Characterizing abelian admissible matrix groups

H. Führ, RWTH Aachen J. Bruna, J. Cufi, M. Miro, Universitat Autònoma de Barcelona

Abstract Harmonic Analysis, Hongkong, 12/07

<u>Overview</u>

- Admissible matrix groups and inversion formulae
- Calderon's condition and necessary criteria
- Necessary and sufficient conditions for admissible matrix groups

1

- Abelian admissible matrix groups
- A criterion for groups with real spectrum
- Checking admissibility for discrete abelian groups with real spectrum

Setup

▶ $H < \operatorname{GL}(n, \mathbb{R})$ a Lie-subgroup

- ▶ $G = \mathbb{R}^n \rtimes H$, the affine group generated by H and translations
- ▶ π quasiregular representation on $L^2(\mathbb{R}^n)$, defined by

$$\pi(x,h)f(y) = |\det(h)|^{-1/2}f(h^{-1}(y-x)).$$

▶ Given $f, g \in L^2(\mathbb{R}^n)$, we write

$$V_f g(x,h) = \langle g, \pi(x,h) f \rangle$$

Definition.

- ▶ $f \in L^2(\mathbb{R}^n)$ is called admissible if $V_f : L^2(\mathbb{R}^n) \hookrightarrow L^2(G)$ isometrically.
- ▶ *H* is called admissible if there exists an admissible vector $f \in L^2(\mathbb{R}^n)$.

Chief purpose of admissible vectors: Expansion of arbitrary $g \in L^2(\mathbb{R}^n)$ in the wavelet system $(\pi(x,h)f)_{(x,h)\in G}$.

 \boldsymbol{f} is admissible iff

$$\forall g \in \mathcal{L}^2(\mathbb{R}^n) : g = \int_G \langle g, \pi(x, h) f \rangle \ \pi(x, h) f \ d\mu_G(x, h) f \ d\mu_G(x, h) = \int_G \langle g, \pi(x, h) f \rangle \ d\mu_G(x, h) f \ d\mu_G(x, h) = \int_G \langle g, \pi(x, h) f \rangle \ d\mu_G(x,$$

in the weak sense.

Chief questions:

- How do you recognize admissible vectors?
- How do you recognize admissible matrix groups?

Literature

Samples from the literature:

- Grossmann/Morlet/Paul ('86): ax + b-group
- ▶ Murenzi ('90): Similitude group, $H = \mathbb{R}^+ \times SO(n)$
- Bernier/Taylor ('94), HF ('96,'98): Admissible matrix groups, irreducible case
- Mallat/Zhong
- Larson/Schulz/Speegle/Taylor: Admissible one-parameter and cyclic groups
- HF/Mayer ('01), Laugesen/Weaver/Weiss/Wilson ('01): General admissible matrix groups

Lemma 1 $f \in L^2(\mathbb{R}^n)$ is admissible iff

$$\int_{H} |\widehat{f}(h^{T}\xi)| dh = 1 \text{ (a.e. } \xi \in \mathbb{R}^{n} \text{ .}$$

Theorem 2.

Suppose that H is admissible.

- ► *H* is closed.
- ▶ *G* is nonunimodular. Equivalently, $det|_H \neq \Delta_H$.
- For almost every $\xi \in \mathbb{R}^n$, the stabilizer

$$H_{\xi} = \{h \in H : h^T \xi = \xi\}$$

is compact.

Theorem 3. (HF/M,LWWW)

Suppose that H fulfills all necessary criteria from Theorem 2, and additionally, that, for almost every ξ , the orbit $H^T \xi \subset \mathbb{R}^n$ is locally closed. Then H is admissible.

Remarks:

 \blacktriangleright $H^T \xi$ is locally closed iff for some $\epsilon > 0$, the ϵ -stabilizer

$$H_{\xi,\epsilon} = \{h \in \mathbb{H} : |h^T \xi - \xi| \le \epsilon\}$$

is compact.

Open question: Is the sufficient condition from Theorem 3 necessary?

Theorem 4. Assume that H is discrete. Then H is admissible iff

- 1. there exists $h \in H$ with $det(h) \neq 1$; and
- 2. there exist $\Omega \subset \mathbb{R}^n$ Borel, H^T -invariant, with $|\mathbb{R}^n \setminus \Omega| = 0$, and $C \subset \Omega$ Borel, meeting each orbit in Ω in a single point.

Sketch of proof:

- 1. Step: *H* discrete \Rightarrow *H* countable \Rightarrow *H*^{*T*} acts freely a.e.
- 2. Step: If Condition 2. is met, there exists $C \subset \Omega$ Borel, meeting a.e. orbit in a single point. W.I.o.g. H^T acts freely on Ω , hence

$$\sum_{h\in H} \chi_C(h^T \xi) = 1 , \text{ (a.e. } \xi \in \mathbb{R}^n).$$

Using Condition 1., we can additionally ensure $|C| < \infty$. But then, $\chi_C \in L^2(\mathbb{R}^n)$, and χ^{\vee} is admissible.

