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1 Overview S. Mayer, RWTH Aachen

1.) Introduction to Hilbert Modular Forms

2.) Eisenstein series and theta series

3.) Borcherds products

4.) Generators and relations for M?°, M13 and M17.

(http://www.matha.rwth-aachen.de/people/mayer/index.html)



Notations S. Mayer, RWTH Aachen

e p prime, p=1 (mod 4), especially p € {5,13,17},

o K =Q(/p) with integers 0 :=7Z + 1tvpy

2
X::A]_—)\Q\/ﬁ (>\:>\1+>‘2\/2_9€K:7)‘17)‘2€Q)
N(A) = AN = A7 — pA3 (norm)
SN =X+ (trace)
eg = min{x € 0*; =z > 1} (fundamental unit)

Then o* = :I:e%.



Modular Group I S. Maver, RWTH Aachen

e I =SL(2,0) operateson H? = {z € C; Im (2) > 0}2:

ari +b arp + b
T — Y - Y]
7 cri +d emy + d

where y = (¢%) € and 7 = (r1,72) € H2.

e This motivates S(\7) := A1 + Am and
N(cr+d) := (cri+d)F (Eer+d)F, (zF 1= exp(kIn 2))

o I =< J,T,Ty >, where w = 3(1+ ,/p) and

(0 1 (11 (1w
= (O b) = (b ) ana = (5 ).



4 Hilbert Modular Form S. Maver, RWTH Aachen

Definition (Hilbert Modular Form). A Hilbert mo-
dular form f (HMF) of weight £ € Q with multiplier
system (m.s.) pu: I — C* (Just a map) is a holomorphic
function H2 — C satisfying

fOm) = pMN(er+d)f(r)  vreH?y=(2})er.
We denote the corresponding vector space by M]f(u) .

Remark. We obtain from Gundlach (1985):
feMp()\{0} = keNg and p=1,

f € MP@\{0} = k € No, u(J) = u(T)3 = u(Tw)? = 1,

feME(u\{0} = k € Ng/2, p2(T) = p(Tw)* = (—1)2*
and M(J) = u(T)3.

IS unique by the given conditions. If k € 7Z, then u is
a character.



5 Eisenstein Series S. Mayer, RWTH Aachen

Definition (Eisenstein series). Let r € N\ {0} and
define the 2rt" Eisenstein series E5, : H2 — C by

Eop(r):i= Y N(er+d)~,
MeT oo\l

_(abd
m=(2h)
0
where [ o denotes the subgroup <—E,T, Tw, D = (gg -1 >>
0
of I' fixing oo = (o0, 00).

Eo, is a Hilbert modular form of weight 2r with trivial
multiplier system. (E5, € M5 (1)).



6 Theta Series S. Mayer, RWTH Aachen

Definition (©-series). Define the Siegel halfspace
Ho :={Z =X +iY € Mx(C); Z= 2"y > 0}.
For m = (m/,m") € {0,1}* with (m/)"m” € 2Z and all
Z € Ho define
On(2) = Y o™i ((g+m//2)Y Z(g+m!/2)+(g+m'/2)"m")
gEZ?

There are exactly 10 such Theta series. Denote their
product by ©.



7 Modular Embedding (Hammond) S. Mayer, RWTH Aachen

Write p = w2402 (=1 (mod 4)) where v is even, u,v €
Z and define w := 5(u + /p). Then

s(s7) s (%)
e - H? — Ho, T+ VP QLZ_D
(V)
s(257) s(%)
induces a map between modular forms.
Lemma (Hammond, 1966). There are three alge-

braicly independent HMFs, namely two Eisenstein series
E,, Eg and a theta product © oe.



8 N2 S. Mayer, RWTH Aachen

In case K = Q(v/17) Hermann (1981) introduces the

Hilbert modular form no, of weight % with multiplier
system pi17 (p17(J) = —i, p17(T) =i and p17(Tw) =
657Ti/4):

12 :—011009001190000 + ¢11000001000001
+ 01001901100%0000 — €100190100%010
+ 010009010090011 — 9100090110%0001

where 0,, .= ©,, 0 €.



