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Introduction

Prolog about Blumenthal’s life

It is now over a hundred years that David Hilbert gave his sketches on a new type of modular
functions to his doctoral student Ludwig Otto Blumenthal, who made them the foundation of his
Habilitation “Uber Modulfunktionen von mehreren Veranderlichen” (on modular functions of
several variables). Blumenthal developed the theory of nowadays Hilbert Blumenthal modular
forms in three important directions: he investigated the existence of a fundamental domain,
introduced Poincaré series and proved two theorems of Weierstra® about the maximal number of
algebraically independent modular functions (cf. [BIO3]). Later on he published a treatment of
theta functions ([BI04b]) built upon the more detailed part of Hilbert’s notes.

It took some time before further results were obtained, since on the one hand algebraic geometry
and the theory of complex functions had to evolve further (cf. [Ge88, p. 4]), on the other hand
politics was directing almost all scientific efforts towards military purpose. The first world war
was forthcoming and Blumenthal, who was by the time professor at the Aachen University of
Technology (RWTH), became the head of some military weather stations (““Feldwetterwarte’)
and in 1918 worked in the construction of aircrafts, from which arose his paper [BI18] in 1918
(cf. [BVO6, p. 7]). Returning to Aachen he continued mathematical work as well as he started
occasionally to work on some historical topics like, for example, his biography of Hilbert [BI22]
(cf. [Be58, p. 390] and [BVO6, p. 25 et seqq.]).

Blumenthal did not only publish in several mathematical fields, he also was managing editor
of the “Mathematische Annalen from 1906 to 1938, appointed editor of the *““Jahresberichte
der Deutschen Mathematiker-Vereinigung” (DMV) from 1924 to 1933 and he wrote English and
French abstracts for the “Zeitschrift fiir Angewandte Mathematik und Mechanik” (ZAMM) from
1933 to 1938 (cf. [BVO06, p.14 et seqq.]). Both the resignment from his work at the DMV in
1933 and the end of his work for the “Mathematische Annalen” and the ZAMM were neither
accidently nor voluntary. He had to leave because of his Jewish ancestors, in 1938 the state
banned him from his profession.

Blumenthal was denunciated by students of being a communist and was arrested on April, 27t
in 1933, an error which was corrected 2 weeks later. But he was nevertheless suspended from
his lectures and was removed from office on September, the 229, The formal reason was his
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Figure 1: Ludwig Otto Blumenthal (1876-1944)



BLUMENTHAL'S CONTRIBUTION TO HILBERT MODULAR FORMS

membership in the “Deutsche Liga fiir Menschenrechte”, the second reason most probably his
classification as ““100% Jude’ (100% Jew) by German administration. So he was a victim of the
antisemitism of the Nazi movement, even if he was a Lutheran, converted at the age of 18 (cf.
[Fe03, p. 4]).

Blumenthal’s son was at the time a student in Aachen and could not possibly continue his studies
at the RWTH with everyone knowing his father had been removed from office. He emigrated
to Great Britain and could continue his studies there. Since his sister, Blumenthals’s daughter,
studied not in Aachen but in Cologne, she could finish her Ph.D. before she, too, emigrated to
Great Britain. Their parents also tried to leave Germany but in vain. The many applications Otto
Blumenthal wrote for jobs abroad were all rejected (cf. [Fe03, p. 6 et seqq.]) and the support
he got from individual people could not help him. Amongst others there were Paul Roentgen,
Rector of the RWTH and Felix Rotscher, Pro-Rector, who attempted to keep the member of their
faculty at his position at the RWTH (cf. [BVO06, p. 9]), J. Hadamard, C. Caratheodory and T.
Karman, who tried in vain to find university positions for Blumenthal outside Germany so as to
enable Blumenthal to emigrate (cf. [BVO06, p. 11]), his mentor David Hilbert, at this time too
old to help his former student, then Hecke, Behnke and van der Waerden, who forced Springer,
the publisher of the “mathematische Annalen”, not to release Blumenthal unless they should stop
publishing the journal (cf. [BVO06, p.15]). But the Nazi movement and state grew more and more
insidious and powerful so the little help Blumenthal got could not prevent his and his wife’s
suffering and their later death.

In the beginning, the German government distinguished between those “Jews” who had fought
in the first world war, like for example Blumenthal, and those who had not, but nevertheless
Otto Blumenthal’s situation got constantly worse. He started looking for jobs outside Germany,
but at this time too many mostly young scientists emigrated. Only after a long search, in 1939
Blumenthal, who then was 62 years old, got a work permit in Delft, Netherlands. Hence he could
emigrate there, having to leave all of his wealth but his furniture and books behind. He knew
that he would have to live on welfare, since the work permit did not include an employment nor
much hope for it. Only eleven months later he was back under the observation of the German
administration, since German troops invaded the Netherlands and his refuge became a prison.
(cf. [Fe03, p. 7 et seqq.]).

Since 1933 Blumenthal’s life consisted of continued and growing discrimination by the state as
well as by some students and colleagues (cf. [Fe03, p. 7]). In 1942, Blumenthal and his wife
Mali had to leave on train for the concentration camp Westerbork and only could return due to
the intervention of a Dutch reverend (cf. [Fe03, p. 16], [Th06, p. 89 et seqq.]). Afterwards
they were forced to move several times from one lodging to another and were deported to the
concentration camp Vught in 1943 and from there to Westerbork. Mali died there shortly after an
inhuman treatment, which afflicted her until her death. Luckily, her husband knew not of it and
assumed that she remembered her own or her children’s youth, when she repeated “Nein, nein”
(no, no) right before her death (cf. [Fe03, p. 16 et seqq.], [Th06, p.90, 91]).

Blumenthal new that his sister had been deported to the concentration camp Theresienstadt
(Terezin) in 1942, so he tried to get transfered there, too. On January 20™, 1944, he arrived
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there, where he was shocked to hear that his sister had died in July the year ago. His spirit rose a
little bit after he met a Czech who still knew him from a talk in Prague, when times had been bet-
ter. The Czech belonged to the “independent” administration of the concentration camp and took
care of Blumenthal as good as he could. So Blumenthal became one of the protected persons in
Theresienstadt. (cf. [Fe03, p. 18, 19])

But protected in Theresienstadt only meant that he got a quarter free of rats and bed bugs, got
some more food than before and could be prevented from being send to Auschwitz. The Czech
even managed to get him the permission to give lectures, fooling the SS into the belief that this
was important for the water supply of the city. In Theresienstadt Blumenthal learned his 10™
language, after German, English, French, Russian, Italian, Bulgarian, Dutch, Latin and Greek
now Czech, even if it was now much harder for him to learn a new language than it used to be
(cf. [Fe03, p. 8, 19]). Blumenthal soon got ill, he had to stop all further activities. He survived
the long and severe illness but not for long (cf. [Fe03, p. 18-19]). On November the 12" he died
after three days of unconsciousness. An autopsy revealed that he had old-age tuberculosis and
cerebrospinal fluid (cf. [BV06, p.14]). “But the deaths of perhaps 85% of the 870 ,,privileged*
inmates within two or three years makes clear that life at Terezin was very harsh, presumably in
terms of nutrition, hygiene, clothing and warmth” ([BV06, p.14]).

