
1

Introduction

1.1 The Point of Departure

In one of the papers initiating the study of the continuous wavelet trans-
form on the real line, Grossmann, Morlet and Paul [60] considered systems
(ψb,a)b,a∈R×R′ arising from a single function ψ ∈ L2(R) via

ψb,a(x) = |a|−1/2ψ

(
x− b
a

)
.

They showed that every function ψ fulfilling the admissibility condition∫
R′

|ψ̂(ω)|2

|ω|
dω = 1 , (1.1)

where R′ = R \ {0}, gives rise to an inversion formula

f =
∫

R

∫
R′
〈f, ψb,a〉ψb,a

da

|a|2
db , (1.2)

to be read in the weak sense. An equivalent formulation of this fact is that
the wavelet transform

f 7→ Vψf , Vψf(b, a) = 〈f, ψb,a〉

is an isometry L2(R)→ L2(R× R′, db da|a|2 ). As a matter of fact, the inversion
formula was already known to Calderón [27], and its proof is a more or less
elementary exercise in Fourier analysis.

However, the admissibility condition as well as the choice of the measure
used in the reconstruction appear to be somewhat obscure until read in group-
theoretic terms. The relation to groups was pointed out in [60] –and in fact
earlier in [16]–, where it was noted that ψb,a = π(b, a)ψ, for a certain repre-
sentation π of the affine group G of the real line. Moreover, (1.1) and (1.2)
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have natural group-theoretic interpretations as well. For instance, the measure
used for reconstruction is just the left Haar measure on G.

Hence, the wavelet transform is seen to be a special instance of the fol-
lowing construction: Given a (strongly continuous, unitary) representation
(π,Hπ) of a locally compact group G and a vector η ∈ Hπ, we define the
coefficient operator

Vη : Hπ 3 ϕ 7→ Vηϕ ∈ Cb(G) , Vηϕ(x) = 〈ϕ, π(x)η〉 .

Here Cb(G) denotes the space of bounded continuous functions on G.
We are however mainly interested in inversion formulae, hence we consider

Vη as an operator Hπ → L2(G), with the obvious domain dom(Vη) = {ϕ ∈
Hπ : Vηϕ ∈ L2(G)}. We call η admissible whenever Vη : H → L2(G) is an
isometric embedding, and in this case Vη is called (generalized) wavelet
transform. While the definition itself is rather simple, the problem of identi-
fying admissible vectors is highly nontrivial, and the question whether these
vectors exist for a given representation does not have a simple general answer.
It is the main purpose of this book to develop in a systematical fashion criteria
to deal with both problems.

As pointed out in [60], the construction principle for wavelet transforms
had also been studied in mathematical physics, where admissible vectors η
are called fiducial vectors, systems of the type {π(x)η : x ∈ G} coherent
state systems, and the corresponding inversion formulae resolutions of
the identity; see [1, 73] for more details and references.

Here the earliest and most prominent examples were the original coherent
states obtained by time-frequency shifts of the Gaussian, which were studied
in quantum optics [114]. Perelomov [97] discussed the existence of resolutions
of the identity in more generality, restricting attention to irreducible repre-
sentations of unimodular groups. In this setting discrete series representa-
tions, i.e., irreducible subrepresentations of the regular representation λG of
G turned out to be the right choice. Here every nonzero vector is admissible
up to normalization. Moreover, Perelomov devised a construction which gives
rise to resolutions of the identity for a large class of irreducible representations
which were not in the discrete series. The idea behind this construction was
to replace the group as integration domain by a well-chosen quotient, i.e., to
construct isometries Hπ ↪→ L2(G/H) for a suitable closed subgroup H. In all
of these constructions, irreducibility was essential: Only the well-definedness
and a suitable intertwining property needed to be proved, and Schur’s lemma
would provide for the isometry property.

While we already remarked that [60] was not the first source to comment on
the role of the affine group in constructing inversion formulae, suitably general
criteria for nonunimodular groups were missing up to this point. Grossmann,
Morlet and Paul showed how to use the orthogonality relations, established for
these groups by Duflo and Moore [38], for the characterization of admissible
vectors. More precisely, Duflo and Moore proved the existence of a uniquely
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defined unbounded selfadjoint operator Cπ associated to a discrete series rep-
resentation such that a vector η is admissible iff it is contained in the domain
of Cπ, with ‖Cπη‖ = 1. A second look at the admissibility condition (1.1)
shows that in the case of the wavelet transform on L2(R) this operator is
given on the Plancherel transform side by multiplication with |ω|−1/2. This
framework allowed to construct analogous transforms in a variety of settings,
which was to become an active area of research in the subsequent years; a by
no means complete list of references is [93, 22, 25, 48, 68, 49, 50, 51, 83, 7, 8].
See also [1] and the references therein.

