i2 + x4ω.

This map allows us to identify the corresponding elements ofΓH andΓD4 (or more pre-
cisely ofΓD4/{±I8}) considered as subgroup ofBihol(HD4). The following table lists the
generators ofΓD4/{±I} and the elements ofΓH those generators correspond to, and vice
versa.

M ∈ ΓD4 γ ∈ ΓH
J JH

Tg, g = (g1, g̃, g2) ∈ Λ0 Trans(H), H =

(
g1 ιD4(g̃)
∗ g2

)
∈ Her(2;O)

Mtr = R0@ 1 0 0 1
0 −1 0 0
0 0 −1 0
0 0 0 −1

1A Itr

R0@ 1 0 −1 0
0 1 −1 0
0 0 −1 −1
0 0 2 1

1A Rot

(
ρ 0
0 ρ

)

R0@ 1 0 −1 0
0 0 −1 0
0 1 −1 0
0 0 2 1

1A Rot

(
ω 0
0 ω

)

R 1 0 0 0
0 1 0 0
1 1 0 1
−1 −1 −1 −1

! Rot

(
ω − i1 0

0 ω − i3

)

R0@ 0 −1 0 0
1 −1 0 0
0 −1 −1 −1
−1 1 1 0

1A Rot

(
ωi2 0
0 1

)

R 0 1 0 1
0 0 1 1
1 0 0 1
−1 −1 −1 −2

! Rot

(
ωi3 0
0 1

)
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A.2. The case S = A
(3)
1

The orthogonal half-spaceH
A

(3)
1

is biholomorphically mapped to the submanifold

H(2; H
A

(3)
1

) =

{(
τ1 z
∗ τ2

)
∈ H(2; H); z = z1 + z2i1 + z3i2 + z4i3, z4 = 0

}
of H(2; H) by

ϕ
A

(3)
1

: H
A

(3)
1
→ H(2; H

A
(3)
1

), (x1, u, x2) + i(y1, v, y2) 7→(
x1 + iy1 ι

A
(3)
1

(u) + i ι
A

(3)
1

(v)

ι
A

(3)
1

(u) + i ι
A

(3)
1

(v) x2 + iy2

)

whereι
A

(3)
1

: R3 → H
A

(3)
1

is given by

(x1, x2, x3) 7→ x1 + x2i1 + x3i2.

The following table lists elements of the orthogonal modular groupΓ
A

(3)
1

and corre-

sponding elements ofΓH ∩ Bihol(H(2; H
A

(3)
1

)), i.e., ifM ∈ Γ
A

(3)
1

then the corresponding
elementγ ∈ ΓH satisfies

γ(ϕ
A

(3)
1

(w)) = M〈w〉 for all w ∈ H
A

(3)
1
.

M ∈ Γ
A

(3)
1

γ ∈ ΓH ∩ Bihol(H(2; H
A

(3)
1

))

J JH

Tg, g = (g1, g̃, g2) ∈ Λ0 Trans(H), H =

(
g1 ι

A
(3)
1

(g̃)

∗ g2

)
∈ Her(2;O

A
(3)
1

)

Mtr = R„ 1 0 0
0 −1 0
0 0 −1

« Itr = Rot

(
i3 0
0 i3

)
R„−1 0 0

0 0 1
0 1 0

« Rot

(
(i2 − i1)/

√
2 0

0 (i1 − i2)/
√

2

)
R„ 0 0 1

1 0 0
0 1 0

« Rot

(
ω + i2 0

0 ω + i1

)
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A.3. The case S = A3

The orthogonal half-spaceHA3 is biholomorphically mapped to the submanifold

H(2; HA3) =

{(
τ1 z
∗ τ2

)
∈ H(2; H); z = z1 + z2i1 + z3i2 + z4i3, z3 = z4

}
of H(2; H) by

ϕA3 : HA3 → H(2; HA3), (x1, u, x2) + i(y1, v, y2) 7→(
x1 + iy1 ιA3(u) + i ιA3(v)

ιA3(u) + i ιA3(v) x2 + iy2

)
whereιA3 : R3 → HA3 is given by

(x1, x2, x3) 7→ x1 + x2ω + x3i1.

The following table lists elements of the orthogonal modular groupΓA3 and correspond-
ing elements ofΓH ∩ Bihol(H(2; HA3)), i.e., ifM ∈ ΓA3 then the corresponding element
γ ∈ ΓH satisfies

γ(ϕA3(w)) = M〈w〉 for all w ∈ HA3 .

