Characterizing abelian admissible matrix groups

H. Führ, RWTH Aachen
J. Bruna, J. Cufi, M. Miro, Universitat Autònoma de Barcelona

Abstract Harmonic Analysis, Hongkong, 12/07

- Admissible matrix groups and inversion formulae
- Calderon's condition and necessary criteria
- Necessary and sufficient conditions for admissible matrix groups
- Abelian admissible matrix groups
- A criterion for groups with real spectrum
- Checking admissibility for discrete abelian groups with real spectrum

Setup

- $H<\mathrm{GL}(n, \mathbb{R})$ a Lie-subgroup
- $G=\mathbb{R}^{n} \rtimes H$, the affine group generated by H and translations
- π quasiregular representation on $\mathrm{L}^{2}\left(\mathbb{R}^{n}\right)$, defined by

$$
\pi(x, h) f(y)=|\operatorname{det}(h)|^{-1 / 2} f\left(h^{-1}(y-x)\right) .
$$

- Given $f, g \in \mathrm{~L}^{2}\left(\mathbb{R}^{n}\right)$, we write

$$
V_{f} g(x, h)=\langle g, \pi(x, h) f\rangle
$$

Definition.

- $f \in \mathrm{~L}^{2}\left(\mathbb{R}^{n}\right)$ is called admissible if $V_{f}: \mathrm{L}^{2}\left(\mathbb{R}^{n}\right) \hookrightarrow \mathrm{L}^{2}(G)$ isometrically.
- H is called admissible if there exists an admissible vector $f \in \mathrm{~L}^{2}\left(\mathbb{R}^{n}\right)$.

Chief purpose of admissible vectors: Expansion of arbitrary $g \in \mathrm{~L}^{2}\left(\mathbb{R}^{n}\right)$ in the wavelet system $(\pi(x, h) f)_{(x, h) \in G}$.
f is admissible iff

$$
\forall g \in \mathrm{~L}^{2}\left(\mathbb{R}^{n}\right): g=\int_{G}\langle g, \pi(x, h) f\rangle \pi(x, h) f d \mu_{G}(x, h)
$$

in the weak sense.

Chief questions:

- How do you recognize admissible vectors?
- How do you recognize admissible matrix groups?

Samples from the literature:

- Grossmann/Morlet/Paul ('86): $a x+b$-group
- Murenzi ('90): Similitude group, $H=\mathbb{R}^{+} \times S O(n)$
- Bernier/Taylor ('94), HF ('96,‘98): Admissible matrix groups, irreducible case
- Mallat/Zhong
- Larson/Schulz/Speegle/Taylor: Admissible one-parameter and cyclic groups
- HF/Mayer ('01), Laugesen/Weaver/Weiss/Wilson ('01): General admissible matrix groups

Calderon admissibility condition and necessary admissibility criteria

Lemma 1

$f \in \mathrm{~L}^{2}\left(\mathbb{R}^{n}\right)$ is admissible iff

$$
\int_{H}\left|\widehat{f}\left(h^{T} \xi\right)\right| d h=1\left(\text { a.e. } \xi \in \mathbb{R}^{n}\right.
$$

Theorem 2.
Suppose that H is admissible.

- H is closed.
- G is nonunimodular. Equivalently, $\left.\operatorname{det}\right|_{H} \neq \Delta_{H}$.
- For almost every $\xi \in \mathbb{R}^{n}$, the stabilizer

$$
H_{\xi}=\left\{h \in H: h^{T} \xi=\xi\right\}
$$

is compact.

Sufficient criteria

Theorem 3. (HF/M,LWWW)

Suppose that H fulfills all necessary criteria from Theorem 2, and additionally, that, for almost every ξ, the orbit $H^{T} \xi \subset \mathbb{R}^{n}$ is locally closed. Then H is admissible.

Remarks:

- $H^{T} \xi$ is locally closed iff for some $\epsilon>0$, the ϵ-stabilizer

$$
H_{\xi, \epsilon}=\left\{h \in \mathbb{H}:\left|h^{T} \xi-\xi\right| \leq \epsilon\right\}
$$

is compact.

- Open question: Is the sufficient condition from Theorem 3 necessary?

