

Hilbert (Blumenthal) Modular

Forms

for $\mathbb{Q}(\sqrt{5})$, $\mathbb{Q}(\sqrt{13})$ and $\mathbb{Q}(\sqrt{17})$.

Sebastian Mayer, RWTH Aachen

- 1.) Introduction to Hilbert Modular Forms
- 2.) Eisenstein series and theta series
- 3.) Borcherds products
- 4.) Generators and relations for M^5 , M^{13} and M^{17} .

(http://www.matha.rwth-aachen.de/people/mayer/index.html)

- ullet p prime, $p\equiv 1\pmod 4$, especially $p\in \{5,13,17\}$,
- $\mathcal{K} = \mathbb{Q}(\sqrt{p})$ with integers $\mathfrak{o} := \mathbb{Z} + \frac{1+\sqrt{p}}{2}\mathbb{Z}$.

$$\overline{\lambda} := \lambda_1 - \lambda_2 \sqrt{p}$$
 $(\lambda = \lambda_1 + \lambda_2 \sqrt{p} \in \mathcal{K}, \lambda_1, \lambda_2 \in \mathbb{Q})$

$$N(\lambda) = \lambda \overline{\lambda} = \lambda_1^2 - p\lambda_2^2$$
 (norm)

$$S(\lambda) = \lambda + \overline{\lambda}$$
 (trace)

$$\varepsilon_0 = \min\{x \in \mathfrak{o}^*; x > 1\}$$
 (fundamental unit)

Then $\mathfrak{o}^* = \pm \varepsilon_0^{\mathbb{Z}}$.

• $\Gamma = \mathrm{SL}(2, \mathfrak{o})$ operates on $\mathbb{H}^2 = \{z \in \mathbb{C}; \; \mathrm{Im}\,(z) > 0\}^2$:

$$\gamma \tau = \left(\frac{a\tau_1 + b}{c\tau_1 + d}, \frac{\overline{a}\tau_2 + \overline{b}}{\overline{c}\tau_2 + \overline{d}}\right) ,$$

where $\gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma$ and $\tau = (\tau_1, \tau_2) \in \mathbb{H}^2$.

- This motivates $S(\lambda \tau) := \lambda \tau_1 + \overline{\lambda} \tau_2$ and $N(c\tau + d)^k := (c\tau_1 + d)^k (\overline{c}\tau_2 + \overline{d})^k, \qquad (z^k := \exp(k \ln z))$
- $\Gamma = \langle J, T, T_w \rangle$, where $w = \frac{1}{2}(1 + \sqrt{p})$ and

$$J := \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \ T := \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \ \text{and} \ T_w := \begin{pmatrix} 1 & w \\ 0 & 1 \end{pmatrix}.$$

Definition (Hilbert Modular Form). A Hilbert modular form f (HMF) of weight $k \in \mathbb{Q}$ with multiplier system (m.s.) $\mu : \Gamma \to \mathbb{C}^*$ (just a map) is a holomorphic function $\mathbb{H}^2 \to \mathbb{C}$ satisfying

$$f(\gamma \tau) = \mu(\gamma) N(c\tau + d)^k f(\tau)$$
 $\forall \tau \in \mathbb{H}^2, \gamma = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma.$

We denote the corresponding vector space by $M_k^p(\mu)$.

Remark. We obtain from Gundlach (1985):

$$f \in M_k^5(\mu) \setminus \{0\} \Rightarrow k \in \mathbb{N}_0 \text{ and } \mu \equiv 1$$
,

$$f \in M_k^{13}(\mu) \setminus \{0\} \Rightarrow k \in \mathbb{N}_0, \ \mu(J) = \mu(T)^3 = \mu(T_w)^3 = 1,$$

$$f \in M_k^{17}(\mu) \setminus \{0\} \Rightarrow k \in \mathbb{N}_0/2, \ \mu^2(T) = \mu(T_w)^4 = (-1)^{2k}$$
 and $\mu(J) = \mu(T)^3$.

 μ is unique by the given conditions. If $k \in \mathbb{Z}$, then μ is a character.