9 Nearly Holomorphic Modular Forms S. Mayer, RWTH Aachen

A (p) : vector space of nearly hol. modular forms (me-
romorphic in cusps) H — C of weight k£ for the group

Fo(p) ={M = (2}) €SL(2,Z); c=0 (mod p)}

with character x, induced by the Legendre symbol (}—9)

Define (where ¢ = ¢2™7)

ne
Sr.(p): subspace of cusp forms in Ap(p).

A;ﬁf(p) = { > a(n)q" € Ap(p); a(n) = 0 if xp(n) = —1}

S,j'(p): subspace of cusp forms in A,;"(p).

principal part of f =3, anq™ € A,;"(p): > <0 anq™.



10 Obstruction space S. Mayer, RWTH Aachen

Lemma. There is a modular form in A(_)l_(p) with pres-
cribed principal part Y, oqa(n)q™ iff

Vn <0 xp(n) = —1=a(n) =0 and
v 3 b(m)q™ € S5 (p) : Y s(n)a(n)b(—n) = 0
m>0 n<0

where s(n) = 2 if pln and s(n) = 1 otherwise.

Lemma (Hecke (1940)).Ifp=1 (mod 4), then
dim So(p) = 2[ J (=0 iffp<17)

For p € {5,13,17} there is a basis
{fn=s(n)"1q™™ + O(1)} of Af(p).



11 Borcherds Products S. Maver, RWTH Aachen

Theorem (Borcherds, Bruinier (2003)).

For f = Y ,cza(n)q™ € Ag_(p) with s(n)a(n) € Z for
all n < 0 there is a meromorphic ¥ : H2 — C, a Wey!
chamber W C H? and py € K, such that

w(r) = 2mSewn) T <1 B ezmsw))S@WM(WW
ME%O
(u,W)>0

forallT € W withIm (71)Im (7o) > | min{n;a(n) # 0} |/p.
e T he Fourier expansion of W can be calculated.
e W /s a holomorphic Hilbert modular form for I'.
e Its divisor depends only on the principal part of f.
e [heweight of WV and its multiplier system are known.



12 Notations S. Mavyer, RWTH Aachen

Definition. We define
e MP: Ring of HMFs with symmetric m.s. u.

p((26)) = n((T5))
o MP(1):= > M;(1).
e o H-D:={reH? rn=mn}z—(z2).
° Dgo ={r € HQ; T — 8%7‘2}.

We have M{(1) = C, M{(p) = {0} for all p # 1 and
M7 (p) = {0} for all k < 0 and multiplier systems pu.



13 Ingredients for Reduction S. Mayer, RWTH Aachen

Lemma. f € M;(n) = f o is an elliptic modular form
of weight 2k with character pl|gr27)- If f is a cusp
form, then f oy is a cusp form.

Definition. For f : H? — C define f*(ry,m2) = 3(f(71,m2)+
f(r2,71))

Then f = ft + f— and f~ vanishes on D. If f is a
HMF with symmetric m.s., then f* and f~ are HMFs
of same weight and multiplier system.

Borcherds-Products:
f e A(‘)"(p) —— W | divisor

fi=¢+4+0Q1) —W; | D | flp=0= Wlf
fp = éq—p +0(1) ~—WVp T -Dg | flp,, =0 = Wplf
fi= s(n) a7+ O(L)—;




14 Q(V5) S. Mayer, RWTH Aachen

Theorem (Gundlach, Resnikoff, ...). M?> s genera-
ted by E->, W1, Eg and Wy and all relations are induced
by

w§_<6_7E6_£E§)( or (Eg—E6))4=w%(...)

pls 25 43200
f By | Wy |eg:=8LEs —32E3 | Ws
fop go | O 95 A<g3
weight of f | 2 5 §) 15

Proof by induction (weight k):

MR (1) =C, M3(p) = M>,(n) = {0} for all p # 1,k > 0.
In case Q(v/5): p=1.



15 Proof of Theorem for Q(+/5) S. Mayer, RWTH Aachen

0
Let f € M,?(l). Write D = (600 5_1)'
0
kis odd: 7= D(r,71) on Dgy, N(gpt) = —1

u=1 —
= f+|]D>€O = —f+|]D>€O =  Wg|fT and Wq|f

k is even: fogp is an elliptic mod. form of weight 2k for SL(2,7)
= there is a polynomial q: f oy —q(g2,95) = 0.