However, it soon became apparent that admissible vectors exist outside
the discrete series setting. In 1992, Mallat and Zhong [92] constructed a
transform related to the original continuous wavelet transform, called the
dyadic wavelet transform. Starting from a function ψ ∈ L2(R) satisfying
the dyadic admissibility condition∑

n∈Z
|ψ̂(2nω)|2 = 1 , for almost every ω ∈ R (1.3)

one obtains the (weak-sense) inversion formula

f =
∫

R

∑
n∈Z
〈f, ψb,2n〉ψb,2n2−ndb , (1.4)

or equivalently, an isometric dyadic wavelet transform L2(R) → L2(R ×
Z, db2−ndn), where dn denotes counting measure. Clearly the representation
behind this transform is just the restriction of the above representation π to
the closed subgroup H = {(b, 2n) : b ∈ R, n ∈ Z} of G, and the measure under-
lying the dyadic inversion formula is the left Haar measure of that subgroup.
However, in one respect the new transform is fundamentally different: The
restriction of π to H is no longer irreducible, in fact, it does not even contain
irreducible subrepresentations (see Example 2.36 for details). Therefore (1.3)
and (1.4), for all the apparent similarity to (1.1) and (1.2), cannot be treated
in the same discrete series framework.

The example by Mallat and Zhong, together with results due to Klauder,
Isham and Streater [67, 74], was the starting point for the work presented in
this book. In each of these papers, a more or less straightforward construction
led to admissibility conditions – similar to (1.1) and (1.3) – for representa-
tions which could not be dealt with by means of the usual discrete series
arguments. The initial motivation was to understand these examples under a
representation-theoretic perspective, with a view to providing a general strat-
egy for the systematic construction of wavelet transforms.

The book departs from a few basic realizations: Any wavelet transform
Vη is a unitary equivalence between π and a subrepresentation of λG, the left
regular representation of G on L2(G). Hence, the Plancherel decomposi-
tion of the latter into a direct integral of irreducible representations should
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play a central role in the study of admissible vectors, as it allows to analyze
invariant subspaces and intertwining operators.

A first hint towards direct integrals had been given by the representations
in [67, 74], which were constructed as direct integrals of irreducible repre-
sentations. However, the particular choice of the underlying measure was not
motivated, and it was unclear to what extent these constructions and the asso-
ciated admissibility conditions could be generalized to other groups. Properly
read, the paper by Carey [29] on reproducing kernel subspaces of L2(G) can be
seen as a first source discussing the role of Plancherel measure in this context.

1.2 Overview of the Book

The contents of the remaining chapters may be roughly summarized as follows:

2. Introduction to the group-theoretic approach to the construction of con-
tinuous wavelet transforms. Embedding the discussion into L2(G). Formu-
lation of a list of tasks to be solved for general groups. Solution of these
problems for the toy example G = R.

3. Introduction to the Plancherel transform for type I groups, and to the
necessary representation-theoretic machinery.

4. Plancherel inversion and admissibility conditions for type I groups. Exis-
tence and characterization of admissible vectors for this setting.

5. Examples of admissibility conditions in concrete settings, in particular for
quasiregular representations.

6. Sampling theory on the Heisenberg group.

Chapter 2 is concerned with the collection of basic notions and results,
concerning coefficient operators, inversion formulae and their relation to con-
volution and the regular representations. In this chapter we formulate the
problems which we intend to address (with varying degrees of generality) in
the subsequent chapters. We consider existence and characterization of in-
version formulae, the associated reproducing kernel subspaces of L2(G) and
their properties, and the connection to discretization of the continuous trans-
forms and sampling theorems on the group. Support properties of the arising
coefficient functions are also an issue. Section 2.7 is crucial for the following
parts: It discusses the solution of the previously formulated list of problems
for the special case G = R. It turns out that the questions mostly translate
to elementary problems in real Fourier analysis.