Blumenthal’s contribution to Hilbert (Blumenthal)
modular forms

An accurate description of Blumenthal’s work is given in van der Geer’s book ([Ge88, p. 4]):
“[...] Blumenthal did the first pioneering work in a program outlined by Hilbert with the aim
of creating a theory of modular functions of several variables that should be just as important
in number theory and geometry as the theory of modular functions of one variable was at the
beginning of this [20th] century. Since no general theory of complex spaces was available this
was by no means an easy task. Blumenthal had at his disposal a manuscript by Hilbert from
1893/94 on the action of the modular group I'x of a totally real field /C of degree n over QQ on
the product H" of n upper half planes. According to Blumenthal it gave a sketchy description
of general properties such as properly discontinuous action and fundamental domain but it con-
tained precise information on the construction of modular functions by means of theta functions.
Blumenthal gave a detailed account of the function theory involved but his construction of a fun-
damental domain had a flaw: he obtained a fundamental domain with only one cusp as in the
case of the classical modular group. This mistake was corrected many years later by Maal who
showed that the number of cusps equals the class number h of

How come this flaw? Both Hilbert and Blumenthal seemingly took for granted the existence of
just one cusp as in the elliptic case. They overlooked that Blumenthal used the wrong group in
his proof of the shape of the fundamental domain (in [BI03] and [B104a]).

His work consists of the following three parts: First he investigates the fundamental domain of
H"/ GL(2, o) for totally real number fields X of degree n with ring o of integers, where H :=
{z € C|Im(z) > 0} is the upper half plane. Therefore he proves the discontinuous operation

12
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of the group GL(2, 0) on H" and investigates the fixed points of the elements of GL(2, 0) on H
and on its boundary. Then Blumenthal constructs a fundamental domain in three steps in which

the group is enlarged successively. The product H" of n upper halfplanes modulo the subgroup

of translations in GL(2, o) is the product of a parallelepiped (real parts) and a half space RZ,,

(imaginary parts), since translations in GL(2, o) fix imaginary parts and the group of translations
operates discretely on the real parts. The space H" modulo the affine transformations, i.e. the
transformations fixing the point at infinity, is the product of a cone (for the imaginary parts) and
a parallelepiped (for the real parts). To see this, we first use matrices of the type(g 891) In the

third step, the whole group is investigated. Blumenthal shows using a theorem of Minkowski,

that there is a constant C' = (C4,...,C,) with C; > 0 forall 1 < j < n, such that for every

T € H" there isan element M/ = (1 §) € GL(2,K) with v,§ € o, such that (M7); > C; holds

for all 1 < j < n. Blumenthal wrongly assumes M € GL(2, 0), so he obtains the existence of

exactly one cusp for H"/ GL(2, 0), as this was conjectured by Hilbert (cf. [Ge88, p. 4]).

The second part of Blumenthal’s work deals with Poincaré series (cf. Section 2.3), he shows
their convergence and the existence of n + 1 algebraically independent Poincaré series. He uses
the result of the first part, but the proof can easily be amended by treatment of all the finitely
many cusps instead of the single cusp oco. Equivalently he shows the existence of n independent
modular functions which are quotients of the n + 1 algebraically independent Hilbert modular
forms.

The third part (cf. [BI04a]) proves the theorems of Weierstral, that

I) all rational functions of the fundamental domain can be algebraically expressed by n inde-
pendent functions,

I) they can be rational expressed by n + 1 appropriate functions.

This result is independent of the mistake at the beginning. We will refer to this fact in Section
6.2. An alternative proof of the Theorem of Weierstral3 can be found in [Th54, Hauptsatz II, p.
457], some further explanations and a good overview in [Re56, p. 277, 278].

Architecture of the thesis

Much progress has been made since Blumenthal’s work. We focus on concrete calculations of
rings of Hilbert modular forms, where a number of rings already have been calculated. But only
in the case of Q(+/5) the full ring of Hilbert modular forms, in this case there is only the trivial
multiplier system, has been calculated. For example Hammond’s modular embedding delivers
the subring of symmetric Hilbert modular forms with trivial multiplier system of even weight in
case Q(+/8) and probably less in case of larger determinants (cf. [Ha66a] and [Re74]). We will
apply the method of Borcherds products and obtain the complete ring for symmetric multiplier
systems respectively the complete ring for the extended Hilbert modular group.

13
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This is done in several steps. In the first chapter we will introduce automorphic forms, Hilbert
modular forms and some modular groups with their appropriate operation. We will give quite
general definitions and some equivalent notions in order to enable the reader to classify the
further results on Hilbert modular forms on H? and show the interrelation of the different notions.

Following the definitions we introduce three important examples of Hilbert modular forms in the
second chapter, as there are Eisenstein series, Theta series embedded via Hammond’s modular
embedding and the Poincaré series, the latter more important for theoretical investigations than
for concrete calculations. Additionally we introduce elliptic modular forms, especially with
characters and for congruence subgroups and define vector valued modular forms, all of which
we will need later.

The third chapter presents Borcherds products in the case of Hilbert modular forms following
Bruinier and Bundschuh’s paper [BB03]. We further investigate X and its ring o of integers,
Weyl vectors and Weyl chambers and Hirzebruch-Zagier divisors, such that the parameters of
the Borcherds-lift can be calculated explicitely.

We include a chapter about general properties of Hilbert modular forms and, in particular, about
Borcherds products. We apply Gundlach’s method of determining all multiplier systems, we
investigate symmetric and skew-symmetric Hilbert modular forms with respect to two reflections
and present two methods to obtain new Hilbert modular forms by differentiation. Both are not
needed in our cases, but could be beneficial in other context and differentiation poses a way to
obtain Hilbert modular forms of inhomogeneous weight.

Chapter number five deals with the calculation of Bocherds products, especially we give several
sources for the elements of the plus space of the elements needed for the Bocherds lift and
determine the weight and multiplier systems and Fourier expansions of the calculated products.

In the sixth chapter we compose the various results of the preceding chapters to determine the
rings of Hilbert modular forms for Q(1/5), Q(+v/13) and Q(+/17). The ring of Hilbert modular
forms for Q(v/5) is generated by four modular forms and we succeed in expressing the known
results with help of Borcherds products. In this case all Hilbert modular forms have trivial mul-
tiplier system. In case Q(+/13) the ring of extended Hilbert modular forms is also generated
by four modular forms, the subring of Hilbert modular forms with trivial multiplier system is
generated by seven modular forms. In case Q(+/17) the ring of extended Hilbert modular forms
is generated by five modular forms, the subring for trivial multiplier systems needs eleven gen-
erators. All these rings have transcendence degree three.

The last chapter poses new questions possibly connected to this work and presents some ap-
proaches to their solution.

Main results

The main results of this work are the calculation of some rings of Hilbert modular forms for
Q(v/5), Q(v/13) and Q(v/17). We write M? for the ring of extended Hilbert modular forms for

14
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Q(/p) and M*(1) for the ring of extended Hilbert modular forms with trivial multiplier system.
In case Q(+/5) we reformulate the already known ring M°> = M?®(1) of Hilbert modular forms
using Borcherds products into

Theorem 6.3.1. M? is generated by the Eisenstein series £4 and EX and the Borcherds prod-
ucts W, and W5 (cf. table 6.2) and all relations in between the given generators are induced by
the relation Rsq:

67 42 67 !