= f—q(Ezes)p=0 =  Wi|f—q(Esep).

The relation immediately follows from the elliptic
case. L]



16 Generators for Q(+/13) (M.) S. Mayer, RWTH Aachen

Theorem. M 13 js generated by W1, $—‘1‘, E> and W13,

\\}
f Vi | oy | B2 | Wis
fop 0 | n° | g2 | n'%g3

weight of f || 1 2 2 7
multiplier p | p13 | p13 | 1 N%%

p13(J) =1, p13(T) = -3 + 3V3, p13(Tw) = -3 — 3V3.
u is already determined by f o .
If k is odd, proceed as for Q(v/5) (fT(7) € —e2™Z/3 f+(1)).

If £ is even, there is a polynomial ¢ \Suatisfying fop =
a(1°, 92)- = W1l(f — a(oyts B2)) O



17 Relations for Q(+/13) S. Mayer, RWTH Aachen

Lemma. All relations of the generators for M13 are in-

duced by
4 3

W W

2 4 4

We— | —=) (E3-2033—2) | =
QW W
27 495
—108W 12w, — 1—6w10E§ +— —wiwiE,

4
1459 W
P whwd +2 \U6\U2E2 —512W8 (%

16 2w,
1 97 1
+ 16\U4E2 7 W4\V2E2 - §W2W2E2

5
W 189
_ 144y2 <—2xu41> Ey+ ——WiV3E; .



18 Relations for Q(+/13): Proof S. Mayer, RWTH Aachen

g 7 0 polynomial, g (W]_,QW—\ULL]-,EQ,\U]_:J)) = 0.
r.= Q(07'7'7°>'
If =0 look at ¢q(Xq, X, X3, X4)/X; instead of gq.

Else r (778,92,771693) = 0 holds, all elliptic relations are
induced by

(n%0g3)? — (n®)*g3 =0

A comparison of fourier expansions concludes the argu-
ment. []



19 Generators for Q(+/17) (M.) S. Mayer, RWTH Aachen

Theorem. M7 is generated by V1, E», —\Wo, 1o and

Wy
f Wi | Ex | —Wo | n/8 | Wiy
fop 0 |go| 7° | 7° |n%g3
weight of f | 5 | 2 | 3 3 9
multiplier p || 17 | 1 | p37 | w1z | pis

The proof is analogous to the ones for M® and M13,

Problem 1: 417 has order 8 and holds uf;[s (2.7) = 1,
so we need two lifts of n%. If 4 # 1, there is v € o
st u(Ty) = u((§ 1)) # 1. Then f(Tor) = u(T) f(7) #
f(7) holds as 7 and T,7 tend to co. Thus f and fo
are cusp forms and n°|f o .



20 Proof of Theorem for Q(v/17) S. Mayer, RWTH Aachen

Problem 2: For M?® and M3, every symmetric HMF
f1 of odd weight & is divisible by W,. Here:

()= f+(D?) = p(DIN (g * ()
= (D) 1 (1), (7 1= (m2,71))

for T € Dg,. Because of uf,(D) = 1, this property only
depends on pulg| (27)- Ve obtain:

Every symmetric HMF f for which foy is a multiple of
g3 but not of g3, is divisible by W7.



21 Relations for Q(+/17) S. Mayer, RWTH Aachen

Lemma.
N5 — 64W3 = 16W2E,
and

W2, — W3ES 4+ 216W3n, = —256w18
2671, 103

— 176\|112\U _— —|— —\U E U
7102 7.8, 2

— —WiVE2 - T W2E, Vo + ————WEE
16 1 =2 128 27212 128 152712

induce all relations of the generators for M7,



22 M13(1) and M17(1) S. Mayer, RWTH Aachen

Corollary. M13(1) is generated by
3 2
Wy Wy Wy
Mi3z = {EQ,—W13, — | Vilz| -
2W 2W 2w

Vg
W Wqg W T w3}
1%¥13 12“11 1

Corollary. M17(1) is generated by
M7 = {E2,n5, 13V, naW17, 15 W1 Wy,
WiV 7, WiV, Wiv,,
773‘“%#72\“7» \U?}