M ∈ ΓA3 γ ∈ ΓH ∩ Bihol(H(2; HA3))
J JH

Tg, g = (g1, g̃, g2) ∈ Λ0 Trans(H), H =

(
g1 ιA3(g̃)
∗ g2

)
∈ Her(2;OA3)

Mtr := R„ 1 1 0
0 −1 0
0 0 −1

« Itr = Rot

(
(i2 − i3)/

√
2 0

0 (i2 − i3)/
√

2

)
R„−1 −1 0

0 1 0
0 −1 −1

« Rot

(
−i1 0
0 i1

)
R„ 0 0 −1

−1 0 1
1 1 0

« Rot

(
ω − i1 0

0 ω + i1

)



B. Orthogonal and Unitary
Transformations

Let K be an imaginary quadratic number field. We use the following abbreviations for the
most common elements of the unitary groupU(2; K)

Trans(H) =

(
I2 H
0 I2

)
for H ∈ Her(2; K),

Rot(U) =

(
tU 0
0 U−1

)
for U ∈ GL(2; K).

According to [De01, Lem. 1.4]SU(2; oK) is generated byJHer andTrans(H), H ∈
Her(2; oK), andΓ(2; K) = U(2; oK) is generated byJHer, Trans(H), H ∈ Her(2; oK) and
Rot(U), U = ( ε 0

0 1 ), ε ∈ o×K. Thus

ΓK =
〈
{Z 7→M〈Z〉; M ∈ Γ̃(2; K)}, Itr

〉
is generated by the following biholomorphic transformations ofH(2; C):

Z 7→ JHer〈Z〉 = −Z−1,

Z 7→ Trans(H)〈Z〉 = Z +H, H ∈ Her(2; oK),

Z 7→ Rot ( ε 0
0 1 ) 〈Z〉 = ( τ1 εz1

εz2 τ2 ) , ε ∈ o×K ∩ {±1,±i},
Z 7→ Itr(Z) = tZ,

whereZ =

(
τ1 z1

z2 τ2

)
∈ H(2; C).
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B.1. The case S = A
(2)
1

Let K = Q(
√
−1). ThenoK = Z + Zi, S = SK = A

(2)
1 and

w = (τ1, w1, w2, τ2) = (x1, u1, u2, x2) + i(y1, v1, v2, y2) ∈ HA
(2)
1

corresponds to

Z =

(
τ1 (u1 − v2) + i(u2 + v1)

(u1 + v2)− i(u2 − v1) τ2

)
=

(
x1 u1 + iu2

u1 − iu2 x2

)
+ i

(
y1 v1 + iv2

v1 − iv2 y2

)
∈ H(2; C).

The generators of Γ
A

(2)
1

and ΓK

M ∈ Γ
A

(2)
1

M 〈w〉 γ(Z) γ ∈ ΓQ(
√
−1)

J J〈w〉 −Z−1 JHer

T(g0,...,g3) w + (g0, . . . , g3) Z +H Trans(H), H =

(
g0 g1 + ig2

∗ g3

)
R( 0 −1

1 0 ) (τ1,−w2, w1, τ2)

(
τ1 iz1

−iz2 τ2

)
Rot

(
−i 0
0 1

)
Mtr = R( 1 0

0 −1 ) (τ1, w1,−w2, τ2)
tZ Itr

The Abelian characters of ΓK
We haveU(2; oK)ab = 〈det, ν℘〉. We can extenddet andν℘ to ΓK by definingdet(Itr) :=
ν℘(Itr) := 1. Moreover, we defineνskew : ΓK → C by νskew(Itr) := −1 andνskew(M) := 1
for M ∈ U(2; oK). Considering thatM〈Itr(Z)〉 = Itr(M〈Z〉) for all M ∈ U(2; C) we can
easily verify thatΓab

K = 〈det, ν℘, νskew〉.

γ ∈ ΓQ(
√
−1) det(γ) ν℘(γ) νskew(γ)

JHer 1 1 1

Trans

(
g0 g1 + ig2

∗ g3

)
1 (−1)

P
gj 1

Rot

(
−i 0
0 1

)
−1 1 1

Itr 1 1 −1
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B.2. The case S = A2

Let K = Q(
√
−3). ThenoK = Z + Zω, ω = 1

2
(1 + i

√
3), S = SK = A2 and

w = (τ1, w1, w2, τ2) = (x1, u1, u2, x2) + i(y1, v1, v2, y2) ∈ HA2

corresponds to

Z =

(
x1 u1 + ωu2

u1 + ωu2 x2

)
+ i

(
y1 v1 + ωv2

v1 + ωv2 y2

)
∈ H(2; C).

The generators of ΓA2 and ΓK

M ∈ ΓA2 M 〈w〉 γ(Z) γ ∈ ΓQ(
√
−3)

J J〈w〉 −Z−1 JHer

T(g0,...,g3) w + (g0, . . . , g3) Z +H Trans(H), H =

(
g0 g1 + ωg2

∗ g3

)
R( 1 1

−1 0 ) (τ1, w1 + w2,−w1, τ2)

(
τ1 ωz1

ωz2 τ2

)
Rot

(
ω2 0
0 ω

)
Mtr = R( 1 1

0 −1 ) (τ1, w1 + w2,−w2, τ2)
tZ Itr

The Abelian characters of ΓK
We haveU(2; oK)ab = 〈det〉 ∼= C3. Because ofM〈Itr(Z)〉 = Itr(M〈Z〉) for all M ∈
U(2; C) we have

[Itr,Rot

(
ω 0
0 1

)
] = Itr ◦ Rot

(
ω 0
0 1

)
◦ Itr ◦ Rot

(
ω 0
0 1

)
= Rot

(
ω2 0
0 1

)
∈ Γ′K.

