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Overview

» Admissible matrix groups and inversion formulae

» Calderon’s condition and necessary criteria

» Necessary and sufficient conditions for admissible matrix groups

» Abelian admissible matrix groups

» A criterion for groups with real spectrum

» Checking admissibility for discrete abelian groups with real spectrum



Setup

» H < GL(n,R) a Lie-subgroup
» G =R" x H, the affine group generated by H and translations
» 7 quasiregular representation on L*(R"), defined by

(@, h)fy) = | det(R)| 72 f(h7H(y — @) -
» Given [, g € L*(R"), we write

Vig(x, h) = (g,n(x, h)[)

Definition.
» f € L*(R") is called admissible if V; : L*(R") — L*(G) isometrically.
» H is called admissible if there exists an admissible vector f € L*(R").



Inversion formula and the Calderon condition

Chief purpose of admissible vectors: Expansion of arbitrary g € L?(R") in
the wavelet system (m(x, h) f) @z n)ec-

f is admissible iff

Vg € LA(R") : g = / (g, 7(, b)) 7z, ) dpelz, h)

G

in the weak sense.

Chief questions:
» How do you recognize admissible vectors?
» How do you recognize admissible matrix groups?



Literature

Samples from the literature:
» Grossmann/Morlet/Paul (‘86): ax + b-group
» Murenzi (‘90): Similitude group, H = R* x SO(n)

» Bernier/Taylor (‘94), HF (‘96,°98): Admissible matrix groups, irreducible
case

» Mallat/Zhong

» Larson/Schulz/Speegle/Taylor: Admissible one-parameter and cyclic
groups

» HF/Mayer (‘01), Laugesen/Weaver/Weiss/Wilson (‘01): General admis-
sible matrix groups



Calderon admissibility condition and necessary admissibility criteria

Lemma 1
f € L*(R") is admissible iff

/H|J?(hT€)|dh —1(ae £€R".

Theorem 2.
Suppose that H is admissible.

» [ is closed.
» ( is nonunimodular. Equivalently, det|y # Ag.
» For almost every £ € R", the stabilizer

He={he H:h'c=¢)

is compact.



Sufficient criteria 6

Theorem 3. (HF/M,LWWW)
Suppose that A fulfills all necessary criteria from Theorem 2, and addition-

ally, that, for almost every &, the orbit H*¢ C R" is locally closed. Then H
is admissible.

Remarks:
» HT¢ is locally closed iff for some € > 0, the e-stabilizer
Heo={he€H:|h'§ ¢ <¢}
is compact.

» Open question: Is the sufficient condition from Theorem 3 necessary?



Discrete admissible groups

Theorem 4. Assume that H is discrete. Then H is admissible iff
1. there exists h € H with det(h) # 1; and

2. there exist {2 C R" Borel, H”-invariant, with |[R" \ Q| = 0, and C' C Q
Borel, meeting each orbit in €2 in a single point.

Sketch of proof:

1. Step: H discrete = H countable = H' acts freely a.e.

2. Step: If Condition 2. is met, there exists C' C () Borel, meeting a.e.
orbit in a single point. W.l.o.g. H' acts freely on €2, hence

Y xe(h§) =1, (ae. £ €RY).
heH

Using Condition 1., we can additionally ensure |C'| < oo. But then, x¢ €
L*(R™), and x" is admissible.



Discrete admissible groups, converse direction

Conversely, assume that f is admissible, and let
Q={eR": > _|f(R"P=1.
heH
We pick & from each orbit O C 2 according to the following rule:
» Let Fjp be the set of all £ € O such that

AN AN

[f(E)] = max{|f(w)] : w € O} .

» [y is finite, and |-, Fo is Borel.
» Using a fixed Borel embedding © : R" — [0, 1], let

Eo = argmax{|O(w)| : w € Fp}.



Characterizing admissible matrix groups

Theorem 5. H is admissible iff, additionally to the necessary conditions
from Theorem 2., it meets the following equivalent conditions:

» The Lebesgue measure on R" decomposes into measures supported
by the H-orbits.

» There exists (2 C R” Borel, H-invariant, with |R” \ 2| = 0, and such
that the orbit space 2/ H" is standard.

» There exists {2 C R" Borel, H-invariant, with |[R" \ Q| = 0 and a Borel
cross-section Q/H' — Q).

» There exists 2 C R" Borel, H-invariant, with |[R" \ Q| = 0 and an
analytic transversal C' C (2 of the orbits in €.

Still open: Do these conditions imply that almost every point has a compact
e-stabilizer?



Abelian admissible groups e

We now restrict attention to abelian matrix groups. The following results
are known in this context:

» (HF, '98): There is a natural bijection

{H < GL(n,R) : H abelian, admissible, dim(H) = n} mod. conjugacy

!

{ A commutative, associative algebra with unit, dim(A) = n}

In particular, there are infinitely many conjugacy classes for n > 6.

» (Larson/Schulz/Speegle/Taylor 2006): One-parameter groups are ad-
missible iff they are not contained in SL(n, R).

Not much known beyond that. Best possible



A useful equivalence relation [

Lemma 6. Let H < H' < GL(n,R), with H'/H compact. Then H is
admissible iff H' is.

Definition. For two subgroups H, H' < GL(n,R), we write H < H’ if
H C H'and H'/H is compact.

We let ~ denote the equivalence relation generated by <, i.e., the sym-
metric, transitive hull of <.

Corollary 7. If H ~ H’, then H is admissible iff H' is admissible.