5
— wi(3125 0} + 1728@2(335(EH) Ef - 227 (Ef)’)
4486 0 . o .
5romsooos (43 (B = 153 (Bf)) B + 177 (Bf1)" (£01)" - 6784 (E{)") )

In other words if we write X, = El, X5 = ¥}, Xg = eg and X5 = U5 we get

M? = C[X3, X5, X4, X15)/ (Rso) -

By a comparison of Fourier expansions we can easily show that the Theta series s5 and si5
introduced by Muller (cf. [M85]) are Borcherds products. Note that the index of the Borcherds
products does not indicate their weight.

In the case of Q(/13) there are non-trivial multiplier systems and we calculate the ring M3
using the Borcherds products ¥, ¥, and W5 and the Eisenstein series EZ of weights 1, 3, 7 and
2.

Theorem 6.4.1. M is generated by ¥, ~ T El'and W5 (cf. table 6.3) and the relations in
between the given generators are induced by

o, \* v 27
. 4 H 693 4 _ 12 10 ( H
Ry : Ui, <2@¢> <(E2) —2°3 (2@1) ) 108W* W, — =W (EM?

495 1459 41 1

\If 4 5
S\l mH _ 6 4 6 H 6 4 H
97 1 v, \° 189
4@%@3(EH) §Q@@§(Ef)4—]44@f<§$%) E§4—7;ﬂﬁ@gE§.

In other words if we write X; = ¥, Xy = Y, = EX and X; = ¥, we get

2\11'

M13 = C[X17X27 1/'27)(7]/ <R14> .

As a Corollary we get the subring

15
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. 2
Corollary 6.4.2. We write X, = Ef, Xo = U3, Xy = U254, X;y = ¥, (&> L Xpp =

3
(%) X5 = U1 W33 and X5 = o205 and define the relations

Rig 1 Xi0Xg = X12Xg, Ry :  Xi) = X12Xs,

Ryy : X16Xg = X6X1s,

Ry Xiy= X} X7 — 1728XF, — 108X3X¢ + = X3X7 + L X, X X5 — 129X X2
+%X120X§X4 — %XngXfO — f—gXlng’Xf — %XfoXjf + %X4X122X8.

Then
M*(1) = C[Xy, X¢, X5, X10, X12, X16, X18] / (Rig, Roo, Ros, Rsg).

In the case of Hilbert modular forms for Q(1/17), we can describe the ring M'" with the the
Hilbert modular forms 7, of weight g defined by Theta series (cf. [He81]), the Borcherds prod-
ucts Uy, Uy, ¥y, of weight £, 2 and 3 and with the Eisenstein series £’ of weight 2. We get

Theorem 6.5.1. M7 is generated by X% =, X% = —U,, Y% =19, Xo = El and X% = Uy,
Together with the two relations of weight 3 and 9,

Rs :n2 — 64032 = 16V2EY
and

Ry : W2 — W2 (EF)’ + 21603, = —25601°

2671 103

2
— 1760 * Wy, — m‘l’?ﬁé + ?‘I'il (Ef) Wons
87 2 99 1387

we have M7 = C[X%,X%,Y%,XQ,X%]/(RZ},Rg).
As a corollary we get the subring A7*7(1) of Hilbert modular forms with trivial multiplier sys-
tems:

Corollary 6.5.2. We write

Xy = Ef7 X = _‘I’g 772/87 Xy = ‘1’3‘1’17 772/& X5 = —‘1’1‘1’37
Xg =W 0507, Xy=-—UiWyny/8, X7=UiU715/8, X3=—Ui0,,
Yo =00, Ys=U[np/8 Y=}
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and define the relations

Ry : Xy X5 = X3Xe, Ry : Y, X6 = X§X4a
Ry - Y5 Xe = X3Xf, Ry : Xy Xg = X5X77
R/12 : XeYs = X5 X7, Rys - XeX7 = XogXy,

Ry X5X9 = XeXs,
—26T1X2X2 + 21X, Xy X2 X5 — 103X2X2X6 — S X2X, V3 X,

F XX X2+ 2L XXX+ BT X, X

Then

Ml?(l) - C[X27 X37 X47 YV47 X57 YBa Xﬁa Y%7X77 X87 XQ]/(R187 R147 R137 R127 R97 R/127 R117 RlO)-

Acknowledgements

First of all my gratitude goes to Prof. Aloys Krieg, the advisor of this work, for his many helpful
comments, Prof. Jan-Hendrik Bruinier for his advice and some double checking calculations of
Fourier expansions, Prof. Dr. Sebastian Walcher for his support, Dr. Ingo Kldcker for his hints
and tips and help for layout and programming, Marc Ensenbach for his help with the quotation of
[Ch85] (T[] E &), Dr. Volkmar Felsch for the picture of Otto Blumenthal and his assistance
with the biographical facts about Blumenthal, Priv.-Doz. Dr. Fernando Lledo for his help with
this introduction, all my colleagues for the pleasant working condition at the Lehrstuhl A fiir
Mathematik, and finally my wife and daughter for their love and support.

17



INTRODUCTION

18



1 Definitions of Hilbert Modular Forms

Starting with the general case, we will restrict our research to Hilbert Modular forms for real
guadratic number fields. We give several equivalent definitions of Hilbert modular forms. We
will mainly use the first one, but need the orthogonal and the vector valued one for the original
formulation of Borcherds’ work. The definition of vector valued modular forms is not given in
this chapter, but in section 2.6, after an equivalent subspace of nearly elliptic modular forms
for a congruence subgroup is introduced. The contents of this chapter are taken from the books
of Freitag [Fro0] and Leutbecher [Le96] and from Bruinier [Br98].

1.1 Automorphic Forms

This section is based on the first chapter of Freitag’s book [Fr90], but introduces automorphic
forms with multiplier system. Given a subgroup I" of SL(2, R)™ we define its operation on H"
and its cusps and the notion of automorphic forms with respect to I".

Definition 1.1.1 (Operation of subgroups of SL(2,R)™ on H™). We denote the upper half plane
{z € C; Im(2) > 0} by H. Let n € N. Given a subgroup I" of SL(2, R)™ we define its operation
on H" by SL(2,R)" x H" — H",

(M. 7) s M7 = (CL1T1 + by nTy + bn)

Yoy
T+ dl CnTn + dn

M = e and 7= (m,...,7) .

This operation can be continuously extended to an operation on (HU R U {oco})™.

Definition 1.1.2 (Extension of SL(2,R)™). The group S,, of permutations of {1,...,n} acts
naturally on SL(2, R)™ and on H"™ by permutation of the n components. We define the extended

group SL(2,R)™ as semidirect product SL(2, R)"™ x S, with
((M17 DY Mn) 77T1) . ((Nla ey Nn) 77T2) - ((M17 DY Mn) (Nﬂ'l(l)a ey Nﬂ'l(n)) 77T17T2)

forall (M,..., M,),(Ny,...,N,) € SL(2,R)", w1, m € S,,.

19



1 Déefi nitions of Hilbert Modular Forms

o —

Remark 1.1.3. We can embed SL(2, R)™ in the symplectic group
Sp(n, R) := {M e R M™ (5 g )M = (g, 7')}

by

—

SL(Q,R)" — Sp(n7R)
(My,...,M,),m) (Mlx'”XMn)'(%zgﬁ)

where P, is the permutation matrix corresponding to 7 and

L . [ Diag(a,...,an) Diag(bi,...,bn)
(M x o x M) o= (Diag(a ..... cn) Diag(di,...dn)

for M; = (Zj Zj) € Sp(1,R), 1 < j < n. Itis easy to see that this embedding is well defined.