Theorem 4. Assume that H is discrete. Then H is admissible iff

1. there exists $h \in H$ with $\operatorname{det}(h) \neq 1$; and
2. there exist $\Omega \subset \mathbb{R}^{n}$ Borel, H^{T}-invariant, with $\left|\mathbb{R}^{n} \backslash \Omega\right|=0$, and $C \subset \Omega$ Borel, meeting each orbit in Ω in a single point.

Sketch of proof:

1. Step: H discrete $\Rightarrow H$ countable $\Rightarrow H^{T}$ acts freely a.e.
2. Step: If Condition 2. is met, there exists $C \subset \Omega$ Borel, meeting a.e. orbit in a single point. W.l.o.g. H^{T} acts freely on Ω, hence

$$
\sum_{h \in H} \chi_{C}\left(h^{T} \xi\right)=1,\left(\text { a.e. } \xi \in \mathbb{R}^{n}\right)
$$

Using Condition 1., we can additionally ensure $|C|<\infty$. But then, $\chi_{C} \in$ $L^{2}\left(\mathbb{R}^{n}\right)$, and χ^{\vee} is admissible.

Conversely, assume that f is admissible, and let

$$
\Omega=\left\{\xi \in \mathbb{R}^{n}: \sum_{h \in H}\left|f\left(h^{T} \xi\right)\right|^{2}=1 .\right.
$$

We pick $\xi_{\mathcal{O}}$ from each orbit $\mathcal{O} \subset \Omega$ according to the following rule:

- Let $F_{\mathcal{O}}$ be the set of all $\xi \in \mathcal{O}$ such that

$$
|\widehat{f}(\xi)|=\max \{|\widehat{f}(\omega)|: \omega \in \mathcal{O}\}
$$

- $F_{\mathcal{O}}$ is finite, and $\bigcup_{\mathcal{O} \subset \Omega} F_{\mathcal{O}}$ is Borel.
- Using a fixed Borel embedding $\Theta: \mathbb{R}^{n} \rightarrow[0,1]$, let

$$
\xi_{\mathcal{O}}=\arg \max \left\{|\Theta(\omega)|: \omega \in F_{\mathcal{O}}\right\} .
$$

Theorem 5. H is admissible iff, additionally to the necessary conditions from Theorem 2., it meets the following equivalent conditions:

- The Lebesgue measure on \mathbb{R}^{n} decomposes into measures supported by the H^{T}-orbits.
- There exists $\Omega \subset \mathbb{R}^{n}$ Borel, H-invariant, with $\left|\mathbb{R}^{n} \backslash \Omega\right|=0$, and such that the orbit space Ω / H^{T} is standard.
- There exists $\Omega \subset \mathbb{R}^{n}$ Borel, H-invariant, with $\left|\mathbb{R}^{n} \backslash \Omega\right|=0$ and a Borel cross-section $\Omega / H^{T} \rightarrow \Omega$.
- There exists $\Omega \subset \mathbb{R}^{n}$ Borel, H-invariant, with $\left|\mathbb{R}^{n} \backslash \Omega\right|=0$ and an analytic transversal $C \subset \Omega$ of the orbits in Ω.

Still open: Do these conditions imply that almost every point has a compact ϵ-stabilizer?

We now restrict attention to abelian matrix groups. The following results are known in this context:

- (HF, '98): There is a natural bijection
$\{H<\mathrm{GL}(n, \mathbb{R}): H$ abelian, admissible, $\operatorname{dim}(H)=n\}$ mod. conjugacy
\downarrow
$\{\mathcal{A}$ commutative, associative algebra with unit, $\operatorname{dim}(\mathcal{A})=n\}$
In particular, there are infinitely many conjugacy classes for $n>6$.
- (Larson/Schulz/Speegle/Taylor 2006): One-parameter groups are admissible iff they are not contained in $\operatorname{SL}(n, \mathbb{R})$.

Not much known beyond that. Best possible

Lemma 6. Let $H<H^{\prime}<\operatorname{GL}(n, \mathbb{R})$, with H^{\prime} / H compact. Then H is admissible iff H^{\prime} is.

Definition. For two subgroups $H, H^{\prime}<\mathrm{GL}(n, \mathbb{R})$, we write $H \prec H^{\prime}$ if $H \subset H^{\prime}$ and H^{\prime} / H is compact.
We let \sim denote the equivalence relation generated by \prec, i.e., the symmetric, transitive hull of \prec.