Theorem 8. Let H < GL(n,R) be abelian. Then there exists H. <
GL(n, R) simply connected, abelian with H ~ H...

If all elements of H have real spectrum, there exists H. ~ H such that all
its elements have real spectrum.



Admissibility for simply connected groups with real spectrum U

Theorem 9. Let H < GL(n,R) be abelian, closed, connected and simply
connected. Let h C gl(n,R) denote the Lie algebra of H. Then H is
admissible iff there exists ¢ € R" such that the following condition holds:

(R¢) themap h > X — X'¢ € R" has rank dim(H) .

In particular, dim(H) < n.

Sketch of proof:

Step 1: The condition is necessary: Condition (Ry) is equivalent to saying
that the stabilizer H, is discrete. In particular, if (R) is violated, then H; is
a nontrivial subgroup of H = RY, thus noncompact. If this holds for all &,
then H is not admissible.

Step 2: Let Q : {£ € R" : (R¢) holds }. Then € is Borel, H-invariant.
Moreover, if 2 = (), then |R" \ Q| = 0.



Proof of admissibility cont'd e

Step 3: There exists an invariant, conull open subset 2 with the following
properties:

» H' acts freely on .

» For all £ € Q: The canonical map H — H'¢ is a homeomorphism.
This implies the existence of a Borel transversal for ).

For this proof of Step 3, we employ joint block diagonalization of the ele-
ments of H: With respect to a suitable basis, each h € H has the form

hy 0 ... O
0 hy 0... 0
h= o 0 . 0
0 ... ... Iy

where each hy, is lower triangular, with unique eigenvalue. The number /¢
of different blocks, as well as the block sizes, are independent of h.



One block case L&

Assume that ¢ = 1. Then H = exp(RX;) - H,, where X; € b has nonvan-
ishing diagonal, and H, consists of unipotent matrices.

By the Chevalley-Rosenlicht Theorem, the H!-orbits are closed and sim-
ply connected.

We pick
Q={£eR": & #0,(Re) holds } .

Let £ € (), and assume that h € H;. Then h = e°n(s)h,, for suitable
unipotent matrices n(s), h,. Since e is the unique eigenvalue of h, it fol-
lows that s = 0, and n(s) is the identity matrix. But then, since H! also
acts locally freely at ¢, it follows that £, is the identity, and H; is trivial.

Using that H -orbits are homeomorphic to H,, and the action of exp(RX)
on the first variable: All H”-orbits in {2 are homeomorphic to H.



Induction step (=

Here, we can decompose H into

G 0
h = ( 0 U(hl)hQ) ,hi € Hy, hy € H,

where
» H; < GL(m4, R) is abelian.
» H, consists of lower triangular matrices with single eigenvalues.

» o : Hi — GL(m,, R) is a continuous homomorphism satisfying o(h)hs =
hQU(hl), for all h1 c Hl; hg c HQ.

» Moreover, o(h,) is lower triangular with single eigenvalue.



Finishing the induction step 16

Let €2; be chosen according to the induction hypothesis, let be {2, chosen
by the procedure for the one block case.

Hence, for hy, € H,: o(hy)! is upper triagonal, and thus o(h;)"Q, = Q.
Accordingly,

Q =0y x Qyis H!- invariant, open, conull .

For (&1, &) € €, the quotient map
H 3 h (B (&) hy (0(h)" (&) € H'E

has a continuous inverse, because the H;-quotient maps have continuous
inverses. In particular, A acts freely on ().



Deciding admissibility for discrete abelian matrix groups Uz

Assume, we are given pairwise commuting matrices A, ..., A;, all with
real spectrum. We want to know: Is H = (A; : i = 1,...,m) admissible?
This can be done by the following steps:

» Check, whether | det(A;)| # 1, for some .
» Check, whether H is discrete.

» Compute simply connected and connected H,. ~ H with real spec-
trum. Determine, whether H, acts locally freely.



Is H closed? 18

First, block diagonalize A, ..., A, jointly (see above).

We may assume that all spectra are positive. (Replace A; by A?, if neces-
sary. We then pass to a subgroup of finite index.)

Compute matrix logarithms By, ..., B;: For each block, the logarithm is
determined from the logarithm of the diagonal entry, and the (finite!) power
series for the logarithm of the nilpotent part.

H is discrete iff dim(By, ..., By,) = dimg(By, ..., By).



Computing H. and check local freeness e

If H is discrete, then . = span(By, ..., By) is the Lie algebra of a closed,
simply connected group H, with real spectrum, and H, ~ H.

If d = dim(h.) > n, then H is not admissible.
Otherwise, let C1, . . ., C; be any basis of .. Given ¢ € R", let M, : R —
R,

d

Me(s1,...,8q4) = ZS,CZ.Tf .

1=1
For J C {1,...,n} with cardinality d, let ®;(£) denote the associated
subdeterminant of M.

®; is a polynomial, and it vanishes identically only if its coefficients are
zero. But the coefficients are computable using (e.g.) the Leibniz formula.



Closing remarks =

» Conjecture: H is admissible if G is nonunimodular and exponential.

» If H is closed, abelian, with dim(H) < 2, then H is admissible iff

» Interesting phenomenon: Let H,. be closed, abelian, connected, sim-
ply connected, with Borel transversal for the orbit. Let H < H,. be a
discrete subgroup. Then the following are equivalent:
> H. has at least one trivial fixed group.
> There exists a Borel transversal for the H-orbits.