Chapter 3 provides the ”Fourier transform side” for locally compact groups
of type I. The Fourier transform of such groups is obtained by integrating func-
tions against irreducible representations. The challenge for Plancherel theory
is to construct from this a unitary operator from L2(G) onto a suitable di-
rect integral space. This problem may be seen as analogous to the case of
the reals, where the tasks consists in showing that the Fourier transform
defined on L1(R) induces a unitary operator L2(R) → L2(R). However, for
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arbitrary locally compact groups the right hand side first needs to be con-
structed, which involves a fair amount of technique. The exposition starts
from a representation-theoretic discussion of the toy example, and during the
exposition to follow we refer repeatedly to this initial example.

Chapter 4 contains a complete solution of the existence and character-
ization of admissible vectors, at least for type I groups and up to unitary
equivalence. The technique is a suitable adaptation of the Fourier arguments
used for the toy example. It relies on a pointwise Plancherel inversion for-
mula, which in this generality has not been previously established. In the
course of argument we derive new results concerning the Fourier algebra and
Fourier inversion on type I locally compact groups, as well as an L2-version of
the convolution theorem, which allows a precise description of L2-convolution
operators, including domains, on the Plancherel transform side 4.18. We com-
ment on an interpretation of the support properties obtained in Chapter 2 in
connection with the so-called ”qualitative uncertainty principle”. Using ex-
istence and uniqueness properties of direct integral decompositions, we then
describe a general procedure how to establish the existence and criteria for
admissible vectors (Remark 4.30). We also show that these criteria in effect
characterize the Plancherel measure, at least for unimodular groups. Section
4.5 shows how the Plancherel transform view allows a unified treatment of
wavelet and Wigner transforms associated to nilpotent Lie groups.

Chapter 5 shows how to put the representation-theoretic machinery de-
veloped in the previous chapters to work on a much-studied class of con-
crete representations, thereby considerably generalizing the existing results
and providing additional theoretic background. We discuss semidirect prod-
ucts of the type Rk oH, with suitable matrix groups H. These constructions
have received considerable attention in the past. However, the representation-
theoretic results derived in the previous chapters allow to study generaliza-
tions, e.g. groups of the sort N o H, where N is a homogeneous Lie group
and H is a one-parameter group of dilations on N . The discussion of the Zak-
transform in the context of Weyl-Heisenberg frames gives further evidence for
the scope of the general representation-theoretic approach.

The final chapter contains a discussion of sampling theorems on the Heisen-
berg group H. We obtain a complete characterization of the closed leftinvari-
ant subspaces of L2(H) possessing a sampling expansion with respect to a
lattice. Crucial tools for the proof of these results are provided by the theory
of Weyl-Heisenberg frames.

1.3 Preliminaries

In this section we recall the basic notions of representation theory, as far
as they are needed in the following chapter. For results from representation
theory, the books by Folland [45] and Dixmier [35] will serve as standard
references.
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The most important standing assumptions are that all locally compact
groups in this book are assumed to be Hausdorff and second countable and all
Hilbert spaces in this book are assumed to be separable.

Hilbert Spaces and Operators

Given a Hilbert space H, the space of bounded operators on it is denoted by
B(H), and the operator norm by ‖ · ‖∞. U(H) denotes the group of unitary
operators on H. Besides the norm topology, there exist several topologies of
interest on B(H). Here we mention the strong operator topology as the
coarsest topology making all mappings of the form

B(H) 3 T 7→ Tη ∈ H ,

with η ∈ H arbitrary, continuous, and the weak operator topology, which
is the coarsest topology for which all coefficient mappings

B(H) 3 T 7→ 〈ϕ, Tη〉 ∈ C,

with ϕ, η ∈ H arbitrary, are continuous. Furthermore, let the ultraweak
topology denote the coarsest topology for which all mappings

B(H) 3 T 7→
∑
n∈N
〈ϕn, T ηn〉

are continuous. Here (ηn)n∈N and (ϕn)n∈N range over all families fulfilling∑
n∈N
‖ηn‖2 <∞ ,

∑
n∈N
‖ϕn‖2 <∞ .

