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Abstract

Subdirect representations are investigated in varieties which are de-
fined by operations of not necessarily finite arity. It is shown that, in
this context, Birkhoff’s Subdirect Representation Theorem does not hold.
However, a class of unranked varieties is identified which admit subdirect
representations by subdirectly irreducibles and then even are residually
small.

Introduction

The famous Birkhoff Subdirect Representation Theorem states that, given any
algebra A in some finitary variety V, there exists, in V, a subdirect representa-
tion of A by subdirectly irreducible algebras Ai. In detail: given A, there exists
a family mi : A → Ai, i ∈ I, of homomorphisms such that

(i) the family (mi)i∈I is point-separating,

(ii) each mi is surjective,

and

(iii) each Ai has the property that any point-separating family of surjective
homomorphisms nj : Ai → Bj (j ∈ J) contains an isomorphism.

If the subdirectly irreducible algebras in V, i.e., those satisfying (iii) above,
form — up to isomorphism — a set (and not a proper class), V is called residu-
ally small. This is a very restrictive property on V satisfied, e.g., by the varieties
of Abelian groups and Boolean algebras, but not by the varieties of groups or
rings.

Thus, the Birkhoff Theorem tells us that there are always “enough” subdi-
rectly irreducible algebras in a given (finitary) variety V, while residual small-
ness of V means that there are not “too many”.

These questions certainly can also be asked for non–finitary varieties, in
particular for unranked ones (i.e., for varieties of algebras which need opera-
tions of arbitrarily large arities) as, e.g., the category CaBa of complete atomic
Boolean algebras.

We will show by some simple examples, that these varieties sometimes do
but in general do not have enough subdirectly irreducible algebras. This will
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be explained partially by an analysis of the standard proof of the subdirect
Representation Theorem, which shows that this proof heavily depends on the
finiteness of arities. It is then all the more surprising that we can construct
a whole class of unranked varieties for which the Birkhoff Subdirect Represen-
tation Theorem holds, and which, in addition, are residually small. This then
is an extension of Birkhoff’s classical result quite different in nature from the
extension to “finitary generalized varieties” as presented in [7].

1 Prerequisites and notations

In the sequel subdirect representations will often be obtained by dualization.
We therefore recall the categorized versions of the respective notions and their
duals as follows.

Definition 1 ([7]) A family of morphisms mi : A → Ai, i ∈ I, in a category
A is called a subdirect representation of A provided that

(i) the family (mi)i∈I is jointly monomorphic,

and

(ii) each mi is a regular epimorphism.

An A–object A is called subdirectly irreducible if every subdirect represen-
tation of A contains an isomorphism.

Note that, in case A is a variety these notions coincide with the classical
ones. The duals of these concepts have been called “conjunct representation”
and “conjunctly irreducible” respectively by H.P. Gumm and T. Schröder [6],
and we maintain these notions. That is, a jointly epimorphic family of regular
monomorphisms ei : Ai → A, i ∈ I, is a conjunct representation of A, and A is
conjunctly irreducible provided that any conjunct representation of A contains
an isomorphism.

We recall from categorical algebra the following facts:

Proposition 1 (see e.g. [5, 2]) 1. If U : A → Set is a monadic functor into
the category Set of sets, then A is concretely equivalent to a variety (with
possibly a class of operations, in particular, not necessarily with a bound
on the arities of the defining operations).

2. For every monadic functor V : A → Setop the composition of V with the
contravariant powerset functor Setop → Set is monadic.

Recall also that a variety defined by operations whose arities are all less
than a given regular cardinal λ is a locally λ-presentable category and that its
underlying functor is λ-accessible, i.e., it preserves λ-directed colimits.

From coalgebra we recall the following: Given a set functor F one considers
the category CoalgF of F–coalgebras having as objects pairs (X, X

αX−→ FX),
with X a set and αX a map, and having as morphisms f : (X, αX) → (Y, αY ) the
coalgebra homomorphisms, i.e., those maps f : X → Y for which the diagram
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X
αX //

f

��

FX

Ff

��
Y αY

// FY

commutes. By U : CoalgF → Set we denote the obvious underlying functor.

Then the following hold (see e.g. [2]).

Proposition 2 For every accessible set functor F the following hold:

1. The category CoalgF is a locally presentable category.

2. The functor U : CoalgF → Set is comonadic.

Thus, given an accessible set functor F , the category (CoalgF )op is monadic
over Set and hence equivalent to a variety.

Definition 2 The variety equivalent to the category (CoalgF )op for an acces-
sible set functor F is called the variety determined by F and will be denoted
by VF .

Note that VF is unranked, for otherwise it would be locally presentable; and
this would contradict statement 1. of the above proposition, since categories
together with their duals can be locally presentable in trivial cases only ([4]).
The simplest example is the variety CaBa of complete atomic Boolean algebras:
CaBa is just VF for the constant functor F mapping each set to a singleton.

We will need the following coalgebraic lemma:

Lemma 1 Let F preserve intersections. Then for any family (Ci, αi), i ∈ I,
of subcoalgebras1 of an F–coalgebra (C,αC), the intersection ∩ICi carries the
structure of a subcoalgebra of (C,αC). In particular, for every c ∈ C there exists
a smallest subcoalgebra 〈c〉 of (C,αC) containing c.

2 A closer look at the unranked case

Complete atomic Boolean algebras

Since the category CaBa of complete atomic Boolean algebras is dually equiv-
alent to the category Set, we start by investigating conjunct representations in
Set.

Lemma 2 Every set X has a conjunct representation by singleton sets.