Simple calculations show the following

o —

Remark 1.1.4. The group SL(2, R)" operates on H" and the operation is given by

o —

SL(2,R)» x H" — H", (M, m)7) — Mn (7).

Definition 1.1.5 (Cusp). For A\,e € R™ and 7 € H" we define
THA =M+ A, T+ )

and
eT+Ai=(e1 - T1+ A, s Tn+ M)

—

For a discrete subgroup I' < SL(2,R)™ we define the group of translations by
ty = {A e R"; thereis M € T': M7 =7+ Aforall 7 GH”}
and the group of multipliers by

Ap = {56R”; e >0, ThereareMef,)\eR”:Mr:gr+>\forallreH”},

where £ > 0 means 1 > 0, ..., s, > 0. We say that I" has cusp infinity , iff t; is isomorphic
to Z" and A is isomorphic to Z"~!. We will write T" has cusp co.

We say that " has cusp « for some x € (R U {oo})", iff there is an M € Sm) with
Mk = (00,...,00) such that MT'M~! has cusp infinity.
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1.1 Automorphic Forms

o —

Remark 1.1.6. Forevery « in (RU{co})" there existsan M € SL(2, R)» with M x = (oo, ..., 00).
The definition of cusp « is independent of the choice of M, i.e. if Mk = Nk = (o0, ...,00) for

two elements M, N of SL(2, R)", then either both MM/~ and NT'N~" have cusp infinity or
neither has.

Definition 1.1.7. We define
(H")* := H" U set of cusps of I".
From nowon letT" = (T, S) with a subgroup S of S,, and a discrete subgroup I' of SL(2, R)" such

that S operates on I, (H")*/I" is compact and each of the projections p; : I' — SL(2,R), M
(2 Zé) 1 < j < n,isinjective.

Remark 1.1.8. The compactness of (H")*/T" and (H")*/I" are equivalent.

Proof. Since I' < I, the compactness of (H")*/T" implies the compactness of (H")* /T

Write S = {m,...,m,}and let (H")*/T" = (H")*/T'/S be compact. Consider an open covering
UierU; of (H™)*/T". Then also U;erm (ﬂ;-”:leUij) is an open covering of (H™)*/T". It induces
the open covering U;cm S (ﬂ?;leUij) /S on (H™")*/T"/S, which has a finite subcovering corre-
sponding to some finite set J C I". Then U;e j1<;j<mUs, is a finite subcovering for U U;, since
for every x € H™/T there is¢ € J such that Sz € S (ﬂ?;leUij) /S, i.e. there is 7; € S with

ren; N mU;,s0x €U, 0

Remark 1.1.9. If (H™)*/I" is compact, then there are only finitely many cusps. If ¢ is a multiplier,
then N(¢) = 1. For a proof we refer to [Fr90, Remark 1.2.3], where also further properties of
(H™)* and of (H")*/T" can be found. From the next section on we will restrict to the Hilbert
modular group I = SL(2, Q(,/p)) of some real quadratic field Q(/p) of prime discriminant p =
1 (mod 4) and S either the trivial group or .S,. Then (H")*/T" is compact and the projections p;
are injective.

Definition 1.1.10 (Trace and dual lattice). Given a € R™ and € R™ we define the trace
S(ax) = a1xy + -+ + apx,
and for a lattice t C R™ we define the dual lattice t* by

t# = {a € R"; S(ax) € Zforall z € t}.

Lemma 1.1.11 (Fourier expansion). Let IV C RZ, be an open, connected set. Define the tube-
domain D := {7 € H"; Im (7) € V'} corresponding to V. Let

f:D—C
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1 Déefi nitions of Hilbert Modular Forms

be a holomorphic function on D satisfying
f(r+a)= f(r), forallaetandallT € H"

for some lattice t C R™. Then f has an unique Fourier expansion
f<7_> _ Z ag€27riS(gT)
get#
and the series converges absolutely and uniformly on compact subsets of D.

Definition 1.1.12 (Norm). Given c,d € R, » € Q™ and 7 € H" we define the /" power of the
norm of ¢7 + d by
N(CT + d)r = (ClTl + d1>T1 """ (CnTn + dn)rn

where the 7' power is defined using the main branch of the logarithm C — R + i(—, 7].
Definition 1.1.13 (Slash operator). Given a holomorphic map f : H" — C,r = (ry,...,7,) €
C", amatrix M = (2%) e Tandamap p : I' — C* we define

H* — C

FeN
7 — u(M)™t-N(er +d)" - f(MT).

For a permutation = € S,, we define

flér
ro— ()t f().

For every element (M, ) € SLETR)H with M € SL(2,R)" and = € S,, we define f}!(M, ) =
fIEM =, For sake of consistency we additionally require (M) = f|i.(M)/f|i (M) for all
M e T. We will write |, for |1, where 1 is the constant map SL(2, R)» — {1}.

Remark 1.1.14. Note that N(ct +d)~" = 1/(N(er + d)") holds for every r € C" independent
of the chosen branch of the complex logarithm.

Remark 1.1.15. We are interested in functions f on H" satisfying f|*M = f forall M € I and
some fixed r and 1, so need the condition

fIFMMN = fI*(MN)  forall M,N eT.
Hence we are interested in 7r = r forall 7 € S,,.

—

Remark 1.1.16. If we embed SL(2,R)" in Sp(n, R) as described in Remark 1.1.3, we obtain

FleM(r) = n(M) T ] <Z N(cig, dij, T, kﬂ) f(Mr)

i=1 \j=1

22



1.1 Automorphic Forms

for all M = <((Zj))j éfli))i) (1<14,j <n), € H", where

cimi +di) i (e, d 0,0),
Ncij, dij, 7, ki) = (€T, i) (i, dy) # (0,0)
= 0.

0, |f Cij = dij

Note that in each of the factors, all but one summand vanishes. This form of f|} A/ motivates the
restriction posed upon x in Definition 1.1.13 of the slash operator.

Definition 1.1.17 (Regularity at a cusp). Let V = RZjand D = H". If f : D — Cisa
function satisfying the requirements in Lemma 1.1.11 and I" has cusp infinity, then f is called
regular at cusp oo, if

ag #0=9; >0 (foralll <j<n).
We say that f vanishes at cusp oo if
ag #0=¢; >0 (foralll <j<n).

Let « be a cusp of " and let NV in SL(2, R)" be a matrix with N~'x = (00, ..., 00). If there is
r € Q"andamap u: I' — C* such that f satisfies

fIFM = f forall M €T,

then we say that f is regular at cusp x (resp. vanishes at cusp « ) if f|,N has cusp co with
respect to the group N —'I'N and is regular at oo (resp. vanishes at co).

Remark 1.1.18. Note that x is not needed for the definition of regularity. A constant does not

—

change the regularity at a cusp and there is no unique way to extend y to a map SL(2, R)” — C*.

Definition 1.1.19 (Automorphic form). Let n € N, T as in Definition 1.1.7 and let uw:T'—C
be a map of finite order, i.e. let{x*; k € N} be a finite set. An automorphic form of weight

r=(ry,...,r,) € Q" with respect to I with multiplier system 1 is a holomorphic function
f H"—C
with the properties

a) f|*M = fforall M T,

b) fis regular at the cusps.