We use the abbreviations ONB and ONS for orthonormal bases and
orthonormal systems, respectively. dim(H) denotes the Hilbert space dimen-
sion, i.e., the cardinality of an arbitrary ONB of H. Another abbreviation is
the word projection, which in this book always refers to selfadjoint projec-
tion operators on a Hilbert space. For separable Hilbert spaces, the Hilbert
space dimension is in N ∪ {∞}, where the latter denotes the countably infi-
nite cardinal. The standard index set of cardinality m (wherever needed) is
Im = {1, . . . ,m}, where I∞ = N, and the standard Hilbert space of dimension
m is `2(Im).

If (Hi)i∈I is a family of Hilbert spaces, then
⊕

i∈I Hi is the space of vectors
(ϕi)i∈I in the cartesian product fulfilling in addition

‖(ϕi)i∈I‖2 :=
∑
i∈I
‖ϕi‖2 <∞ .

The norm thus defined on
⊕

i∈I Hi is a Hilbert space norm, and
⊕

i∈I Hi is
complete with respect to the norm. If the Hi are orthogonal subspaces of a
common Hilbert space H,

⊕
i∈I Hi is canonically identified with the closed

subspace generated by the union of the Hi.
If T is a densely defined operator on H which has a bounded extension,

we denote the extension by [T ].
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Unitary Representations

A unitary, strongly continuous representation, or simply representa-
tion, of a locally compact group G is a group homomorphism π : G→ U(Hπ)
that is continuous, when the right hand side is endowed with the strong op-
erator topology. Since weak and strong operator topology coincide on U(Hπ),
the continuity requirement is equivalent to the condition that all coefficient
functions of the type

G 3 x 7→ 〈ϕ, π(x)η〉 ∈ C,

are continuous.
Given representations σ, π, and operator T : Hσ → Hπ is called inter-

twining operator, if Tσ(x) = π(x)T holds, for all x ∈ G. We write σ ' π
if σ and π are unitarily equivalent, which means that there is a unitary in-
tertwining operator U : Hσ → Hπ. It is elementary to check that this defines
an equivalence relation between representations. For any subset K ⊂ Hπ we
let

π(G)K = {π(x)η : x ∈ G, η ∈ K} .

A subspace of K ⊂ Hπ is called invariant if π(G)K ⊂ K. Orthogonal comple-
ments of invariant subspaces are invariant also. Restriction of a representation
to invariant subspaces gives rise to subrepresentations. We write σ < π if
σ is unitarily equivalent to a subrepresentation of π. σ and π are called dis-
joint if there is no nonzero intertwining operator in either direction. A vector
η ∈ Hπ is called cyclic if π(G)η spans a dense subspace of Hπ. A cyclic rep-
resentation is a representation having a cyclic vector. All representations
of interest to us are cyclic. In particular our standing assumption that G is
second countable implies that all representations occurring in the book are
realized on separable Hilbert spaces. π is called irreducible if every nonzero
vector is cyclic, or equivalently, if the only closed invariant subspaces of Hπ
are {0} and Hπ. Given a family (πi)i∈I , the direct sum π =

⊕
i∈I πi acts on⊕

i∈I Hπi via
π(x) (ϕi)i∈I = (πi(x)ϕi)i∈I .

The main result in connection with irreducible representations is Schur’s
lemma characterizing irreducibility in terms of intertwining operators. See [45,
3.5] for a proof.

Lemma 1.1. If π1, π2 are irreducible representations, then the space of in-
tertwining operators between π1 and π2 has dimension 1 or 0, depending on
π1 ' π2 or not.
In other words, π1 and π2 are either equivalent or disjoint.

Using the spectral theorem the following generalization can be shown. The
proof can be found in [66, 1.2.15].
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Lemma 1.2. Let π1, π2 be representations of G, and let T : Hπ1 → Hπ2 be
a closed intertwining operator, defined on a dense subspace D ⊂ Hπ1 . Then
ImT and (kerT )⊥ are invariant subspaces and π1, restricted to (kerT )⊥, is
unitarily equivalent to the restriction of π2 to ImT ).
If, moreover, π1 is irreducible, T is a multiple of an isometry.

Given G, the unitary dual Ĝ denotes the equivalence classes of irreducible
representations of G. Whenever this is convenient, we assume the existence
of a fixed choice of representatives of Ĝ, taking recourse to Schur’s lemma to
identify arbitrary irreducible representations with one of the representatives
by means of the essentially unique intertwining operator.