Definition (Eisenstein series). Let $r \in \mathbb{N} \setminus \{0\}$ and define the $2r^{\text{th}}$ Eisenstein series $E_{2r} : \mathbb{H}^2 \to \mathbb{C}$ by

$$E_{2r}(\tau) := \sum_{\substack{M \in \Gamma_{\infty} \backslash \Gamma \\ M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}}} N(c\tau + d)^{-2r},$$

where Γ_{∞} denotes the subgroup $\left\langle -E, T, T_w, D := \begin{pmatrix} \varepsilon_0 & 0 \\ 0 & \varepsilon_0^{-1} \end{pmatrix} \right\rangle$ of Γ fixing $\infty = (\infty, \infty)$.

 E_{2r} is a Hilbert modular form of weight 2r with trivial multiplier system. $(E_{2r} \in M^p_{2r}(1))$.

Definition (Θ -series). Define the Siegel halfspace

$$\mathcal{H}_2 := \{ Z := X + iY \in M_2(\mathbb{C}); \ Z = Z^{tr}, Y > 0 \}.$$

For $m=(m',m'')\in\{0,1\}^4$ with $(m')^{\operatorname{tr}}m''\in 2\mathbb{Z}$ and all $Z\in\mathcal{H}_2$ define

$$\Theta_m(Z) := \sum_{g \in \mathbb{Z}^2} e^{\pi i \left((g + m'/2)^{\text{tr}} Z(g + m'/2) + (g + m'/2)^{\text{tr}} m'' \right)}.$$

There are exactly 10 such Theta series. Denote their product by Θ .

Write $p=u^2+v^2\ (\equiv 1\pmod 4)$ where v is even, $u,v\in\mathbb{Z}$ and define $\omega:=\frac12(u+\sqrt p)$. Then

$$\epsilon: \mathbb{H}^2 \to \mathcal{H}_2, \quad \tau \mapsto \begin{pmatrix} \mathsf{S}\left(\frac{\omega}{\sqrt{p}}\tau\right) & \mathsf{S}\left(\frac{v}{2\sqrt{p}}\tau\right) \\ \mathsf{S}\left(\frac{v}{2\sqrt{p}}\tau\right) & \mathsf{S}\left(\frac{\overline{\omega}}{\sqrt{p}}\tau\right) \end{pmatrix}$$

induces a map between modular forms.

Lemma (Hammond, 1966). There are three algebraicly independent HMFs, namely two Eisenstein series E_4 , E_6 and a theta product $\Theta \circ \epsilon$.

In case $\mathcal{K}=\mathbb{Q}(\sqrt{17})$ Hermann (1981) introduces the Hilbert modular form η_2 of weight $\frac{3}{2}$ with multiplier system μ_{17} ($\mu_{17}(J)=-i$, $\mu_{17}(T)=i$ and $\mu_{17}(T_w)=e^{5\pi i/4}$):

$$\begin{split} \eta_2 := & \theta_{1100} \theta_{0011} \theta_{0000} + \theta_{1100} \theta_{0010} \theta_{0001} \\ & + \theta_{1001} \theta_{0110} \theta_{0000} - \theta_{1001} \theta_{0100} \theta_{0010} \\ & + \theta_{1000} \theta_{0100} \theta_{0011} - \theta_{1000} \theta_{0110} \theta_{0001} \end{split}$$

where $\theta_m := \Theta_m \circ \epsilon$.

 $A_k(p)$: vector space of nearly hol. modular forms (meromorphic in cusps) $\mathbb{H} \to \mathbb{C}$ of weight k for the group

$$\Gamma_0(p) = \left\{ M = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbb{Z}); \ c \equiv 0 \pmod{p} \right\}$$

with character χ_p induced by the Legendre symbol $\left(\frac{\cdot}{p}\right)$.

Define (where $q = e^{2\pi i \tau}$)

$$A_k^+(p) = \left\{ \sum_{n \in \mathbb{Z}} a(n)q^n \in A_k(p); a(n) = 0 \text{ if } \chi_p(n) = -1 \right\}$$

 $S_k(p)$: subspace of cusp forms in $A_k(p)$.

 $S_k^+(p)$: subspace of cusp forms in $A_k^+(p)$.

principal part of $f = \sum_{n} a_n q^n \in A_k^+(p)$: $\sum_{n < 0} a_n q^n$.

Lemma. There is a modular form in $A_0^+(p)$ with prescribed principal part $\sum_{n<0} a(n)q^n$ iff

$$\forall n < 0$$
: $\chi_p(n) = -1 \Rightarrow a(n) = 0$ and

$$\forall \sum_{m>0} b(m)q^m \in S_2^+(p) : \sum_{n<0} s(n)a(n)b(-n) = 0$$

where s(n) = 2 if p|n and s(n) = 1 otherwise.