Since we also haveRot

(
ω3 0
0 1

)
= Rot

(
−1 0
0 1

)
∈ Γ′K we get(Z 7→ M〈Z〉) ∈ Γ′K for

all M ∈ U(2; oK), and thus[ΓK : Γ′K] ≤ 2. We defineνskew : ΓK → C by νskew(Itr) := −1
andνskew(M) := 1 for M ∈ U(2; oK). Due toM〈Itr(Z)〉 = Itr(M〈Z〉) for all M ∈
U(2; C) we getΓab

K = 〈νskew〉.

γ ∈ ΓQ(
√
−3) νskew(γ)

JHer 1

Trans

(
g0 g1 + ωg2

∗ g3

)
1

Rot

(
ω2 0
0 ω

)
1

Itr −1
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B.3. The case S = S2

Let K = Q(
√
−1). ThenoK = Z + Zi

√
2, S = SK = S2 and

w = (τ1, w1, w2, τ2) = (x1, u1, u2, x2) + i(y1, v1, v2, y2) ∈ HS2

corresponds to

Z =

(
τ1 (u1 −

√
2v2) + i(v1 +

√
2u2)

(u1 +
√

2v2) + i(v1 −
√

2u2) τ2

)
=

(
x1 u1 + i

√
2u2

u1 − i
√

2u2 x2

)
+ i

(
y1 v1 + i

√
2v2

v1 − i
√

2v2 y2

)
∈ H(2; C).

The generators of ΓS2 and ΓK

M ∈ ΓS2 M 〈w〉 γ(Z) γ ∈ ΓQ(
√
−2)

J J〈w〉 −Z−1 JHer

T(g0,...,g3) w + (g0, . . . , g3) Z +H Trans(H), H =

(
g0 g1 + ig2

∗ g3

)
R“−1 0

0 −1

” (τ1,−w1,−w2, τ2)

(
τ1 −z1

−z2 τ2

)
Rot

(
−1 0
0 1

)
Mtr = R( 1 0

0 −1 ) (τ1, w1,−w2, τ2)
tZ Itr

The characters of ΓS and ΓK
We haveU(2; oK)ab = 〈ν℘〉. We can extendν℘ to ΓK by definingν℘(Itr) := 1. Moreover,
we defineνskew : ΓK → C by νskew(Itr) := −1 andνskew(M) := 1 for M ∈ U(2; oK).
Considering thatM〈Itr(Z)〉 = Itr(M〈Z〉) for all M ∈ U(2; C) we can easily verify that
Γab

K = 〈ν℘, νskew〉.

γ ∈ ΓQ(
√
−2) ν℘(γ) νskew(γ)

JHer 1 1

Trans

(
g0 g1 + i

√
2g2

∗ g3

)
(−1)g0+g1+g3 1

Rot

(
−1 0
0 1

)
1 1

Itr 1 −1



C. Eichler Transformations

We want to show that a group which is nicely generated in the sense of Definition 1.18
is also nicely generated in the sense of Freitag/Hermann [FH00, Def. 4.7]. We use the
notation we introduced in Chapter 1. Freitag/Hermann call a subgroupΓ of O(S1; R)
nicely generated if it is generated by the groupEO(Λ) of Eichler transformations and by
the groupO(Λ) considered as subgroup ofO(S1; R) via the embeddingA 7→ RA. The
groupEO(Λ) is generated by all Eichler transformations of the formE(fj, v), 1 ≤ j ≤ 4,
where the pairs(f1, f2) and(f3, f4) span the two hyperbolic planes which are contained in
Λ1 and wherev ∈ Λ1 is orthogonal tofj. In our terminology we have

f1 = e2, f2 = el+3, f3 = e1, f4 = el+4,

where(ej)1≤j≤l+4 is the standard basis ofV1 = Rl+4. With this choice we obviously have

Λ1 = H1 ⊕H2 ⊕ Λ,

whereH1 = Zf1 + Zf2 andH2 = Zf3 + Zf4 are two integral hyperbolic planes, that is

q1(x1f1 + x2f2) = x1x2 and q1(x3f3 + x4f4).

The Eichler transformationsE(fj, v) are then defined for allv ∈ Λ1 which are orthogonal
to fj by

E(fj, v)(a) = a− (a, fj)1v + (a, v)1fj − q1(v)(a, fj)1fj for all a ∈ V1.