We next describe the contragredient π of a representation π. For this pur-
pose we define two involutions on B(Hπ), which are closely related to taking
adjoints. For this purpose let T ∈ B(Hπ). If (ei)i∈I is any orthonormal basis,
we may define two linear operators T t and T by prescribing

〈T tei, ej〉 = 〈Tej , ei〉 , 〈Tei, ej〉 = 〈Tei, ej〉 .

It is straightforward to check that these definitions do not depend on the
choice of basis, and that T ∗ = T

t
, as we expect from finitedimensional matrix

calculus. Additionally, the relations T t = T
t

= T ∗ and (ST )t = T tSt, ST =
S T are easily verified.

Now, given a representation (π,Hπ), the (standard realization of the)
contragredient representation π acts on Hπ by π(x) = π(x). In general,
π 6' π.

Commuting Algebras

The study of the commuting algebra, i.e., the bounded operators intertwining
a representation with itself, is a central tool of representation theory. In this
book, the commutant of a subset M ⊂ B(H), is denoted by M ′, and it is
given by

M ′ = {T ∈ B(H) : TS = ST , ∀S ∈M} .

It is a von Neumann algebra, i.e. a subalgebra of B(H) which is closed un-
der taking adjoints, contains the identity operator, and is closed with respect
to the strong operator topology. The von Neumann density theorem [36, The-
orem I.3.2, Corollary 1.3.1] states for selfadjoint subalgebras A ⊂ B(H), that
closedness in any of the above topologies on B(H) is equivalent to A = A′′.

There are two von Neumann algebras associated to any representation π,
the commuting algebra of π, which is the algebra π(G)′ of bounded oper-
ators intertwining π with itself, and the bicommutant π(G)′′, which is the
von Neumann algebra generated by π(G). Since span(π(G)) is a selfadjoint
algebra, the von Neumann density theorem entails that it is dense in π(G)′′

with respect to any of the above topologies. Invariant subspaces are conve-
niently discussed in terms of π(G)′, since a closed subspace K is invariant
under π iff the projection onto K is contained in π(G)′.
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Von Neumann algebras are closely related to the spectral theorem for
selfadjoint operators, in the following way: Let A be a von Neumann algebra,
and let T be a bounded selfadjoint operator. If S is an arbitrary bounded
operator, it is well-known that S commutes with T iff S commutes with all
spectral projections of T . Applying this to S ∈ A′, the fact that A = A′′
yields the following observation.

Theorem 1.3. Let A is a von Neumann algebra on H and T = T ∗ ∈ B(H).
Then T ∈ A iff all spectral projections of T are in A.

A useful consequence is that von Neumann algebras are closed under the
functional calculus of selfadjoint operators, as described in [101, VII.7].

Corollary 1.4. Let A is a von Neumann algebra on H and T = T ∗ ∈ A
selfadjoint. Let f : R → R be a measurable function which is bounded on the
spectrum of T . Then f(T ) ∈ A.

Proof. Every spectral projection of f(T ) is a spectral projection of T . Hence
the previous theorem yields the statement.

For more details concerning the spectral theorem we refer the reader to
[101, Chapter VII]. The relevance of the spectral theorem for the representa-
tion theory of the reals is sketched in Section 2.7.

Tensor Products

The tensor product notation is particularly suited to treating direct sums of
equivalent representations. Let H,K be Hilbert spaces. The Hilbert space
tensor product H ⊗ K is defined as the space of bounded linear operators
T : K → H satisfying

‖T‖2H⊗K :=
∑
j∈J
‖Tej‖2 <∞ .

Here (ej)j∈J is an ONB of K. The Parseval equality can be employed to show
that the norm is independent of the choice of basis, making H⊗K a Hilbert
space with scalar product

〈S, T 〉 =
∑
j∈J
〈Sej , T ej〉 .