Corollary 7. If $H \sim H^{\prime}$, then H is admissible iff H^{\prime} is admissible.

Theorem 8. Let $H<\operatorname{GL}(n, \mathbb{R})$ be abelian. Then there exists $H_{c}<$ $\mathrm{GL}(n, \mathbb{R})$ simply connected, abelian with $H \sim H_{c}$. If all elements of H have real spectrum, there exists $H_{c} \sim H$ such that all its elements have real spectrum.

Theorem 9. Let $H<\mathrm{GL}(n, \mathbb{R})$ be abelian, closed, connected and simply connected. Let $\mathfrak{h} \subset \operatorname{gl}(n, \mathbb{R})$ denote the Lie algebra of H. Then H is admissible iff there exists $\xi \in \mathbb{R}^{n}$ such that the following condition holds:

$$
\left(R_{\xi}\right) \text { the } \operatorname{map} \mathfrak{h} \ni X \mapsto X^{T} \xi \in \mathbb{R}^{n} \text { has rank } \operatorname{dim}(H) .
$$

In particular, $\operatorname{dim}(H) \leq n$.

Sketch of proof:
Step 1: The condition is necessary: Condition $\left(R_{\xi}\right)$ is equivalent to saying that the stabilizer H_{ξ} is discrete. In particular, if $\left(R_{\xi}\right)$ is violated, then H_{ξ} is a nontrivial subgroup of $H \equiv \mathbb{R}^{d}$, thus noncompact. If this holds for all ξ, then H is not admissible.

Step 2: Let $\Omega:\left\{\xi \in \mathbb{R}^{n}:\left(R_{\xi}\right)\right.$ holds $\}$. Then Ω is Borel, H-invariant. Moreover, if $\Omega \neq \emptyset$, then $\left|\mathbb{R}^{n} \backslash \Omega\right|=0$.

Step 3: There exists an invariant, conull open subset Ω with the following properties:

- H^{T} acts freely on Ω.
- For all $\xi \in \Omega$: The canonical map $H \rightarrow H^{T} \xi$ is a homeomorphism. This implies the existence of a Borel transversal for Ω.
For this proof of Step 3, we employ joint block diagonalization of the elements of H : With respect to a suitable basis, each $h \in H$ has the form

$$
h=\left(\begin{array}{cccc}
h_{1} & 0 & \ldots & 0 \\
0 & h_{2} & 0 \ldots & 0 \\
0 & 0 & \ddots & 0 \\
0 & \ldots & \ldots & h_{\ell}
\end{array}\right)
$$

where each h_{k} is lower triangular, with unique eigenvalue. The number ℓ of different blocks, as well as the block sizes, are independent of h.

One block case

Assume that $\ell=1$. Then $H=\exp \left(\mathbb{R} X_{1}\right) \cdot H_{u}$, where $X_{1} \in \mathfrak{h}$ has nonvanishing diagonal, and H_{u} consists of unipotent matrices.

By the Chevalley-Rosenlicht Theorem, the H_{u}^{T}-orbits are closed and simply connected.

We pick

$$
\Omega=\left\{\xi \in \mathbb{R}^{n}: \xi_{1} \neq 0,\left(R_{\xi}\right) \text { holds }\right\} .
$$

Let $\xi \in \Omega$, and assume that $h \in H_{\xi}$. Then $h=e^{s} n(s) h_{u}$, for suitable unipotent matrices $n(s), h_{u}$. Since e^{s} is the unique eigenvalue of h, it follows that $s=0$, and $n(s)$ is the identity matrix. But then, since H_{u}^{T} also acts locally freely at ξ, it follows that h_{u} is the identity, and H_{ξ} is trivial.

Using that H_{u}^{T}-orbits are homeomorphic to H_{u}, and the action of $\exp \left(\mathbb{R} X_{1}\right)$ on the first variable: All H^{T}-orbits in Ω are homeomorphic to H.

