
J

I

Characterizing abelian admissible matrix
groups

H. Führ, RWTH Aachen
J. Bruna, J. Cufi, M. Miro, Universitat Autònoma de Barcelona

Abstract Harmonic Analysis, Hongkong, 12/07



J

I

Overview 1

I Admissible matrix groups and inversion formulae

I Calderon’s condition and necessary criteria

I Necessary and sufficient conditions for admissible matrix groups

I Abelian admissible matrix groups

I A criterion for groups with real spectrum

I Checking admissibility for discrete abelian groups with real spectrum
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Setup 2

I H < GL(n, R) a Lie-subgroup

I G = Rn o H , the affine group generated by H and translations

I π quasiregular representation on L2(Rn), defined by

π(x, h)f (y) = | det(h)|−1/2f (h−1(y − x)) .

I Given f, g ∈ L2(Rn), we write

Vfg(x, h) = 〈g, π(x, h)f〉

Definition.

I f ∈ L2(Rn) is called admissible if Vf : L2(Rn) ↪→ L2(G) isometrically.

I H is called admissible if there exists an admissible vector f ∈ L2(Rn).
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Inversion formula and the Calderon condition 3

Chief purpose of admissible vectors: Expansion of arbitrary g ∈ L2(Rn) in
the wavelet system (π(x, h)f )(x,h)∈G.

f is admissible iff

∀g ∈ L2(Rn) : g =

∫
G

〈g, π(x, h)f〉 π(x, h)f dµG(x, h)

in the weak sense.

Chief questions:

I How do you recognize admissible vectors?

I How do you recognize admissible matrix groups?



J

I

Literature 4

Samples from the literature:

I Grossmann/Morlet/Paul (‘86): ax + b-group

I Murenzi (‘90): Similitude group, H = R+ × SO(n)

I Bernier/Taylor (‘94), HF (‘96,‘98): Admissible matrix groups, irreducible
case

I Mallat/Zhong

I Larson/Schulz/Speegle/Taylor: Admissible one-parameter and cyclic
groups

I HF/Mayer (‘01), Laugesen/Weaver/Weiss/Wilson (‘01): General admis-
sible matrix groups
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Calderon admissibility condition and necessary admissibility criteria 5

Lemma 1
f ∈ L2(Rn) is admissible iff∫

H

|f̂ (hTξ)|dh = 1 ( a.e. ξ ∈ Rn .

Theorem 2.
Suppose that H is admissible.

I H is closed.

I G is nonunimodular. Equivalently, det|H 6= ∆H .

I For almost every ξ ∈ Rn, the stabilizer

Hξ = {h ∈ H : hTξ = ξ}

is compact.
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Sufficient criteria 6

Theorem 3. (HF/M,LWWW)
Suppose that H fulfills all necessary criteria from Theorem 2, and addition-
ally, that, for almost every ξ, the orbit HTξ ⊂ Rn is locally closed. Then H
is admissible.

Remarks:

I HTξ is locally closed iff for some ε > 0, the ε-stabilizer

Hξ,ε = {h ∈ H : |hTξ − ξ| ≤ ε}

is compact.

I Open question: Is the sufficient condition from Theorem 3 necessary?
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Discrete admissible groups 7

Theorem 4. Assume that H is discrete. Then H is admissible iff

1. there exists h ∈ H with det(h) 6= 1; and

2. there exist Ω ⊂ Rn Borel, HT -invariant, with |Rn \ Ω| = 0, and C ⊂ Ω
Borel, meeting each orbit in Ω in a single point.

Sketch of proof:
1. Step: H discrete ⇒ H countable ⇒ HT acts freely a.e.
2. Step: If Condition 2. is met, there exists C ⊂ Ω Borel, meeting a.e.
orbit in a single point. W.l.o.g. HT acts freely on Ω, hence∑

h∈H

χC(hTξ) = 1 , ( a.e. ξ ∈ Rn).

Using Condition 1., we can additionally ensure |C| < ∞. But then, χC ∈
L2(Rn), and χ∨ is admissible.
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Discrete admissible groups, converse direction 8

Conversely, assume that f is admissible, and let

Ω = {ξ ∈ Rn :
∑
h∈H

|f (hTξ)|2 = 1 .