Of particular interest are the operators of rank one. We define the elementary
tensor ϕ ⊗ η as the rank one operator K → H defined by K 3 z 7→ 〈z, η〉ϕ.
The scalar product of two rank one operators can be computed as

〈η ⊗ ϕ, η′ ⊗ ϕ′〉H⊗K = 〈η, η′〉H〈ϕ′, ϕ〉K .
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Note that our definition differs from the one in [45] in that our tensor product
consists of linear operators as opposed to conjugate-linear in [45]. As a con-
sequence, our elementary tensors are only conjugate-linear in the K variable,
as witnessed by the change of order in the scalar product. However, the argu-
ments in [45] are easily adapted to our notation. For computations in H⊗K,
it is useful to observe that ONB’s (ηi)i∈I ⊂ H and (ϕj)j∈J ⊂ K yield an ONB
(ηi⊗ϕj)i∈I,j∈J of H⊗K [45, 7.14]. By collecting terms in the expansion with
respect to the ONB, one obtains that each T ∈ H ⊗K can be written as

T =
∑
j∈J

aj ⊗ ϕj =
∑
i∈I

ηi ⊗ bi , (1.5)

where the aj and bi are computed by aj = Tϕj and bi = T ∗ηi, yielding

T =
∑
j∈J

(Tϕj)⊗ ϕj =
∑
i∈I

ηi ⊗ (T ∗ηi) , (1.6)

as well as
‖T‖22 =

∑
j∈J
‖aj‖2 =

∑
i∈I
‖bi‖2 .

By polarization of this equation we find that given a second operator S =∑
j∈J cj ⊗ ϕj , the scalar product can also be computed via

〈T, S〉 =
∑
j∈J
〈aj , cj〉 .

Operators T ∈ B(H), S ∈ B(K) act on elements onH⊗K by multiplication.
On elementary tensors, this action reads as

(T ⊗ S)(η ⊗ ϕ) = T ◦ (η ⊗ ϕ) ◦ S = (Tη)⊗ (S∗ϕ) ,

which will be denoted by T ⊗ S ∈ B(H ⊗ K). Keep in mind that this tensor
is also only sesquilinear. Given two representations π, σ, the tensor product
representation π⊗σ is the representation of the direct product G×G acting
on Hπ⊗Hσ via π⊗σ(x, y) = π(x)⊗σ(y)∗. On elementary tensors this action
is given by

(π ⊗ σ(x, y))(η ⊗ ϕ) = (π(x)η)⊗ (σ(x)ϕ) .

Observe that the sesquilinearity of our tensor product notation entails that
the restriction of π⊗ σ to {1}⊗G is indeed equivalent to dim(Hπ) · σ, where
σ is the contragredient of σ.

One can use the tensor product notation to define a compact realization
of the multiple of a fixed representation. Given such a representation σ, the
standard realization of π = m · σ acts on Hπ = Hσ ⊗ `2(Im) by

π(x) = σ(x)⊗ Id`2(Im) .
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The advantage of this realization lies in compact formulae for the associated
von Neumann algebras, if σ is irreducible:

π(G)′ = 1⊗ B(`2(Im)) , (1.7)

, which is understood as the algebra of all operators of the form IdHσ ⊗ T ,
and

π(G)′′ = B(Hσ)⊗ 1 , (1.8)

with analogous definitions. The follow for instance by [105, Theorem 2.8.1].

Trace Class and Hilbert-Schmidt Operators

Given a bounded positive operator T on a separable Hilbert space H, T it is
called trace class operator if its trace class norm

‖T‖1 = trace(T ) =
∑
i∈I
〈Tηi, ηi〉 <∞ ,

where (ηi)i∈I is an ONB of H. ‖T‖1 can be shown to be independent of the
choice of ONB. An arbitrary bounded operator T is a trace class operator
iff |T | is of trace class. This defines the Banach space B1(H) of trace clase
operators. The trace

trace(T ) =
∑
n∈N
〈Tηi, ηi〉

is a linear functional on B1(H), and again independent of the choice of ONB. A
useful property of the trace is that trace(TS) = trace(ST ), for all T ∈ B1(H)
and S ∈ B∞(H).

More generally, we may define for arbitrary 1 ≤ p <∞ the Schatten-von
Neumann space of order p as the space Bp(H) of operators T such that
|T |p is trace class, endowed with the norm

‖T‖p = ‖(T ∗T )p/2‖1/p1 .

Again Bp(H) is a Banach space with respect to ‖ · ‖p. An operator T is in
Bp(H) iff |T | has a discrete p-summable spectrum (counting multiplicities).
This also entails that Bp(H) ⊂ Br(H), for p ≤ r, and that these spaces are
contained in the space of compact operators on H. Moreover, it entails that
‖ · ‖∞ ≤ ‖ · ‖p.