Lemma (Hecke (1940)). If $p \equiv 1 \pmod{4}$, then $\dim S_2(p) = 2 \left\lfloor \frac{p-5}{24} \right\rfloor$ (= 0 iff $p \leq 17$)

For $p \in \{5, 13, 17\}$ there is a basis $\{f_n = s(n)^{-1}q^{-n} + O(1)\}$ of $A_0^+(p)$.

Theorem (Borcherds, Bruinier (2003)).

For $f = \sum_{n \in \mathbb{Z}} a(n)q^n \in A_0^+(p)$ with $s(n)a(n) \in \mathbb{Z}$ for all n < 0 there is a meromorphic $\Psi : \mathbb{H}^2 \to \mathbb{C}$, a Weyl chamber $W \subset \mathbb{H}^2$ and $\rho_W \in \mathcal{K}$, such that

$$\Psi(\tau) = e^{2\pi i S(\rho_W \tau)} \prod_{\substack{\mu \in \frac{1}{\sqrt{p}} \mathfrak{o} \\ (\mu, W) > 0}} \left(1 - e^{2\pi i S(\mu \tau)} \right)^{s(p\mu\overline{\mu})a(p\mu\overline{\mu})}$$

for all $\tau \in W$ with $\operatorname{Im}(\tau_1) \operatorname{Im}(\tau_2) > |\min\{n; a(n) \neq 0\}|/p$.

- The Fourier expansion of Ψ can be calculated.
- Ψ is a holomorphic Hilbert modular form for Γ .
- Its divisor depends only on the principal part of f.
- The weight of Ψ and its multiplier system are known.

Definition. We define

12

 M^p : Ring of HMFs with symmetric m.s. μ :

$$\mu(\left(\begin{smallmatrix} a & b \\ c & d \end{smallmatrix}\right)) = \mu(\left(\begin{smallmatrix} \overline{a} & \overline{b} \\ \overline{c} & \overline{d} \end{smallmatrix}\right))$$

- $M^p(1) := \sum_k M_k^p(1)$.
- $\varphi: \mathbb{H} \to \mathbb{D} := \{ \tau \in \mathbb{H}^2; \ \tau_1 = \tau_2 \}, z \mapsto (z, z).$
- $\mathbb{D}_{\varepsilon_0} := \{ \tau \in \mathbb{H}^2; \ \tau_1 = \varepsilon_0^2 \tau_2 \}.$

We have $M_0^p(1) = \mathbb{C}$, $M_0^p(\mu) = \{0\}$ for all $\mu \not\equiv 1$ and $M_k^p(\mu) = \{0\}$ for all k < 0 and multiplier systems μ .

Lemma. $f \in M_k^p(\mu) \Rightarrow f \circ \varphi$ is an elliptic modular form of weight 2k with character $\mu|_{SL(2,\mathbb{Z})}$. If f is a cusp form, then $f \circ \varphi$ is a cusp form.

Definition. For $f: \mathbb{H}^2 \to \mathbb{C}$ define $f^{\pm}(\tau_1, \tau_2) = \frac{1}{2}(f(\tau_1, \tau_2) \pm$ $f(\tau_2,\tau_1)$

Then $f = f^+ + f^-$ and f^- vanishes on \mathbb{D} . If f is a HMF with symmetric m.s., then f^+ and f^- are HMFs of same weight and multiplier system.

Borcherds-Products:

$f \in A_0^+(p) \qquad \longmapsto \Psi$	divisor	
$f_1 = q^{-1} + O(1) \longrightarrow \Psi_1$		2 10
$f_p = \frac{1}{2}q^{-p} + O(1) \longmapsto \Psi_p$	$\Gamma\cdot\mathbb{D}_{arepsilon_0}$	$f _{\mathbb{D}_{arepsilon_0}} \equiv 0 \Rightarrow \Psi_p f$
$f_j = \frac{1}{s(n)}q^{-j} + O(1) \longmapsto \Psi_j$		O

Theorem (Gundlach, Resnikoff, ...). M^5 is generated by E_2 , Ψ_1 , E_6 and Ψ_5 and all relations are induced by

$$\Psi_5^2 - \left(\frac{67}{25}E_6 - \frac{42}{25}E_2^3\right) \left(\frac{67}{43200}\left(E_2^3 - E_6\right)\right)^4 = \Psi_1^2(\dots)$$

f	E_2	Ψ_1	$e_6 := \frac{67}{25}E_6 - \frac{42}{25}E_2^3$	Ψ_5
$\boxed{ f \circ \varphi }$	g_2	0	g_3^2	$\Delta^2 g_3$
weight of f	2	5	6	15

Proof by induction (weight k):

 $M_0^5(1) = \mathbb{C}, M_0^5(\mu) = M_{-k}^5(\mu) = \{0\} \text{ for all } \mu \not\equiv 1, k > 0.$ In case $\mathbb{Q}(\sqrt{5})$: $\mu \equiv 1$.