Conversely, assume that f is admissible, and let

$$\Omega = \{\xi \in \mathbb{R}^n : \sum_{h \in H} |f(h^T \xi)|^2 = 1.$$

We pick $\xi_{\mathcal{O}}$ from each orbit $\mathcal{O} \subset \Omega$ according to the following rule:

▶ Let $F_{\mathcal{O}}$ be the set of all $\xi \in \mathcal{O}$ such that

$$|\widehat{f}(\xi)| = \max\{|\widehat{f}(\omega)| : \omega \in \mathcal{O}\}.$$

Theorem 5. H is admissible iff, additionally to the necessary conditions from Theorem 2., it meets the following equivalent conditions:

- ► The Lebesgue measure on \mathbb{R}^n decomposes into measures supported by the H^T -orbits.
- ▶ There exists $\Omega \subset \mathbb{R}^n$ Borel, *H*-invariant, with $|\mathbb{R}^n \setminus \Omega| = 0$, and such that the orbit space Ω/H^T is standard.
- ► There exists $\Omega \subset \mathbb{R}^n$ Borel, *H*-invariant, with $|\mathbb{R}^n \setminus \Omega| = 0$ and a Borel cross-section $\Omega/H^T \to \Omega$.
- ► There exists $\Omega \subset \mathbb{R}^n$ Borel, *H*-invariant, with $|\mathbb{R}^n \setminus \Omega| = 0$ and an analytic transversal $C \subset \Omega$ of the orbits in Ω .

Still open: Do these conditions imply that almost every point has a compact ϵ -stabilizer?

We now restrict attention to abelian matrix groups. The following results are known in this context:

▶ (HF, '98): There is a natural bijection

 $\{H < \operatorname{GL}(n,\mathbb{R}) : H \text{ abelian, admissible, } \dim(H) = n\} \text{ mod. conjugacy}$

 $\{A \text{ commutative, associative algebra with unit}, \dim(A) = n\}$

In particular, there are infinitely many conjugacy classes for n > 6.

▶ (Larson/Schulz/Speegle/Taylor 2006): One-parameter groups are admissible iff they are not contained in $SL(n, \mathbb{R})$.

Not much known beyond that. Best possible

Lemma 6. Let $H < H' < GL(n, \mathbb{R})$, with H'/H compact. Then H is admissible iff H' is.

Definition. For two subgroups $H, H' < \operatorname{GL}(n, \mathbb{R})$, we write $H \prec H'$ if $H \subset H'$ and H'/H is compact. We let \sim denote the equivalence relation generated by \prec , i.e., the symmetric, transitive hull of \prec .

Corollary 7. If $H \sim H'$, then H is admissible iff H' is admissible.

Theorem 8. Let $H < \operatorname{GL}(n, \mathbb{R})$ be abelian. Then there exists $H_c < \operatorname{GL}(n, \mathbb{R})$ simply connected, abelian with $H \sim H_c$. If all elements of H have real spectrum, there exists $H_c \sim H$ such that all its elements have real spectrum. Theorem 9. Let $H < GL(n, \mathbb{R})$ be abelian, closed, connected and simply connected. Let $\mathfrak{h} \subset gl(n, \mathbb{R})$ denote the Lie algebra of H. Then H is admissible iff there exists $\xi \in \mathbb{R}^n$ such that the following condition holds:

 (R_{ξ}) the map $\mathfrak{h} \ni X \mapsto X^T \xi \in \mathbb{R}^n$ has rank $\dim(H)$.

In particular, $\dim(H) \leq n$.

Sketch of proof:

Step 1: The condition is necessary: Condition (R_{ξ}) is equivalent to saying that the stabilizer H_{ξ} is discrete. In particular, if (R_{ξ}) is violated, then H_{ξ} is a nontrivial subgroup of $H \equiv \mathbb{R}^d$, thus noncompact. If this holds for all ξ , then H is not admissible.

Step 2: Let $\Omega : \{\xi \in \mathbb{R}^n : (R_{\xi}) \text{ holds }\}$. Then Ω is Borel, *H*-invariant. Moreover, if $\Omega \neq \emptyset$, then $|\mathbb{R}^n \setminus \Omega| = 0$. Step 3: There exists an invariant, conull open subset Ω with the following properties:

- \blacktriangleright H^T acts freely on Ω .
- For all $\xi \in \Omega$: The canonical map $H \to H^T \xi$ is a homeomorphism. This implies the existence of a Borel transversal for Ω .

For this proof of Step 3, we employ joint block diagonalization of the elements of H: With respect to a suitable basis, each $h \in H$ has the form

$$h = \begin{pmatrix} h_1 & 0 & \dots & 0 \\ 0 & h_2 & 0 \dots & 0 \\ 0 & 0 & \ddots & 0 \\ 0 & \dots & \dots & h_\ell \end{pmatrix}$$

where each h_k is lower triangular, with unique eigenvalue. The number ℓ of different blocks, as well as the block sizes, are independent of h.