In order to see how they act onHS we have to apply them toa = [(−q0(w), w, 1)] ∈ K+

(cf. Section 4.2). Then forw = (τ1, z, τ2) andh = (0, 0, λ, 0, 0), λ ∈ Λ, we get

E(f1, f3)(w) = (τ1 + 1, z, τ2) = Te1〈w〉,
E(f1, f4)(w) = (−q0(w) + τ1, z, τ2) (−τ2 + 1)−1 = (JTel+2

J)〈w〉,
E(f2, f3)(w) = (τ1, z, τ2 + 1) = Tel+2

〈w〉,
E(f2, f4)(w) = (τ1, z,−q0(w) + τ2) (−τ1 + 1)−1 = (JTe1J)〈w〉,
E(f1, h)(w) =

(
τ1 − tλSz + q(λ)τ2, z − λτ2, τ2

)
= U−λ〈w〉,

E(f2, h)(w) =
(
τ1, z − λτ1, τ2 − tλSz + q(λ)τ1

)
= (JUλJ)〈w〉,

E(f3, h)(w) = (τ1, z − λ, τ2) = T(0,−λ,0)〈w〉,

E(f4, h)(w) = (τ1, z + q0(w)λ, τ2)
(
−q(λ)q0(w)− tλSz + 1

)−1
= (JT(0,λ,0)J)〈w〉.



116 C. Eichler Transformations

Since
E(fj, fi) = E(fi, fj)

−1

for i = 1, 2 andj = 3, 4, and

E(fj, v1 + v2) = E(fj, v1) ◦ E(fj, v2)

for 1 ≤ j ≤ 4 and allv1, v2 ∈ Λ1 ∩ f⊥j we see that the above eight Eichler transformations
generate the groupEO(Λ). We conclude that a subgroupΓ of O(S1; R) which is nicely
generated in the sense of Freitag/Hermann is also nicely generated in the sense of Definition
1.18. On the other hand, we have

J〈w〉 = (E(f1, f3) ◦ E(f2, f4) ◦ E(f2, f3) ◦ E(f1, f4) ◦ E(f2, f3) ◦ E(f1, f3)) (w).

Thus the converse is also true. In fact we have shown even more, namely that the subgroup
〈J, Tg; g ∈ Λ0〉 of ΓS considered as subgroup ofBihol(HS) is isomorphic to the group
EO(Λ).



D. Discriminant Groups

S = D4

[λ] ∈ Dis(Λ) [(0, 0, 0, 0)] [(1
2
, 1

2
, 0, 0)] [(1

2
, 0, 1

2
, 0)] [(0, 1

2
, 1

2
, 0)]

qS([λ]) mod Z 0 1
2

1
2

1
2

S = A
(3)
1

[λ] ∈ Dis(Λ) [(0, 0, 0)] [(1
2
, 0, 0)] [(0, 1

2
, 0)] [(0, 0, 1

2
)]

qS([λ]) mod Z 0 1
4

1
4

1
4

[λ] ∈ Dis(Λ) [(0, 1
2
, 1

2
)] [(1

2
, 0, 1

2
)] [(1

2
, 1

2
, 0)] [(1

2
, 1

2
, 1

2
)]

qS([λ]) mod Z 1
2

1
2

1
2

3
4

S = A3

[λ] ∈ Dis(Λ) [(0, 0, 0)] [(1
4
, 1

2
,−1

4
)] [(1

2
, 0, 1

2
)] [(−1

4
, 1

2
, 1

4
)]

qS([λ]) mod Z 0 3
8

1
2

3
8

S = A
(2)
1

[λ] ∈ Dis(Λ) [(0, 0)] [(1
2
, 0)] [(0, 1

2
)] [(1

2
, 1

2
)]

qS([λ]) mod Z 0 1
4

1
4

1
2

S = A2

[λ] ∈ Dis(Λ) [(0, 0)] [(1
3
, 1

3
)] [(−1

3
,−1

3
)]

qS([λ]) mod Z 0 1
3

1
3

S = S2

[λ] ∈ Dis(Λ) [(0, 0)] [(0, 1
4
)] [(0,−1

4
)] [(1

2
, 0)]

qS([λ]) mod Z 0 1
8

1
8

1
4

[λ] ∈ Dis(Λ) [(1
2
, 1

4
)] [(1

2
,−1

4
)] [(0, 1

2
)] [(1

2
, 1

2
)]

qS([λ]) mod Z 3
8

3
8

1
2

3
4





E. Dimensions of Spaces of
Vector-valued Modular Forms

In the following tables we list the dimensions of the spaces[Mp(2; Z), k, ρS] of vector-
valued modular forms for some positive definite matricesS. For weightsk ∈ 1

2
Z which do

not occur in the tables the dimension is0. We writed(k) := dim[Mp(2; Z), k, ρS].
S = A3

k 1
2

5
2

9
2

13
2

17
2

21
2

25
2

2n+ 1
2
, n ≥ 7

d(k) 0 0 1 0 1 1 1 d(k − 12) + 1

k 3
2

7
2

11
2

15
2

19
2

23
2

27
2

2n+ 3
2
, n ≥ 7

d(k) 1 1 2 2 3 3 4 d(k − 12) + 3

S = A
(3)
1

k 3
2

7
2

11
2

15
2

2n+ 3
2
, n ≥ 4

d(k) 1 3 4 5 d(k − 6) + 4

S = D4

k 0 2 4 6 8 10 12 2n, n ≥ 7

d(k) 0 1 1 3 2 4 4 d(k − 12) + 4
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Notation