We pick ξO from each orbit O ⊂ Ω according to the following rule:

I Let FO be the set of all ξ ∈ O such that

|f̂ (ξ)| = max{|f̂ (ω)| : ω ∈ O} .

I FO is finite, and
⋃

O⊂Ω FO is Borel.

I Using a fixed Borel embedding Θ : Rn → [0, 1], let

ξO = arg max{|Θ(ω)| : ω ∈ FO} .
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Characterizing admissible matrix groups 9

Theorem 5. H is admissible iff, additionally to the necessary conditions
from Theorem 2., it meets the following equivalent conditions:

I The Lebesgue measure on Rn decomposes into measures supported
by the HT -orbits.

I There exists Ω ⊂ Rn Borel, H-invariant, with |Rn \ Ω| = 0, and such
that the orbit space Ω/HT is standard.

I There exists Ω ⊂ Rn Borel, H-invariant, with |Rn \ Ω| = 0 and a Borel
cross-section Ω/HT → Ω.

I There exists Ω ⊂ Rn Borel, H-invariant, with |Rn \ Ω| = 0 and an
analytic transversal C ⊂ Ω of the orbits in Ω.

Still open: Do these conditions imply that almost every point has a compact
ε-stabilizer?
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Abelian admissible groups 10

We now restrict attention to abelian matrix groups. The following results
are known in this context:

I (HF, ’98): There is a natural bijection

{H < GL(n, R) : H abelian, admissible, dim(H) = n} mod. conjugacy
l

{A commutative, associative algebra with unit, dim(A) = n}

In particular, there are infinitely many conjugacy classes for n > 6.

I (Larson/Schulz/Speegle/Taylor 2006): One-parameter groups are ad-
missible iff they are not contained in SL(n, R).

Not much known beyond that. Best possible
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A useful equivalence relation 11

Lemma 6. Let H < H ′ < GL(n, R), with H ′/H compact. Then H is
admissible iff H ′ is.

Definition. For two subgroups H, H ′ < GL(n, R), we write H ≺ H ′ if
H ⊂ H ′ and H ′/H is compact.
We let ∼ denote the equivalence relation generated by ≺, i.e., the sym-
metric, transitive hull of ≺.

Corollary 7. If H ∼ H ′, then H is admissible iff H ′ is admissible.

Theorem 8. Let H < GL(n, R) be abelian. Then there exists Hc <
GL(n, R) simply connected, abelian with H ∼ Hc.
If all elements of H have real spectrum, there exists Hc ∼ H such that all
its elements have real spectrum.
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Admissibility for simply connected groups with real spectrum 12

Theorem 9. Let H < GL(n, R) be abelian, closed, connected and simply
connected. Let h ⊂ gl(n, R) denote the Lie algebra of H . Then H is
admissible iff there exists ξ ∈ Rn such that the following condition holds:

(Rξ) the map h 3 X 7→ XTξ ∈ Rn has rank dim(H) .

In particular, dim(H) ≤ n.

Sketch of proof:
Step 1: The condition is necessary: Condition (Rξ) is equivalent to saying
that the stabilizer Hξ is discrete. In particular, if (Rξ) is violated, then Hξ is
a nontrivial subgroup of H ≡ Rd, thus noncompact. If this holds for all ξ,
then H is not admissible.

Step 2: Let Ω : {ξ ∈ Rn : (Rξ) holds }. Then Ω is Borel, H-invariant.
Moreover, if Ω 6= ∅, then |Rn \ Ω| = 0.
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Proof of admissibility cont’d 13

Step 3: There exists an invariant, conull open subset Ω with the following
properties:

I HT acts freely on Ω.

I For all ξ ∈ Ω: The canonical map H → HTξ is a homeomorphism.
This implies the existence of a Borel transversal for Ω.

For this proof of Step 3, we employ joint block diagonalization of the ele-
ments of H : With respect to a suitable basis, each h ∈ H has the form

h =


h1 0 . . . 0
0 h2 0 . . . 0
0 0 . . . 0
0 . . . . . . h`


where each hk is lower triangular, with unique eigenvalue. The number `
of different blocks, as well as the block sizes, are independent of h.
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One block case 14

Assume that ` = 1. Then H = exp(RX1) ·Hu, where X1 ∈ h has nonvan-
ishing diagonal, and Hu consists of unipotent matrices.