If f vanishes at all cusps, we call f a cusp form . If f is an automorphic form of weight » with
multiplier system p, we will sometimes write f| M for f|/M.
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1 Déefi nitions of Hilbert Modular Forms

Remark 1.1.20. The definition of an automorphic form is based on the one in Freitag’s book,
cf. [Fro0], but includes multiplier systems and the extended group T, since both occur naturally
in the theory of Borcherds. Freitag mentions the problem of formulating a general theory of
multiplier systems. In the case of the Hilbert modular group and of subgroups of finite index,
this was done by Gundlach, cf. [Gu88]. We restrict to multiplier systems of finite order, since
this will do for us and we can easily deduce the important properties of an automorphic form
f with multiplier system of order »n from the properties of the automorphic form f” with trivial
multiplier system.

Proposition 1.1.21. Each automorphic form f of weight 0 = (0, ..., 0) is constant.

Proof. (cf. [Fr90, Proposition 1.4.7])

Let us first assume that ;. = 1 is the trivial multiplier system. f induces a holomorphic map on
H" /T" which can be continuously extended to a map (H")*/T" which we also denote by f. Its
absolute value | f| attains its maximum in (H")* /T because this set is compact. If the maximum
is attained in (H")/f, then f is constant by the maximum principle. Else we consider the finite
product [T(f(7) — f(x,)) where x; are representatives of the cusps modulo I. This function is a
cusp form and the induced function on (H")*/T" attains its maximum in H" /T, so it is constant.
If 4 # 1, then there is £ € N such that ¥ = 1 holds. Hence f* is an automorphic form of
weight 0 with trivial multiplier system p* and thus constant. Therefore the continuous function
f s constant too. O

From Freitag [Fr90, after Proposition 4.7] we take

Lemma 1.1.22 (Action of multipliers). Let f be an automorphic form of weight r with respect
to I" with trivial multiplier system, let oo be a cusp of I and let e € A;. Then t = et, t# = ct*

and the Fourier expansion
f<7_> — Z ag€27rngT

get#

satisfies
lage| = |ag| N(e)" forall g € t.

Proof. Foralle € A thereareb € R™and M < I with operation M (7) = er+bforall 7 € H".
Leta € t and K € T with operation K(7) = 7 +a forall - € H". Then MKM~' € T satisfies

MEM Y1) = MK r—ec ) =ME"'r—c'b+a)=7+ca forall 7 € H"
showing et C t and vice versa MK M(7) = 7 + e 'a for all 7 € H" shows et D t, S0 we

have et = t. Since the condition on a € t# is S(ax) € Z for all x € t and ¢ operates on t, the
multiplier ¢ also operates on the dual lattice t*.
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1.1 Automorphic Forms

We use e~ 't = t to calculate

N(E)irf( ) €T+b Z a 6271'18 g€7'+b)
get#
= Z eQ’TiS(gb)agsfleQ’"S(gﬂ forall - € H"
get#

and by comparison of Fourier coefficients we get
N(g) "ay = age—1e*75") forall g € t,
hence the absolute values (remember ¢ € Ay implies N(g) > 0) satisfy

lage| = |ag| N(e)" forall g € t.

We get the simple

Corollary 1.1.23 (Remark 1.4.8 in [Fr90]). If f is an automorphic form, but not a cusp form,
then
Tl — e e e — Tn

Proof. Let f be an automorphic form of weight . Choose j such that r; is minimal. Since
" is a discrete subgroup of SL(2,RR)", the group of translations tr is a discrete subgroup of
R™. Then Ar is a discrete subgroup of R™, since it operates naturally on the discrete group tr.
Moreover Ar is isomorphic to Z"~! and for all multipliers e in Ar we have N(¢) = 1, so there is
amultiplier ¢ in Ap withe; > 1 and ¢, < 1 for all & # 5 (similar as in [Fr90, Proof of Corollary
after Proposition 1.4.9]). Hence we have

Since all ¢, < 1 (k # j) and r, — r; is nonnegative for all & # j, this equation only holds if
r, =r; forall k # j. O

Another Corollary from Lemma 1.1.22 is
Lemma 1.1.24 (Gotzky-Koecher principle). In case n > 2 the regularity condition in the

Definition of automorphic forms can be omitted.

Proof. Letn > 2and f : H" — C be an automorphic form of weight » with multiplier system p
with respect to I". Assume that 1 is the trivial multiplier system (compare Freitag’s book, [Fr90,
Corollary after Proposition 1.4.9]). As in the proof of Corollary 1.1.23, we choose a multiplier e
withe; > lande; < 1forall j > 2. Let g € t with g; < 0. Since ¢; < 1 forall 5 > 2, the set

{5

= [5(g9e™) — qiet'l; mEN}
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1 Déefi nitions of Hilbert Modular Forms

is bounded by some M € R and from the absolute convergence of the Fourier expansion of f
and Lemma 1.1.22 we get the convergence of

Z |ag| N( m r 27r\gl\6 Z |(1, 27‘(2(9181
m=1
< |Clg€m ‘627ri5'(g£m7')+27rM
27rM Z ‘ag 27riS(g€mT)
27rM Z ’(1, 627rzS(gT
get#
where 7 := (i,...,7) € H". The left side converges, hence we get |a,| = 0. Since for every
automorphic form f there is & € N such that f* has trivial multiplier system, together with f*
surely f is regular at the cusps. O

1.2 Standard Definition of Hilbert Modular Forms

We identify SL(2, ) with a subgroup of SL(2, R)™ and define Hilbert modular forms as certain
automorphic forms. In this case, notations can be simplified. We restrict our investigations on
Hilbert modular forms H2 — C for the modular group. This definition will be used throughout
this work.

Definition 1.2.1 (I, o, operation of SL(2, ) on H"). Let K be a totally real number field of
degree n := [K : Q] := dimg(K). Then there are exactly n different embeddings of K into
R, or, if we assume K C R, there are n different automorphisms C — K. We denote them by
K — R, a — a9 where j ranges from 1 to n and a = oY holds for all a € K. We denote the
ring of integers of IC, i.e. the set of all € IC, such that there is a monic polynomial p € Z[X]
with p(x) = 0, by 0. We define the operation of SL(2, K) on H" by

a b a7 4 b a7, 4 b
. 4 T\ O 1 d0 " g, + do)

Remark 1.2.2. The operation on H" of the group SL(2, K) and of its image with respect to

a b a® M a®
SL(2,K) — SL(2,R)", — e ,
c d D qm ) gn)
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1.2 Standard Defi nition of Hilbert Modular Forms

are the same. Two groups are commensurable, if their intersection has finite index in each of the
two groups. Freitag [Fr90] defines Hilbert modular forms as automorphic forms with respect to
groups commensurable to the image of SL(2, 0) C SL(2, K) in SL(2,R)™. We will only consider
SL(2, 0) and can thus simplify notations.

Remark 1.2.3. The operation of SL(2, ) shows a common principle of Hilbert modular forms.
The images \U) of an element A € K with respect to the field automorphisms of £ and the
j"-component 7; of a point 7 € H" belong together. Thus we give the following definitions:

Definition 1.2.4. An element ) of /C is called totally positive , if A\0) > 0 holds forall 1 < j <
n. Then we write A > 0.