One block case

Assume that $\ell = 1$. Then $H = \exp(\mathbb{R}X_1) \cdot H_u$, where $X_1 \in \mathfrak{h}$ has nonvanishing diagonal, and H_u consists of unipotent matrices.

By the Chevalley-Rosenlicht Theorem, the H_u^T -orbits are closed and simply connected.

We pick

$$\Omega = \{ \xi \in \mathbb{R}^n : \xi_1 \neq 0, (R_{\xi}) \text{ holds } \} .$$

Let $\xi \in \Omega$, and assume that $h \in H_{\xi}$. Then $h = e^s n(s)h_u$, for suitable unipotent matrices $n(s), h_u$. Since e^s is the unique eigenvalue of h, it follows that s = 0, and n(s) is the identity matrix. But then, since H_u^T also acts locally freely at ξ , it follows that h_u is the identity, and H_{ξ} is trivial.

Using that H_u^T -orbits are homeomorphic to H_u , and the action of $\exp(\mathbb{R}X_1)$ on the first variable: All H^T -orbits in Ω are homeomorphic to H.

Here, we can decompose H into

$$h = \begin{pmatrix} h_1 & 0 \\ 0 & \sigma(h_1)h_2 \end{pmatrix}, h_1 \in H_1, h_2 \in H_2,$$

where

- ▶ $H_1 < \operatorname{GL}(m_1, \mathbb{R})$ is abelian.
- \blacktriangleright H_2 consists of lower triangular matrices with single eigenvalues.
- ► $\sigma: H_1 \to \operatorname{GL}(m_2, \mathbb{R})$ is a continuous homomorphism satisfying $\sigma(h_1)h_2 = h_2\sigma(h_1)$, for all $h_1 \in H_1, h_2 \in H_2$.
- ▶ Moreover, $\sigma(h_1)$ is lower triangular with single eigenvalue.

Let Ω_1 be chosen according to the induction hypothesis, let be Ω_2 chosen by the procedure for the one block case.

Hence, for $h_1 \in H_1$: $\sigma(h_1)^T$ is upper triagonal, and thus $\sigma(h_1)^T \Omega_2 = \Omega_2$. Accordingly,

 $\Omega = \Omega_1 \times \Omega_2$ is H^T - invariant, open, conull.

For $(\xi_1, \xi_2) \in \Omega$, the quotient map

$$H \ni h \mapsto (h_1^T(\xi_1), h_2^T(\sigma(h_1)^T(\xi_2))) \in H^T \xi$$

has a continuous inverse, because the H_i -quotient maps have continuous inverses. In particular, H acts freely on Ω .

Assume, we are given pairwise commuting matrices A_1, \ldots, A_k , all with real spectrum. We want to know: Is $H = \langle A_i : i = 1, \ldots, m \rangle$ admissible? This can be done by the following steps:

- ▶ Check, whether $|\det(A_i)| \neq 1$, for some *i*.
- \blacktriangleright Check, whether *H* is discrete.
- ► Compute simply connected and connected $H_c \sim H$ with real spectrum. Determine, whether H_c acts locally freely.

First, block diagonalize A_1, \ldots, A_k jointly (see above).

We may assume that all spectra are positive. (Replace A_i by A_i^2 , if necessary. We then pass to a subgroup of finite index.)

Compute matrix logarithms B_1, \ldots, B_k : For each block, the logarithm is determined from the logarithm of the diagonal entry, and the (finite!) power series for the logarithm of the nilpotent part.

H is discrete iff $\dim(B_1, \ldots, B_k) = \dim_{\mathbb{Z}}(B_1, \ldots, B_k)$.

If *H* is discrete, then $\mathfrak{h}_c = \operatorname{span}(B_1, \ldots, B_k)$ is the Lie algebra of a closed, simply connected group H_c with real spectrum, and $H_c \sim H$.

If $d = \dim(\mathfrak{h}_c) > n$, then H is not admissible. Otherwise, let C_1, \ldots, C_d be any basis of \mathfrak{h}_c . Given $\xi \in \mathbb{R}^n$, let $M_{\xi} : \mathbb{R}^d \to \mathbb{R}^n$,

$$M_{\xi}(s_1,\ldots,s_d) = \sum_{i=1}^{d} s_i C_i^T \xi \; .$$

For $J \subset \{1, \ldots, n\}$ with cardinality d, let $\Phi_J(\xi)$ denote the associated subdeterminant of M_{ξ} .

 Φ_J is a polynomial, and it vanishes identically only if its coefficients are zero. But the coefficients are computable using (e.g.) the Leibniz formula.

- Conjecture: H is admissible if G is nonunimodular and exponential.
- ▶ If *H* is closed, abelian, with $\dim(H) \leq 2$, then *H* is admissible iff $\det |_H \neq \Delta_H$.
- ▶ Interesting phenomenon: Let H_c be closed, abelian, connected, simply connected, with Borel transversal for the orbit. Let $H < H_c$ be a discrete subgroup. Then the following are equivalent:
 - \triangleright *H_c* has at least one trivial fixed group.
 - \triangleright There exists a Borel transversal for the *H*-orbits.