. . .

Let
$$f \in M_k^5(1)$$
. Write $D := \begin{pmatrix} \varepsilon_0 & 0 \\ 0 & \varepsilon_0^{-1} \end{pmatrix}$.

$$k$$
 is odd: $\tau = D(\tau_2, \tau_1)$ on $\mathbb{D}_{\varepsilon_0}$, $N(\varepsilon_0^{-1}) = -1$
$$\Rightarrow \qquad f^+|_{\mathbb{D}_{\varepsilon_0}} \stackrel{\mu \equiv 1}{=} -f^+|_{\mathbb{D}_{\varepsilon_0}} \qquad \Rightarrow \qquad \Psi_5|f^+ \text{ and } \Psi_1|f^-$$

k is even: $f \circ \varphi$ is an elliptic mod. form of weight 2k for $SL(2,\mathbb{Z})$

 \Rightarrow there is a polynomial q: $f \circ \varphi - q(g_2, g_3^2) \equiv 0$.

$$\Rightarrow f - q(E_2, e_6)|_{\mathbb{D}} = 0 \Rightarrow \Psi_1|f - q(E_2, e_6).$$

The relation immediately follows from the elliptic case.

Theorem. M^{13} is generated by Ψ_1 , $\frac{\Psi_4}{\Psi_1}$, E_2 and Ψ_{13} .

f	$ \Psi_1 $	$\frac{\Psi_4}{2\Psi_1}$	E_2	Ψ ₁₃
$f\circ arphi$	0	η^8	g_2	$\eta^{16}g_3$
weight of f	1	2	2	7
multiplier μ	μ_{13}	μ_{13}	1	μ_{13}^{2}

$$\mu_{13}(J) = 1$$
, $\mu_{13}(T) = -\frac{1}{2} + \frac{1}{2}\sqrt{3}$, $\mu_{13}(T_w) = -\frac{1}{2} - \frac{1}{2}\sqrt{3}$.

 μ is already determined by $f \circ \varphi$.

If k is odd, proceed as for $\mathbb{Q}(\sqrt{5})$ $(f^+(\tau) \in -e^{2\pi i\mathbb{Z}/3}f^+(\tau))$.

If k is even, there is a polynomial q satisfying $f \circ \varphi =$ $\Rightarrow \qquad \Psi_1|(f-q(\frac{\Psi_4}{2\Psi_1},E_2))$ $q(\eta^{8}, g_{2}).$

Lemma. All relations of the generators for M^{13} are induced by

$$\begin{split} \Psi_{13}^2 - \left(\frac{\Psi_4}{2\Psi_1}\right)^4 \left(E_2^3 - 2^6 3^3 \left(\frac{\Psi_4}{2\Psi_1}\right)^3\right) &= \\ -108\Psi_1^{12}\Psi_2 - \frac{27}{16}\Psi_1^{10}E_2^2 + \frac{495}{8}\Psi_1^8\Psi_2^2E_2 \\ -\frac{1459}{16}\Psi_1^6\Psi_2^4 + \frac{41}{8}\Psi_1^6\Psi_2E_2 - 512\Psi_1^6 \left(\frac{\Psi_4}{2\Psi_1}\right)^4 \\ +\frac{1}{16}\Psi_1^4E_2^5 - \frac{97}{4}\Psi_1^4\Psi_2^3E_2^2 - \frac{1}{8}\Psi_1^2\Psi_2^2E_2^4 \\ -144\Psi_1^2 \left(\frac{\Psi_4}{2\Psi_1}\right)^5 E_2 + \frac{189}{8}\Psi_1^2\Psi_2^5E_2 \;. \end{split}$$

 $q \neq 0$ polynomial, $q\left(\Psi_1, \frac{\Psi_4}{2\Psi_1}, E_2, \Psi_{13}\right) \equiv 0.$

 $r := q(0, \cdot, \cdot, \cdot).$

If $r \equiv 0$ look at $q(X_1, X_2, X_3, X_4)/X_1$ instead of q.