Definition 1.2.5 (Norm and trace). For A € K we define

e the norm N(A\) =\ ..... A™ and

e the trace S(\) = AW + ... + A,
We define

e the trace S(\7) = XV 4. 4+ X®7 forall A € K and 7 € H",

e the norm N(cr +d) = (cWr +db) ... (™7, +d™) forall ¢,d € K and 7 € H",
o N(cr +d)" := (W7 +dD)yr ..o (Mg, 4+ d™)™ for all ¢,d € K, 7 € H* and
r=(ry,...,m,) € Q", where 2" := ¢"i!* is defined using the main branch In : ¢ —

R + i(—m, 7] of the complex logarithm,
e the translation 7 — 7 4+ A with A € K as the map
H* — H", 7+— 74+ \:= (7'1+/\(1),...,Tn+)\(”))
and
e the multiplication 7 — X - 7 with A € IC, A > 0 as the map
H* — H", 7> \-7 := ()\(1) -7‘1,...,)\(")-Tn).

Definition 1.2.6 ((extended) Hilbert modular form). Letn € Nand let iz : SL(2,0) — Cbea
map of finite order. A Hilbert (Blumenthal) modular form for I of weightr = (n,...,7,) €
Q™ with multiplier system p is a holomorphic function

f:H"—C
with the properties

a) f|*M = fforall M € SL(2,0),
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1 Déefi nitions of Hilbert Modular Forms

b) f is regular at the cusps of SL(2, o).

If f vanishes at all cusps, we call f a cusp form . If f has homogeneous weightr = (k,... k) €
Q™ we will also say that f has weight & € Q. If f satisfies f|*'M = f forall M € S,, we call it
extended Hilbert modular form for K of weight r = (r,...,7,).

Remark 1.2.7. Since (H")*/ SL(2, 0) is compact, every Hilbert modular form is an automorphic
form. If IC #£ Q, then the Gotzky-Koecher principle grants that condition b) can be omitted.

We want to restrict the notion of multiplier systems to the relevant cases, i.e.

Definition 1.2.8 (Multiplier system). Let I' = SL(2,0) and I' = (I, S,) or I' = T. A map
I — C*is called multiplier system , if it is of finite order and there is £ € Q such that

(M) M) N(er + d)* = p1 (M) N (ey My + dy) " 1 (M) N (c)7 + dioy)"

holds for all

a b a b
T e H", M(l) = W W el M(Q) = @ @ e I'and M(l)M(Q) =

¢y duy c2) de c d
and in case 7, € I' N S, additionally

p(m) (M) (o) = p(my M) holds forall M €T

Lemma 1.2.9. If f # 0 is an (extended) Hilbert modular form of weight & with multiplier system
1 (in the sense of Definition 1.2.6) , then p is a multiplier system in the sense of Definition 1.2.8.

Proof. The first equation follows directly from f['M; My = f|EMy|iM,. Let my,m € T'N S,
and M € I". We calculate for all = € H":

FlemleM|ima (1) = p(me) ™" - flham |l M (mo7)
pu(ma) Tt (M)~ N(e(mer) + d)* - fhmy (MmoT)
L

(m2) " (M) ™I N((m3 o) + (my ' d)) pu(ma) ™+ f (i MmaT)

and

Fli(mma) | (my  Mmo) (1) = pu(my ' Mima) ™ N((mg )7 + (3 'd)" - fli(mima) (g ' Momy)
el
= p(my  Mmo) " N((my te) + (3 ') (i) ™ - f (i MmaT).

If we insert u = 1, we get

Fli(mims) w(my ' Mma)(r) = N((m3 ' e)7 + (w3 ') f (mi Mmar),
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1.2 Standard Defi nition of Hilbert Modular Forms

)
fle(mMms)  fla(mime) k(7w ' M) 1
mMmy) = = = u(m, "M T7).
p(m M) fli(mMmy) "~ fli(mime)|y (my ' M) (s ()
Since
flemi| M|y = fli(miMms) = fli(mime(my  Mms)) i= fl(mima) | (m5 M),
we get

pu(ma) " (M) ()~ = g Moy) () T = (M)
[l

Remark 1.2.10. Gundlach [Gu88] showed that the restriction on the order of p is obsolete,
compare Remark 4.1.7.

Lemma 1.2.11 (Integral weight). If 1 : [’ — C* is a multiplier system of integral weight £, then
w is an abelian character, i. e. u(MN) = pu(M)u(N) holds for all M, N € T.

Proof. For u|r one calculates
N(CT + d) =N (C(l)M(Q)T + d(l)) N (C(Q)T + d(g))

or compares Remark 4.1.4 and Remark 4.1.7. Together with Lemma 1.2.9 this proves the asser-
tion. O

We will see in Proposition 2.3.3, that for every multiplier system there exists a nontrivial Hilbert
modular form of some weight with this multiplier system.

Clearly extended Hilbert modular forms are Hilbert modular forms. We investigate the relation
between the corresponding multiplier systems:

Lemma 1.2.12 (multiplier systems of (extended) Hilbert modular forms). Let x be a mul-
tiplier system of a Hilbert modular form f £ 0. It can be extended to a multiplier system
i (T, S,) — C*ifand only if 4 satisfies u(7 ' Mm) = u(M) forall = € S,, and M € SL(2, o).
The extension can be realized by continuation of i|r = p and fi|g, = 1. On the other hand, if
T [’ — C* is a multiplier system of an extended Hilbert modular form, then for every m € N
with 7" = 1, the value p(7) is an m-th root of unity. p|r satisfies u|r(7—'Mm) = p|r(M) for
all M € SL(2,0) and 7 € S,.

Proof. This follows almost directly from Lemma 1.2.9 since we do not demand that there is an
extended Hilbert modular form for this multiplier system. Note that

pr Er) = p(B) = p(r ™ )u(E)u(r),

s0 p(m~ 1) = p(x)~ ! forall # € S, NI Since by assumption

p(r" Er") = p(m™ ) p(E)p(r") = p(m™) p(m"),

we have p(7™) = p(m)™. O
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1 Déefi nitions of Hilbert Modular Forms

1.2.1 Restriction to Quadratic Number Fields

In the rest of this paper, we will restrict our investigations to Hilbert modular forms of homoge-
neous weights & € Q and for real quadratic number fields K = K, := Q(,/p) for prime numbers
p which are congruent to 1 modulo 4. Then n = 2 and we do not need the condition b) in the
definition of Hilbert modular forms by the Gotzky-Koecher principle. For calculation of at least
some non-homogeneous weights see section 4.4.

Definition 1.2.13 (f, | O ICp, 0). Foraprimep =1 (mod 4) we write I' :== SL(2, 0)
where o is the ring of integers of IC = IC, = Q(,/p). It is given by

1
o:Z++T\/Z_)Z.

We denote the group of the elements of T" fixing co = (ic0, ic0) by I',. We write

X::)\(2):>\1_>\2\/]_? for)\:>\1+)\2\/]_7€IC,>\1,)\2€Q

for the nontrivial field automorphism of K, and extend I' and I, to the groups I = (I',w) and
I's = (I, ), where 7 : H2 — H? is the map exchanging the components, 7(7y, 75) = (72, 71).
We define the fundamental unit g by ¢y = min{z € o*; = > 1} and have o* = +<Z. For
example we have ¢, = % incase p =5,e9 = ?*Tm incase p = 13and ¢ = 4 + /17 in case
p = 17 (compare Leutbecher [Le96, p. 97, 98]).

For A = A1 + Aoy /p € K, with Ay, Xy € Q we then have

e the norm N(A\) = A\ = X2 — pA2,
e the trace S(\) = A+ )\ =2)\,.

Definition 1.2.14 (Symmetric multiplier system). We say that a multiplier system y : I' — C*
IS symmetric, if it holds

Q

S
|

=l

a a b
L =L _ for all el.
c d

o
S8
ol
S8

In the case of real quadratic number fields we can rewrite Lemma 1.2.12 into

Remark 1.2.15. A multiplier system p : I' — C* can be extended to a multiplier system /i : [ —
C* if and only if i is symmetric.