Here, we can decompose H into

$$
h=\left(\begin{array}{cc}
h_{1} & 0 \\
0 & \sigma\left(h_{1}\right) h_{2}
\end{array}\right), h_{1} \in H_{1}, h_{2} \in H_{2},
$$

where

- $H_{1}<\mathrm{GL}\left(m_{1}, \mathbb{R}\right)$ is abelian.
- H_{2} consists of lower triangular matrices with single eigenvalues.
- $\sigma: H_{1} \rightarrow \mathrm{GL}\left(m_{2}, \mathbb{R}\right)$ is a continuous homomorphism satisfying $\sigma\left(h_{1}\right) h_{2}=$ $h_{2} \sigma\left(h_{1}\right)$, for all $h_{1} \in H_{1}, h_{2} \in H_{2}$.
- Moreover, $\sigma\left(h_{1}\right)$ is lower triangular with single eigenvalue.

Let Ω_{1} be chosen according to the induction hypothesis, let be Ω_{2} chosen by the procedure for the one block case.

Hence, for $h_{1} \in H_{1}: \sigma\left(h_{1}\right)^{T}$ is upper triagonal, and thus $\sigma\left(h_{1}\right)^{T} \Omega_{2}=\Omega_{2}$. Accordingly,

$$
\Omega=\Omega_{1} \times \Omega_{2} \text { is } H^{T} \text { - invariant, open, conull . }
$$

For $\left(\xi_{1}, \xi_{2}\right) \in \Omega$, the quotient map

$$
H \ni h \mapsto\left(h_{1}^{T}\left(\xi_{1}\right), h_{2}^{T}\left(\sigma\left(h_{1}\right)^{T}\left(\xi_{2}\right)\right)\right) \in H^{T} \xi
$$

has a continuous inverse, because the H_{i}-quotient maps have continuous inverses. In particular, H acts freely on Ω.

Deciding admissibility for discrete abelian matrix groups

Assume, we are given pairwise commuting matrices A_{1}, \ldots, A_{k}, all with real spectrum. We want to know: Is $H=\left\langle A_{i}: i=1, \ldots, m\right\rangle$ admissible? This can be done by the following steps:

- Check, whether $\left|\operatorname{det}\left(A_{i}\right)\right| \neq 1$, for some i.
- Check, whether H is discrete.
- Compute simply connected and connected $H_{c} \sim H$ with real spectrum. Determine, whether H_{c} acts locally freely.

First, block diagonalize A_{1}, \ldots, A_{k} jointly (see above).

We may assume that all spectra are positive. (Replace A_{i} by A_{i}^{2}, if necessary. We then pass to a subgroup of finite index.)

Compute matrix logarithms B_{1}, \ldots, B_{k} : For each block, the logarithm is determined from the logarithm of the diagonal entry, and the (finite!) power series for the logarithm of the nilpotent part.
H is discrete iff $\operatorname{dim}\left(B_{1}, \ldots, B_{k}\right)=\operatorname{dim}_{\mathbb{Z}}\left(B_{1}, \ldots, B_{k}\right)$.

If H is discrete, then $\mathfrak{h}_{c}=\operatorname{span}\left(B_{1}, \ldots, B_{k}\right)$ is the Lie algebra of a closed, simply connected group H_{c} with real spectrum, and $H_{c} \sim H$.

If $d=\operatorname{dim}\left(\mathfrak{h}_{c}\right)>n$, then H is not admissible.
Otherwise, let C_{1}, \ldots, C_{d} be any basis of \mathfrak{h}_{c}. Given $\xi \in \mathbb{R}^{n}$, let $M_{\xi}: \mathbb{R}^{d} \rightarrow$ \mathbb{R}^{n},

$$
M_{\xi}\left(s_{1}, \ldots, s_{d}\right)=\sum_{i=1}^{d} s_{i} C_{i}^{T} \xi
$$

For $J \subset\{1, \ldots, n\}$ with cardinality d, let $\Phi_{J}(\xi)$ denote the associated subdeterminant of M_{ξ}.
Φ_{J} is a polynomial, and it vanishes identically only if its coefficients are zero. But the coefficients are computable using (e.g.) the Leibniz formula.

- Conjecture: H is admissible if G is nonunimodular and exponential.
- If H is closed, abelian, with $\operatorname{dim}(H) \leq 2$, then H is admissible iff $\left.\operatorname{det}\right|_{H} \neq \Delta_{H}$.
- Interesting phenomenon: Let H_{c} be closed, abelian, connected, simply connected, with Borel transversal for the orbit. Let $H<H_{c}$ be a discrete subgroup. Then the following are equivalent:
$\triangleright H_{c}$ has at least one trivial fixed group.
\triangleright There exists a Borel transversal for the H-orbits.