M〈Z〉 = (AZ +B)(CZ +D)−1 (pp. 53, 57)

M〈τ〉 = (aτ + b)/(cτ + d)

M〈w〉 = (−q0(w)b+ Aw + c)(M{w})−1 (p. 10)

M{w} = −γq0(w) + tdw + δ (p. 10)

M ≥ 0 M is positive semi-definite

M > 0 M is positive definite

a ≥ 0 a ∈ PS (p. 31)

a > 0 a ∈ PS (p. 31)

λ0 > 0 See p. 83

(·, ·) A bilinear form, usually(·, ·)S (p. 9)

(·, ·)0 = (·, ·)S0, the bilinear form associated toS0 (p. 9)

(·, ·)1 = (·, ·)S1, the bilinear form associated toS1 (p. 9)

(x, y)S = txSy, the bilinear form associated toS (p. 8)

b·c The greatest integer function
√
· The principal branch of the square root

[g, h] The commutatorghg−1h−1 of g andh

Gab The commutator factor groupG/G′ of G

G′ The commutator subgroup ofG

H ≤ G H is a subgroup ofG

A1 × . . .× An The block diagonal matrix with diagonal elementsA1, . . . , An

[a1, . . . , an] The diagonal matrix with diagonal elementsa1, . . . , an

A[B] = tBAB
tM The transpose ofM
tM The conjugate transpose ofM

{f1, . . . , fn} A certain Rankin-Cohen type differential operator (p. 36)

|Φ Siegel’sΦ-operator (p. 33)

|X Restriction of a function to a subspace or subgroupX

|k The Petersson slash operator of weightk (pp. 29, 54, 57, 66)

|k,m,S The slash operator of weightk and index(m,S) (p. 40)



126 Notation

(
∂F
∂z

)
=
(

∂(F1,...,Fn)
∂(z1,...,zn)

)
, the Jacobian matrix ofF : Cn → Cn (p. 35)

det
(

∂F
∂z

)
= det

(
∂(F1,...,Fn)
∂(z1,...,zn)

)
, the Jacobian (determinant) ofF : Cn → Cn (p. 35)

[Γ, k, ν] The space of modular forms of weightk with respect toΓ andν (p. 29)

[ΓS, k, ν]0 The subspace of cusp forms in[ΓS, k, ν] (p. 33)

[Γ, k] = [Γ, k, 1]

[ΓH, k, χ] The space of quaternionic modular forms of weightk with respect toχ (p. 58)

[ΓK, k, χ] The space of Hermitian modular forms of weightk with respect toχ (p. 54)

[ΓK, k, χ]0 The subspace of cusp forms in[ΓK, k, χ] (p. 54)

[ΓS, k, χ]mer The space of meromorphic modular forms of weightk with respect toχ (p. 97)

[Mp(2; Z), k, ρ] The space of modular forms of weightk with respect toρ (p. 66)

[Mp(2; Z), k, ρ]0 The subspace of cusp forms of[Mp(2; Z), k, ρ]

[Mp(2; Z), k, ρ]∞ The space of nearly holomorphic modular forms of weightk (p. 68)

[SL(2; Z), k] The space of elliptic modular forms of weightk

A(n) The alternating group of degreen

A(Γ) =
⊕

k∈Z[Γ, k, 1], the graded ring of modular forms with respect toΓ (p. 30)

α(x) = (1, . . . , xl−1) (p. 81)

αf (µ) The Fourier coefficients of the orthogonal modular formf

Bn A Bernoulli number

Bihol(X) The group of biholomorphic automorphisms on the spaceX

C =
(( −1 0

0 −1

)
, i
)
, the generator of the center ofMp(2; Z)

C The complex numbers

C[Λ]/Λ] The group ring of the discriminant groupΛ]/Λ

C[X1, . . . , Xn] The polynomial ring inn variables

cµ(n) The Fourier coefficients of a vector-valued modular form

Cn The cyclic group of ordern

χ An Abelian character ofΓS

Dn The dihedral group of ordern

δ(λ⊥) The discriminant ofλ⊥ (p. 84)

det The determinant map or the determinant character of a modular group

diag(M) The column vector consisting of the diagonal elements of the matrixM

Dis(Λ) The discriminant groupΛ]/Λ of Λ (p. 7)

e = t(1, 0, . . . , 0, 1) ∈ Rl+2 (p. 9)

ej An element of the standard basis(e1, . . . , el) of Rl

Ek(τ ; v, S) A vector-valued Eisenstein series of weightk (p. 73)