Proof Denote, for x ∈ X, by ιx : {x} → X the embedding. The family (ιx)x∈X

clearly is a conjunct representation. 3

1(D, αD) is called subcoalgebra of (C, αC), provided that D ⊂ C and the embedding i : D →
C is a coalgebra homomorphism.
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Lemma 3 The conjunctly irreducible sets are precisely the singleton sets.

Proof The previous lemma shows that no set with more than one element is
conjunctly irreducible. And the empty set fails to be conjunctly irreducible:
consider the respective (empty) family of the proof above. 3

By dualization one thus obtains

Corollary 1 Every algebra in CaBa has a subdirect representation by subdi-
rectly irreducible algebras and, in addition, CaBa is residually small.

We will see later, that this is a special instance of a far more general result.

Commutative unital C∗–algebras

The category cC∗Alg1 of commutative unital C∗–algebras is known to be a
variety of algebras given by a finite set of finitary operations and one operation
of countable arity (see [5]). Since cC∗Alg1 is dually equivalent to the category of
compact Hausdorff spaces we investigate conjunct representations of the latter.
In fact, literally the same arguments as for Set show:

Lemma 4 Every compact Hausdorff space has a conjunct representation by
spaces consisting of one element, and these spaces are precisely the conjunctly
irreducible ones.

Again by dualization we obtain

Corollary 2 Every commutative unital C∗–algebra has a subdirect representa-
tion by subdirectly irreducibles and, moreover, the category cC∗Alg1 is residually
small.

Compact Hausdorff Spaces

The category Comp2 of compact Hausdorff spaces is well known to be monadic,
in fact an unranked variety.

Lemma 5 Every compact Hausdorff space has a subdirect representation by the
set of closed subspaces of the unit interval I.

Proof Let X be compact Hausdorff and x, y ∈ X, x 6= y. By Urysohn’s Lemma
there exists a continuous map ϕx,y : X → I with ϕx,y(x) = 0 and ϕx,y(y) = 1.
Denote the corestriction of ϕx,y to its image by ηx,y : X → Kx,y. Now the family
ηx,y : X → Kx,y, x, y ∈ X, x 6= y, is the desired representation. 3

Lemma 6 The subdirectly irreducible spaces are precisely the discrete spaces
with at most two elements.

Proof It is easy to see that these spaces are subdirectly irreducible. If X has at
least three points construct, again by Urysohn’s Lemma, for any three different
points x, y, z ∈ X a map ϕ = ϕ{x,y},z : X → I with ϕ(x) = ϕ(y) = 0 and
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ϕ(z) = 1. This is a point–separating family, no member of which is injective.
Factorizing this family over the images of its members produces a subdirect
representation with no injective, hence no bijective, member.2 3

It then follows that any compact Hausdorff space admitting a subdirect
representation by subdirectly irreducibles is a subspace of a power of the two-
element discrete space and thus zero-dimensional. We therefore have the fol-
lowing

Corollary 3 Not every compact Hausdorff space has subdirect representation
by subdirectly irreducibles.

The last example shows that, despite the positive results for CaBa and
cC∗Alg1, one cannot expect Birkhoff’s subdirect Representation Theorem to
hold in non–finitary varieties. In fact one should not expect so as a closer
look at its standard proof (see e.g. [1]) shows: it depends on a Zorn’s Lemma
argument which requires unions of chains of congruences to be congruences
again: and to establish this one needs finiteness of the arities of all defining
operations.

3 A class of residually small varities

In this section we will construct a class of unranked varieties in which Birkhoff’s
Subdirect Representation Theorem holds and which, in addition, are residually
small. Our first example, CaBa, is the simplest case of this construction. In the
sequel F always denotes a set functor.

Using Lemma 1 we can prove (see also [6]):

Proposition 3 Let F preserve intersections. The conjunctly irreducible F–
coalgebras are precisely the coalgebras of the form 〈c〉 with c ∈ C for some F–
coalgebra (C,αC), and every coalgebra has a conjunct representation of those.

Proof Let fi : (Ci, αi) → 〈c〉, i ∈ I be a conjunct representation. Chose
k ∈ I such that fk(ck) = c for some ck ∈ Ck; then the image of fk, being a
subcoalgebra of 〈c〉, must be all of 〈c〉. Thus fk is an isomorphism.

Conversely, let (C,αC) be conjunctly irreducible. Since the family of em-
beddings ic : 〈c〉 → (C,αC) clearly is a conjunct representation we conclude
〈c0〉 = (C,αC) for some c0 ∈ C. 3

Again by dualization we obtain

Theorem 1 Let F preserve intersections. Then every algebra in VF has sub-
direct representations by subdirectly irreducibles.

From the theory of coalgebras we finally recall the following result (see e.g.
[6] or [3]).

2This simple argument is due to Christoph Schubert.
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Proposition 4 Let F be λ–accessible. Then for every F–coalgebra (C,αC)
and any c ∈ C there exists a subcoalgebra (D,αD) of (C,αC) with c ∈ D and
cardD ≤ λ.

It follows from the above that CoalgF contains, up to isomorphism, only a
set of coalgebras of the form 〈x〉, provided F is accessible. Combining this with
the previous Theorem we get

Theorem 2 The Birkhoff Subdirect Representation Theorem holds in the class
of all varieties VF , where F is an accessible set functor which, in addition,
preserves intersections. Moreover, each variety VF in this class is residually
small.

Examples of functors satisfying the hypotheses of this theorem are the so
called (generalized) polynomial functors X 7→

∑
n<λ

An × Xn. Since CaBa is VF

for the polynomial functor X 7→ 1, our first example is a special instance of
Theorems 1 and 2.
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