Definition 1.2.16. We define the following sets:
o M, (1) vector space of extended Hilbert modular forms for I, = Q(,/p) of weight k

with multiplier system . The trivial multiplier system is the constant map to 1 and will be
denoted by 1.
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1.2 Standard Defi nition of Hilbert Modular Forms

o MP:=3%", M (1) where the summation ranges over all & € Q and all multiplier systems
.

We will see in Corollary 4.2.6 that all Borcherds products have symmetric multiplier sys-
tems.

e MP(1): graded ring of all Hilbert modular forms for /C,, with trivial multiplier system.

Note that AP (1) is not the ring of extended Hilbert modular forms for IC, with trivial
multiplier systems.

From Lemma 1.1.11 and Gundlach (cf. [Gu88] and Remark 4.1.7) we get

Remark 1.2.17 (Fourier expansion). For each (extended) Hilbert modular form f : H? — C
with multiplier system 4 there is a lattice t C R? such that

i) f(t4+a)= f(r)forall a € t,
il) tis maximal in {()\,X); A€ o} under the restriction i) and

iii) f has the Fourier expansion f(7) = > .4 age® 597 with a, € C for all g € t# and
a, # 0onlyif g > 0and g > 0. The Fourier expansion converges absolutely and uniformly
on compact subsets of H?.

The number of cusp classes can be easily deduced in the case of the Hilbert modular group for
quadratic number fields:

Lemma 1.2.18 (Corollary 1.3.5, in [Fr90]). The Hilbert modular group I" has only finitely many
cusp classes. Their number equals the class number of .

Remark 1.2.19. In the case of Q(v/5), Q(+/13) and Q(1/17) there is only one cusp class of T,
for these fields have class number 1.

1.2.2 The groups I and I'

Remark 1.2.20. The operation of I' = SL(2, 0) on H? is given by

(CLT1+b 6T2+5)
77-: Y 3 Y
cn+d ern+d

where vy = (25) el and 7 = (11, 7») € H2

The following lemma is a special case of a theorem of Vaserstein [Va72], a corrected proof can
be found in [Li81] and [Le78, section 2]:
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1 Déefi nitions of Hilbert Modular Forms

Lemma 1.2.21. T is generated by the set

1 A 1 0
i AEo0p U s WE O
0 1 [T

Corollary and Definition 1.2.22. T is generated by the matrices

0 1 11 1 w 1 1
J = , T = and T, := (w==4+=vp).
~1 0 0 1 0 1 2 2

More generally we will write

Ty =

forall A € K.

Proof. We have o = (1, w), so the set {7, T,,} generates the upper triangular matrices given in
Lemma 1.2.21. In addition we get

1 —p 0 -1\ (p 1 10
0 1 1 0/ \=10 o1

for every i € o, so the lower triangular matrices in Lemma 1.2.21 are generated by J and the
upper triangular matrices. O

Lemma 1.2.23. T'., is generated by the matrices

—1 0 9 €0 0 3
T,T, —E = = J%and D,, = = 3T 1 JT., JT.
0 -1 0 &* ’ 0

and consist of all matrices of the type (5 ;) inT.

Proof. The matrices —F, T, T,, and D, are of the given type. The group I" operates on the
first component of H like a group of Moebius transformations. So we already know that every
element of ', necessarily is of the form (). One easily checks that —F, T, T}, and D., fix
oo. Consider a matrix M = (¢4) € I'. Thendet M = ad = 1 impliesa = d! € o* = +&7.
So there is k € Z such that M’ = —ED% M or M’ = DF M is of the form A" = ({ 1) with
A € 0 =< 1,w >. This proves both assertions. O

Remark 1.2.24. Since the exchange of variables fixes oo = (00, 00), we get a generating system
of I" resp. of I', by extending a generating system of I" resp. of I' . by the exchange of variables
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1.3 Orthogonal Hilbert Modular Forms

1.3 Orthogonal Hilbert Modular Forms

We define orthogonal Hilbert modular forms and will see, that for integral weight, they are
essentially Hilbert modular forms, while they vanish for nonintegral weight.

Definition 1.3.1 (Sym?(K),q,b;). We define the quadratic vector space (Synt (K), ¢) over Q by

9 ho hi
Sym (/C) = . |h0, hy € Q,hy € le
hi hs
and

ho I ho I ho Iy N
ql = —det _ = N(hl) — hoho (for all _ S Sym (IC))
hl hg hl hg hl h2

We equip it with the basis {b1, bs, b3, by} given by

10 00 0 1 0
bl = 71)2 = ,b3 = and b4 = 1
00 0 1 10 2

and extend it to the quadratic space (Sym?*(K) ®q C, q), where

Sym?(K) ®g C = Cb; + Cbhy + Cbs + Cb,

and
q(H) = —det(H) (forall H € 2(K) ®¢ C).

We define the bilinear form (-, -) corresponding to ¢ by
(x,y) =q(x+vy)—q(z) — q(y) (forall z,y € Sym*(K) xq C, i.e. (z,7) = 2¢q(x))

Lemma 1.3.2. The vector space Sym?(K) ®q C equipped with the bilinear form (-,-) is an
orthogonal space of signature (2, 2) with Gram matrix

0 -1 0 0
-1 0 0 0
0 0 2 1
0 0 1 Lz

N ‘

with respect to the basis (b, . .., bs). £ := Zby + - - - + Zb, is an even lattice. So (Sym?(K) ®q
C, (+,-)) is often referred to as O(2, 2).
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1 Déefi nitions of Hilbert Modular Forms

Proof. We calculate

0 1
q(b1) = q(be) =0, q(b3) = —det ( ) =1
10

0 2\ 1y 10
q(bs) = —det | | 2= (bibe) = —det =-1
Y 4 0 1

VP

0 M 9_p 1_p
bs.by) = — det 2 —q(b3) —q(by) = —= —1— —= =1,
(bs, ba) e (3\/5 . ) q(bs) — q(ba) 1 1

2

Additionally we get the equation
(bj, bk) = C](b] + bk) - C](b]) - q(bk) = — det(bj + bk) + det(bk) =0
forall j € {1,2}and k € {3,4}. Itis obvious from the Gram matrix, that £ is an even lattice. [

We restrict Sym?(K) ®q C to the subspace
{H € Sym*(K) ®¢ C; q(H) =0}
and consider the space

H= {H € Sym?(K) ©q C; q(H) = 0, (H, H) > o} ,

where H is the matrix derived from H by component wise complex conjugation (We use H
instead of A to avoid confusion with the field automorphism X + A2/p = A1 — A2y/p of K).

Every element H = (Z—?Zi) of H has hy # 0, as otherwise 0 = q(H) = hyh, implies h; =

iy = Oand then (H, H) = (0,0) = 0. In addition, for every § € C* and H € Sym?(K) ®¢ C we
have q(6H) = 6*q(H) = 0 if and only if ¢(H) = 0 and we have (61, 6 H) = |0|*(H, H) > 0if
and only if (H, H) > 0. So

) ho b\ /1 _ ~ )
H={H=6" ;q<5H>:hlhl—hozo,(H,H)>0,5e(C,hoeC,AelC@)Q(C
o1

hihy hy _
=S{H=6| _  (H,H) > 0,6 € C* h; € K®gC
hy 1

We write 7; := h; and 7, := h; and get
(2T () = —det (1) + (T 7)) +det () + et (2 1)
= —det (71T2+T~TT'2 n+ﬁ)
T2+T2 2

—4Re (1175) +4Re (11) Re (72)
41m (71) Im (12)
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1.3 Orthogonal Hilbert Modular Forms

We choose one of the two connected components of :
HY={H=06("77); 6 €C"Im(r) > 0,Im (1) > 0} .