E
A

(3)
1

k The normalized orthogonal Eisenstein series of weightk for Γ
A

(3)
1

(p. 60)
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EA3
k The normalized orthogonal Eisenstein series of weightk for ΓA3 (p. 60)

ED4
k The normalized orthogonal Eisenstein series of weightk for ΓD4 (p. 60)

EH
k The normalized quaternionic Eisenstein series of weightk for ΓH (p. 58)

EK
k The normalized Hermitian Eisenstein series of weightk for ΓK (p. 54)

ESK
k The normalized orthogonal Eisenstein series of weightk for ΓSK (p. 56)

eµ An element of the standard basis(eµ)µ∈Λ]/Λ of C[Λ]/Λ]

η The Dedekind eta function (p. 67)

Fq The field of two elements

f8, f10, f12 Certain cusp forms forΓA3 and/orΓ
A

(3)
1

(pp. 94, 104)

fµ A component of a vector-valued modular formf

Gk The normalized elliptic Eisenstein series of weightk (p. 45)

Γ A subgroup of finite index ofΓS

Γ(2; K) = U(2; oK), the Hermitian modular group

Γ̃(2; K) A certain subgroup ofΓ(2; K) (p. 54)

ΓH The extended quaternionic modular group (p. 57)

Γ∞ = {( 1 n
0 1 ) ; n ∈ Z} ≤ SL(2; Z)

Γ̃∞ = {(( 1 n
0 1 ) , 1) ; n ∈ Z} ≤ Mp(2; Z)

ΓK The extended Hermitian modular group (p. 54)

ΓS = O(Λ1)∩O+(S1; R), the orthogonal modular group with respect toS (p. 11)

Γab
S The group of Abelian characters ofΓS (p. 22)

GL(n;R) The group of invertiblen× n matrices with elements inR

h(∆K) Class number of an imaginary quadratic number field with discriminant∆K

H(2; C) The Hermitian half-space of degree2 (p. 53)

H(2; H) The half-space of quaternions of degree2 (p. 57)

H The Hamilton quaternions

HS A subspace ofH (p. 13)

H The complex upper half plane{τ ∈ C; Im(τ) > 0}
HS The (orthogonal) half-space associated toS (p. 9)

H0(µ, n) A certain subset ofP1
S (p. 78)

hk Certain modular forms of weightk ∈ {4, 6, 8, 10, 12} for Γ
A

(3)
1

(p. 62)

HS(R) The Heisenberg group (p. 27)

Her(n;R) The set of Hermitiann× n matrices with elements inR

I An identity matrix

i1, i2, i3 The canonical non-real basis elements ofH
In The identity matrix inMat(n;R)

Itr The involution onH(2; C) orH(2; H) mappingZ to tZ
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ιS The isomorphismRl → HS (p. 13)

ιST An isometric embedding ofΛT in ΛS (p. 45)

Im(z) The imaginary part ofz ∈ C
J A certain element ofΓS, or the element(( 0 −1

1 0 ) ,
√
τ) ∈ Mp(2; Z) (p. 11)

jk,m,S(g, (τ, z)) A factor of automorphy onJS(R)× (H× Cl) (p. 40)

j(M,w) = M{w}, the factor of automorphy onO+(S1; R)×HS (p. 29)

J̃ A certain element ofO(Λ0) (p. 11)

JH =
(

0 −I2
I2 0

)
jH(M,Z) A factor of automorphy on〈Sp(2;O), ρI4〉 ×H(2; H) (p. 59)

JHer =
(

0 −I2
I2 0

)
jHer(M,Z) A factor of automorphy onΓ̃(2,K)×H(2; K) (p. 55)

Jk(m,S) = Jk(m,S, 1)

Jk(m,S, ν) The space of Jacobi forms of index(m,S) and weightk with respect toν (p. 41)

J0
k (m,S) = J0

k (m,S, 1)

J0
k (m,S, ν) The subspace of Jacobi cusp forms inJk(m,S, ν) (p. 41)

JS(R) The Jacobi group (p. 27)

JS(Z) The integral Jacobi group (p. 28)

K An imaginary quadratic number field (p. 53)

K = {[Z] ∈ N ; (Z,Z)1 > 0} (p. 83)

K(ΓS) The field of orthogonal modular functions forΓS (p. 97)

K+ A component ofK (p. 84)

l A positive integer, usually the rank ofS

Λ A lattice, usuallyZl and even of signature(0, l)

λ Usually an element ofΛ or Λ]

Λ0 = Z× Λ× Z
Λ1 = Z× Λ0 × Z
ΛQ = Λ⊗Z Q
ΛT The lattice associated toT (p. 45)

λ⊥ A rational quadratic divisor (p. 84)

Λ] The dual lattice ofΛ (p. 7)

M(ΓH, k) The Maaß space in[ΓH, k, 1] (p. 58)

M(ΓS, k) = M(ΓS, k, 1)

M(ΓS, k, ν) The Maaß space in[ΓS, k, ν]

MD A certain element ofΓS (p. 12)