Else $r\left(\eta^8,g_2,\eta^{16}g_3\right)\equiv 0$ holds, all elliptic relations are induced by

$$(\eta^{16}g_3)^2 - (\eta^8)^4g_3^2 = 0$$

A comparison of fourier expansions concludes the argument.

Theorem. M^{17} is generated by Ψ_1 , E_2 , $-\Psi_2$, η_2 and Ψ_{17} .

f	$ \Psi_1 $	E_2	$-\Psi_2$	$\eta_{2}/8$	Ψ_{17}
$f\circ \varphi$	0	g_2	η^6	η^6	$\eta^6 g_3$
weight of f	$\frac{1}{2}$	2	N W	<u>3</u> 2	9 2
multiplier μ	μ_{17}	1	μ_{17}^{5}	μ_{17}	μ_{17}^{7}

The proof is analogous to the ones for M^5 and M^{13} .

Problem 1: μ_{17} has order 8 and holds $\mu_{17}^4|_{SL(2,\mathbb{Z})} = 1$, so we need two lifts of η^6 . If $\mu \not\equiv 1$, there is $\nu \in \mathfrak{o}$ s.t. $\mu(T_{\nu}) = \mu(\begin{pmatrix} 1 & \nu \\ 0 & 1 \end{pmatrix}) \neq 1$. Then $f(T_{\nu}\tau) = \mu(T_{\nu})f(\tau) \neq 0$ $f(\tau)$ holds as τ and $T_{\nu}\tau$ tend to ∞ . Thus f and $f\circ\varphi$ are cusp forms and $\eta^6|f\circ\varphi$.

Problem 2: For M^5 and M^{13} , every symmetric HMF f^+ of odd weight k is divisible by Ψ_p . Here:

$$f^{+}(\tau) = f^{+}(D\overline{\tau}) = \mu(D)N(\varepsilon_{0}^{-1})^{k}f^{+}(\overline{\tau})$$

= $e^{k\pi i}\mu(D)f^{+}(\tau)$, $(\overline{\tau} := (\tau_{2}, \tau_{1}))$

for $\tau \in \mathbb{D}_{\varepsilon_0}$. Because of $\mu_{17}^4(D) = 1$, this property only depends on $\mu|_{SL(2,\mathbb{Z})}$. We obtain:

Every symmetric HMF f for which $f \circ \varphi$ is a multiple of g_3 but not of g_3^2 , is divisible by Ψ_{17} .

Lemma.

$$\eta_2^2 - 64\Psi_2^2 = 16\Psi_1^2 E_2$$

and

$$\begin{split} \Psi_{17}^2 - \Psi_2^2 E_2^3 + 216 \Psi_2^5 \eta_2 &= -256 \Psi_1^{18} \\ - 176 \Psi_1^{12} \Psi_2 \eta_2 - \frac{2671}{4096} \Psi_1^6 \eta_2^4 + \frac{103}{8} \Psi_1^4 E_2^2 \Psi_2 \eta_2 \\ - \frac{87}{16} \Psi_1^{10} E_2^2 - \frac{99}{128} \Psi_1^2 E_2 \Psi_2 \eta_2 + \frac{1387}{128} \Psi_1^8 E_2 \eta_2^2 \end{split}$$

induce all relations of the generators for M^{17} .

Corollary. $M^{13}(1)$ is generated by

$$M_{13} := \left\{ E_2, \frac{\Psi_4}{2\Psi_1} \Psi_{13}, \left(\frac{\Psi_4}{2\Psi_1} \right)^3, \Psi_1 \left(\frac{\Psi_4}{2\Psi_1} \right)^2, \Psi_1 \Psi_{13}, \Psi_1^2 \frac{\Psi_4}{2\Psi_1}, \Psi_1^3 \right\}$$

Corollary. $M^{17}(1)$ is generated by

$$\begin{split} M_{17} &= \{E_2, \eta_2^8, \eta_2^3 \Psi_2, \eta_2 \Psi_{17}, \eta_2^2 \Psi_1 \Psi_2, \\ &\quad \Psi_1 \Psi_{17}, \eta_2 \Psi_1^2 \Psi_2, \Psi_1^3 \Psi_2, \\ &\quad \eta_2^4 \Psi_1^4, \eta_2 \Psi_1^7, \Psi_1^8 \} \end{split}$$