By the Chevalley-Rosenlicht Theorem, the HT
u -orbits are closed and sim-

ply connected.

We pick
Ω = {ξ ∈ Rn : ξ1 6= 0 , (Rξ) holds } .

Let ξ ∈ Ω, and assume that h ∈ Hξ. Then h = esn(s)hu, for suitable
unipotent matrices n(s), hu. Since es is the unique eigenvalue of h, it fol-
lows that s = 0, and n(s) is the identity matrix. But then, since HT

u also
acts locally freely at ξ, it follows that hu is the identity, and Hξ is trivial.

Using that HT
u -orbits are homeomorphic to Hu, and the action of exp(RX1)

on the first variable: All HT -orbits in Ω are homeomorphic to H .
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Induction step 15

Here, we can decompose H into

h =

(
h1 0
0 σ(h1)h2

)
, h1 ∈ H1, h2 ∈ H2,

where

I H1 < GL(m1, R) is abelian.

I H2 consists of lower triangular matrices with single eigenvalues.

I σ : H1 → GL(m2, R) is a continuous homomorphism satisfying σ(h1)h2 =
h2σ(h1), for all h1 ∈ H1, h2 ∈ H2.

I Moreover, σ(h1) is lower triangular with single eigenvalue.
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Finishing the induction step 16

Let Ω1 be chosen according to the induction hypothesis, let be Ω2 chosen
by the procedure for the one block case.

Hence, for h1 ∈ H1: σ(h1)
T is upper triagonal, and thus σ(h1)

TΩ2 = Ω2.
Accordingly,

Ω = Ω1 × Ω2 is HT - invariant, open, conull .

For (ξ1, ξ2) ∈ Ω, the quotient map

H 3 h 7→ (hT
1 (ξ1), h

T
2 (σ(h1)

T (ξ2))) ∈ HTξ

has a continuous inverse, because the Hi-quotient maps have continuous
inverses. In particular, H acts freely on Ω.
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Deciding admissibility for discrete abelian matrix groups 17

Assume, we are given pairwise commuting matrices A1, . . . , Ak, all with
real spectrum. We want to know: Is H = 〈Ai : i = 1, . . . ,m〉 admissible?
This can be done by the following steps:

I Check, whether | det(Ai)| 6= 1, for some i.

I Check, whether H is discrete.

I Compute simply connected and connected Hc ∼ H with real spec-
trum. Determine, whether Hc acts locally freely.
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Is H closed? 18

First, block diagonalize A1, . . . , Ak jointly (see above).

We may assume that all spectra are positive. (Replace Ai by A2
i , if neces-

sary. We then pass to a subgroup of finite index.)

Compute matrix logarithms B1, . . . , Bk: For each block, the logarithm is
determined from the logarithm of the diagonal entry, and the (finite!) power
series for the logarithm of the nilpotent part.

H is discrete iff dim(B1, . . . , Bk) = dimZ(B1, . . . , Bk).
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Computing Hc and check local freeness 19

If H is discrete, then hc = span(B1, . . . , Bk) is the Lie algebra of a closed,
simply connected group Hc with real spectrum, and Hc ∼ H .

If d = dim(hc) > n, then H is not admissible.
Otherwise, let C1, . . . , Cd be any basis of hc. Given ξ ∈ Rn, let Mξ : Rd →
Rn,

Mξ(s1, . . . , sd) =

d∑
i=1

siC
T
i ξ .

For J ⊂ {1, . . . , n} with cardinality d, let ΦJ(ξ) denote the associated
subdeterminant of Mξ.

ΦJ is a polynomial, and it vanishes identically only if its coefficients are
zero. But the coefficients are computable using (e.g.) the Leibniz formula.
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Closing remarks 20

I Conjecture: H is admissible if G is nonunimodular and exponential.

I If H is closed, abelian, with dim(H) ≤ 2, then H is admissible iff
det |H 6= ∆H .

I Interesting phenomenon: Let Hc be closed, abelian, connected, sim-
ply connected, with Borel transversal for the orbit. Let H < Hc be a
discrete subgroup. Then the following are equivalent:

B Hc has at least one trivial fixed group.
B There exists a Borel transversal for the H-orbits.