M∗
D A certain element ofΓS (p. 12)

Mtr A certain element ofΓS (a rotation) (p. 20)

µ Usually an element ofΛ] or Λ]/Λ
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µ0 An element ofΛ]
0 or Λ]

0/Λ0

Mat(n,m;R) The group ofn×m matrices with elements inR

Mat(n;R) The ring ofn× n matrices with elements inR

Mp(2; R) The metaplectic cover ofSL(2; R) (p. 65)

Mp(2; Z) The integral metaplectic group (p. 65)

Mp(2; Z)[N ] The principal congruence subgroup ofMp(2; Z) of levelN

N(z) = zz, the norm onH (p. 13)

N The natural numbers{1, 2, 3, . . .}
N0 = N ∪ {0}
N The zero-quadric inP (V1(C)) (p. 83)

ν An Abelian character ofΓS

ν2 The Siegel character ofΓS (p. 24)

νη The character of the Dedekind eta function (p. 67)

ν℘ The Siegel character ofΓK (p. 55)

νπ The orthogonal character ofΓS (p. 22)

νρ A certain Abelian character ofΓH (p. 59)

νskew The symmetry character ofΓK (p. 55)

νtr A certain Abelian character ofΓH (p. 59)

O(b+, b−) The real orthogonal group of signature(b+, b−) (p. 8)

O(Λ) The orthogonal group ofΛ (p. 8)

Od(Λ) The discriminant kernel ofO(Λ) (p. 8)

O+(Λ0) = {A ∈ O(Λ0); A · HS = HS} (p. 15)

O(S; R) The real orthogonal group with respect toS (p. 8)

O+(S1; R) The connected component of the identity ofO(S1; R) (p. 10)

O The Hurwitz order (p. 13)

OS = O ∩HS (p. 13)

oK The ring of integers of the imaginary quadratic number fieldK (p. 53)

ω = 1
2
(1 + i1 + i2 + i3)

P A certain element ofΓS (a rotation) (p. 12)

P (V1(C)) The projective space ofV1(C)

P̃ A certain element ofO+(Λ0) (p. 12)

PS The positive cone associated toS (p. 9)

P1
S = {v ∈ PS; q0(v) = 1} (p. 77)

PS The closure ofPS (p. 31)

PS(R) The parabolic subgroup ofO+(S1; R) (p. 26)

PS(Z) = PS(R) ∩ ΓS (p. 28)

Φ Siegel’sΦ-operator (p. 33)
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φ4 A Borcherds product of weight4 for Γ
A

(2)
1

(p. 56)

φ9 A Borcherds product of weight9 for ΓA2 (p. 56)

φ10 A Borcherds product of weight10 for Γ
A

(2)
1

(p. 56)

φ30 A Borcherds product of weight30 for Γ
A

(2)
1

(p. 56)

φ45 A Borcherds product of weight45 for ΓA2 (p. 56)

ϕH A certain biholomorphic isomorphism fromHD4 toH(2; H) (p. 58)

ϕK A certain biholomorphic isomorphism fromHSK toH(2; C) (p. 54)

ϕm A Fourier-Jacobi coefficient of indexm (p. 38)

ψ3 A Borcherds product of weight3 for Γ
A

(3)
1

(p. 100)

ψ8 A Borcherds product of weight8 for ΓA3 (p. 92)

ψ9 A Borcherds product of weight9 for ΓA3 (p. 92)

ψ18 A Borcherds product of weight18 for Γ
A

(3)
1

(p. 100)

ψ20 A Borcherds product of weight20 for Γ
A

(3)
1

(p. 100)

ψ30 A Borcherds product of weight30 for Γ
A

(3)
1

(p. 100)

ψ54 A Borcherds product of weight54 for ΓA3 (p. 92)

ψk A Borcherds product of weightk (p. 85)

PO(S1; R) = O(S1; R)/{±I} (p. 10)

PO+(S1; R) = O+(S1; R)/{±I} (p. 10)

Pos(n;R) The ring of positive definite Hermitiann× n matrices with elements inR

q e2πiτ for τ ∈ H, or a quadratic form and then usuallyqS (p. 9)

q(µ+ Λ) = q(µ) + Z (p. 7)

Q The rational numbers

q0 = qS0, the quadratic form associated toS0 (p. 9)

q1 = qS1, the quadratic form associated toS1 (p. 9)

qS(x) = 1
2
(x, x)S, the quadratic form associated toS (p. 8)

R The real numbers

RA A certain element ofΓS (a rotation) (p. 12)

Rg A certain element ofΓS (a rotation) (p. 12)

ρ = (1 + i1)/
√

2, or a finite representation ofMp(2; Z)

ρS The Weil representation attached to(Λ]/Λ, qS) (p. 68)

ρ]
S The dual representation ofρS

ρ−S The induced Weil representation on{eµ − e−µ; µ ∈ Λ]/Λ} (p. 71)

ρ+
S The induced Weil representation on{eµ + e−µ; µ ∈ Λ]/Λ} (p. 71)