As a further interesting property, Bp(H) is a twosided ideal in B(H), sat-
isfying

‖ATB‖p ≤ ‖A‖∞‖T‖p‖B‖∞ .

We will exclusively be concerned with p = 1 and p = 2. Elements of the latter
space are called Hilbert-Schmidt operators) . B2(H) is a Hilbert space,
with scalar product
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〈S, T 〉 = trace(ST ∗) = trace(T ∗S) .

In fact, as the formula

trace(T ∗T ) =
∑
i∈I
‖Tηi‖2 = ‖T‖2H⊗H

shows, B2(H) = H⊗H. In particular, all facts involving the role of rank-one
operators and elementary tensors presented in the previous section hold for
B2(H).

Measure Spaces

In this book integration, either on a locally compact group or its dual, is
ubiquitous. Borel spaces provide the natural context for our purposes, and we
give a sketch of the basic notions and results. For a more detailed exposition,
confer the chapters dedicated to the subject in [15, 17, 94].

Let us quickly recall some definitions connected to measure spaces. A
Borel space is a set X equipped with a σ-algebra B, i.e. a set of subsets
of X (containing the set X itself) which is closed under taking complements
and countable unions. B is also called Borel structure. Elements of B are
called measurable or Borel. A σ-algebra separates points, if it contains
the singletons. Arbitrary subsets A of a Borel space (X,B), measurable or
not, inherit a Borel structure by declaring the intersections A ∩B, B ∈ B, as
the measurable sets in A.

In most cases we will not explicitly mention the σ-algebra, since it is
usually provided by the context. For a locally compact group, it is generated
by the open sets. For countable sets, the power set will be the usual Borel
structure. A measure space is a Borel space with a (σ-additive) measure µ
on the σ-algebra. ν-nullsets are sets A with ν(A) = 0, whereas conull sets
are complements of nullsets.

If µ and ν are measures on the same space, µ is ν-absolutely continuous
if every ν-nullset is a µ-nullset as well. We assume all measures to be σ-finite.
In particular, the Radon-Nikodym Theorem holds [104, 6.10]. Hence absolute
continuity of measures is expressable in terms of densities.

Measurable mappings between Borel spaces are defined by the property
that the preimages of measurable sets are measurable. A bijective mapping
φ : X → Y between Borel spaces is a Borel isomorphism iff φ and φ−1 is
measurable. A mapping X → Y is µ-measurable iff it is measurable outside
a µ-nullset. For complex-valued functions f given on any measure space, we let
supp(f) = f−1(C \ 0). Inclusion properties between supports are understood
to hold only up to sets of measure zero, which is reasonable if one deals with
Lp-functions. Given a Borel set A, we let 111A denote its indicator function.

Given a measurable mapping Φ : X → Y between Borel spaces and a
measure µ on X, the image measure Φ∗(µ) on Y is defined as Φ∗(µ)(A) =
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µ(Φ−1(A)). A measure ν on Y is a pseudo-image of µ under Φ if ν is equiva-
lent to Φ∗(µ̃), and µ̃ is a finite measure on X which is equivalent to µ. µ̃ exists
if µ is σ-finite. Clearly two pseudo-images of the same measure are equivalent.

Let us now turn to locally compact groups G and G-spaces. A G-space
is a set X with a an action of G on X, i.e., a mapping G × X → X,
(g, x) 7→ g.x, fulfilling e.x = x and g.(h.x) = (gh).x. A Borel G-space is a
G-space with the additional property that G and X carry Borel structures
which make the action measurable; here G×X is endowed with the product
Borel structure. If X is a G-space, the orbits G.x = {g.x : g ∈ G} yield a
partition of X, and the set of orbits or orbit space is denoted X/G for the
orbit space. This notation is also applied to invariant subsets: If A ⊂ X is
G-invariant, i.e. G.A = A, then A/G is the space of orbits in A, canonically
embedded in X/G. If X is a Borel space, the quotient Borel structure
on X is defined by declaring all subsets A ⊂ X/G as Borel for which the
corresponding invariant subset of X is Borel. It is the coarsest Borel structure
for which the quotient map X → X/G is measurable.

For x ∈ X the stabilizer of x is given by Gx = {g ∈ G : g.x = x}. The
canonical map G 3 g 7→ g.x induces a bijection G/Gx → G.x.