% A component of%f (W )

%f The Weyl vector off

%f (W ) The Weyl vector associated toW andf (p. 79)
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%z0 A component of%f (W )

%z]
0

A component of%f (W )

Re(z) The real part ofz ∈ C
Rot(U) =

(
tU 0
0 U−1

)
for U ∈ GL(2; H) orU ∈ GL(2; K)

S A nonsingular real symmetric matrix, usually even

S(n) The symmetric group of degreen

S0 An extension of−S of signature(1, l + 1)

S1 An extension ofS0 of signature(2, l + 2)

SK The even matrix associated to the imaginary quadratic fieldK (p. 54)

sign The sign function

SL(n;R) The group ofn× n matrices with elements inR and determinant1

SO(Λ) The special orthogonal group ofΛ (p. 19)

Sp(2; H) The symplectic group of degree2 overH (p. 57)

Sp(n;R) The symplectic group of degreen overR

StabG(X) = {g ∈ G; gx ∈ X for all x ∈ X}, the stabilizer ofX in G

SU(2; K) = U(2; K)∩SL(4; K), the special unitary group of degree2 overK (p. 53)

Sym(n;R) The set of symmetricn× n matrices with elements inR

T = (( 1 1
0 1 ) , 1) ∈ Mp(2; Z)

Tg A certain element ofΓS (a translation) (p. 11)

Θ(τ ;S, pr) A vector-valued theta series (p. 75)

Θa A quaternionic theta series (p. 60)

θµ(τ ;S, pr) A component ofΘ(τ ;S, pr)

τ, τ1, τ2 Usually elements ofH
trace(M) The trace of the matrixM

Trans(H) =
(

I2 H
0 I2

)
for H ∈ Her(2; H) orH ∈ Her(2; K)

U(2; K) The unitary group of degree2 overK (p. 53)

Uλ A certain element ofΓS (a rotation) (p. 12)

λU A certain element ofΓS (a rotation) (p. 12)

Ũλ A certain element ofO+(Λ0) (p. 12)

V = Λ⊗ R, usuallyRl

V (C) = V ⊗ C
v(x) = (1,−x2α(x), x) (p. 81)

V0 Λ0 ⊗ R
V1 Λ1 ⊗ R
v1(x) = v(x)/

√
q0(v(x))

w Usually an element ofHS of the form(τ1, z, τ2)

Wf The Weyl chamber off (p. 82)
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Y1, . . . , Y6 Certain quaternionic theta series (p. 60)

Z An element ofH(2; C) orH(2; H)

z Usually an element ofCl

Z The integers



Index

automorphism
biholomorphic, 10

bilinear form, 7
Borcherds product, 85
Borcherds products, 77

character
orthogonal, 22
Siegel, 22

characters
Abelian, 22

cocycle condition, 29
commutator subgroup, 21
cusp form, 33

Hermitian, 54
Jacobi, 41
vector-valued, 66

Dedekind eta function, 67
determinant, 22
differential operator, 35
dimension formula, 70
discriminant, 84
discriminant group, 7
discriminant kernel, 8
divisor

rational quadratic, 84
dual lattice, 7

Eisenstein series
elliptic, 45
Hermitian, 54

orthogonal, 56, 60
quaternionic, 58
vector-valued, 73

embedding
isometric, 45

Euclidean lattice, 9
even

lattice, 7
matrix, 8

factor of automorphy, 29
Fourier expansion, 31
Fourier-Jacobi expansion, 38

graded ring, 30

half-space, 9
Hermitian, 53
of quaternions, 57

Heisenberg group, 27

index, 40

Jacobi cusp form, 41
Jacobi form, 40
Jacobi forms, 38
Jacobi group, 27
Jacobian, 35

Koecher’s principle, 32

lattice, 7
dual, 7
Euclidean, 9
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even, 7
level

of a lattice, 7

Maaß form, 42
Maaß space, 42, 58
metaplectic group, 65
modular form

Hermitian, 54
meromorphic, 97
nearly holomorphic, 68
orthogonal, 29
quaternionic, 57
skew-symmetric, 54
symmetric, 54
vector-valued, 66

modular forms
Hermitian, 53
vector-valued, 65

modular function, 97
modular group

Hermitian, 53
extended, 54

orthogonal, 10, 11
quaternionic, 57

nicely generated, 15

obstruction space, 87
operator

differential, 35
order

Hurwitz, 13
orthogonal group, 7, 8

parabolic subgroup, 26
Φ-operator, 33
polynomial

spherical, 74
primitive, 7
principal part, 68

quadratic form, 7
quadratic space, 7

representation
dual, 68
Weil, 68

restriction, 45

Siegel’sΦ-operator, 33
slash operator, 66
special unitary group, 53
spherical polynomial, 74
symplectic group, 57

theta series, 74, 75

unitary group, 53
special, 53

Weil representation, 68
Weyl chamber, 78, 82
Weyl vector, 79, 82