We give the definition of a divisor. Later on we will investigate Hirzebruch-Zagier divisors (cf.
Definition 3.1.1), which are the divisors (set of zeros, sometimes counted with multiplicity) of
the Borcherds products. For example in [Fr01, p. 4] we find:

Definition 1.3.3. For a subspace
W C Sme(]C) ®q C

the orthogonal group O(W) is embedded into O(Sym?*(K)®g) in a natural way and for every
subgroup I" of O(I") we can define the projection

I":=TnNnOoW).

Moreover we choose H' := {P € H, P C W} and get the natural map

H /T — H/T

Ty T T Ty T
FI(C* 172 1 — I'C* 172 1 ’
T2 1 T2 1

which can be extended to the cusps of I \ H'.

Definition 1.3.4 (Heegner divisor). Choose W = a* for some a € Sym?(K) ®¢ C with ¢(a) <
0 in the definition 1.3.3. Then the natural image of '\ /" in "\ H is called a Heegner divisor .

An equivalent and more abstract definition can be found in [B099, p. 6], where the group of
Heegner divisors is introduced.

1.3.1 The Operation of SL(2,0), G(K) and G(K).
The group
G(K) :={M € GL(2,K)|det M > 0,N(det M) =1}

operates on Sym?(K) ®q C by

(M,H)— MHM,
where M’ is the matrix derived from M by transposing and component wise conjugation in .
We extend G(K) to the group G(K) by

N

G(K) = GIK) U G(K)o
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1 Déefi nitions of Hilbert Modular Forms

where
a b d —b
g = .
c d —c a
forall (¢ %) € SL(2, 0) and we define the operation of o on Syn?(K) ®q (K) by

ho hq hy —hy
ol __ = o .
hy he —hy  hg
™2 ) in H we calculate

1 1
ati+bara+b  ari+b )

cri+d era+d

For M = (¢ %) in G(K) and a normalized element (
( ) M’ = (ery + d)(er, +4) ( _
arto+b 1

cT1+d

T2 1 ero+d

The operation of o on H is given by
1 _ . |
o (5 (7'17'2 7’1)) _s ( 7'1) R (rlrlz 7'2)
= 1

T2 1 —To T1T2

which is similar to

0 1 TITy T 0 1 - -
5 e ! = 7'17'25 T2 m

-1 0 1 -1 0 = 1

but interchanges 7, and 7, so we get

Remark 1.3.5. The exchange of half planes is given by o J:

T1T2 7’1) _5 (7'27'1 7’2) .

T2 1 T 1

(o J)d (

Definition 1.3.6 ((Extended) orthogonal Hilbert modular form). Letk € Qand p1 : SL(2, 0)U
o SL(2,0) — C* amap. A holomorphic function F' : H* — C satisfying

i) F(tH)=t"*F(H)forallt € C*and H € H,
i) F(MHM') = u(M)F(H) forall M e SL(2,0) ¢ G(K)and H € H*,
If

is called orthogonal Hilbert modular form of weight & with multiplier system 1 for C,,.
pw(H)F(H) forall M € SL(2,0) Uo SL(2,0) and all H € H*, then '

Fitholds F(M (H)) =
is called extended orthogonal Hilbert modular form .
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1.3 Orthogonal Hilbert Modular Forms

Remark 1.3.7. We could pose a third restriction, the regularity in the cusps, but in the 2-
dimensional case the Gotzky-Koecher principle automatically gives the necessary growth condi-
tions.

Remark 1.3.8 (Integral weight). As the first condition works only for holomorphic F' # 0
if & is integral, no matter which branch of the —k™ power we apply, all nontrivial (extended)
orthogonal Hilbert modular forms have integral weight.

Lemma 1.3.9. For integral weights, there is a natural bijection between (extended) Hilbert mod-
ular forms and (extended) orthogonal Hilbert modular forms respecting weight and multiplier.

Proof. Given an orthogonal Hilbert modular form F' of weight & € Z with multiplier system p
define

H? — C
[ TiTy T
(7’1,7’2) — F e !
T2 1
Then we have for M = (¢ %) € SL(2,0) and 7 € H*:
ary +3 aratb  am +3
M7) = F | citdert+d cnt
7(a7) o
cTo+d
1 T Ty T
_r § VA R Y7
(CTl + d)(CT2 + d) T 1
1 -k TiT2 T1
= ( — ) Fl M M
(07'1 + d) (ETQ + d) T 1
TITy T
= N(er+d)fp(M)F | 12
T2 1
= N(er +d)* (M) f(7)

and the holomorphic function f is a Hilbert modular form of weight & with multiplier systems
1. Given a Hilbert modular form f of weight £ € Z with multiplier system p we define

Ht — C
F
5 TIT2 T1 . 5’kf(7'1,7'2).
T2 1
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1 Déefi nitions of Hilbert Modular Forms

This holomorphic function satisfies F'(tz) = t *F(z) forevery t € C* and z € Sym*(K) ®q K
and has the transformation property

TTy T1 ati1+bar +§ ati+b
F M‘5 'MI — F 5N(CT+CZ) CT1+dC7'E+d cT1+d

ato+b
2 1 cra+d 1

=0 "N(er +d) " f (M7)
= 5 FN(er + d) (M) N(er + d)F f(7)

:u(M)(S_kF T T
D) 1
T1T2 T1
=pu(M)F | ¢
T2 1

forall M € SL(2,0)and 6 (™*7) € H. So F is an orthogonal Hilbert modular form of
weight & with multiplier system . The case of extended (orthogonal) Hilbert modular forms
follows directly from the non-extended case, since F'(cJ (H)) = u(oJ)F(H) corresponds to

f(@) = pC)f(r). =

1.3.2 The Dual Lattice

Clearly Sym? K is isomorphic to Q? x K by the isomorphism

(53) — (a,0,0).
Therefore we can identify (a,b,\) = (%) for all elements (%) of Sym* K and obtain the
quadratic form
q(a,b,\) = N(A) —ab
on Q% x K. In this isomorphism, b, corresponds to (1,0, 0), b, to (0,1, 0) and the basis elements
bs and b4 correspond to the basis elements (0, 0, 1) and (0, 0, 1+2‘/13) of o.

Lemma 1.3.10 (Dual lattice). We write 11+ (37) := (i ’“) With this, the dual lattice £# is

A0
given by Zb, + Zby + Z - b3 + Z - by, respectively by Z2 x % o = Z* x 0%, where the
discriminant d is the ideal (\f) in o
Proof. We have
1 —1+252 g L2 VP
VP p p p 2
Li+yp 5 +552 p-1 1 14p
— = = 1+=- , (1.1)
N/ p 2p p 2
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1.3 Orthogonal Hilbert Modular Forms

SO

1 0 O 0

01 0 0

U= 1 1

-1 p=

0 0 - 5

00 2 1

P P

changes the coordinates with respect to the basis (b1, bo, %bg, %64) into the coordinates with

respect to the basis (by, by, b3, by). We consider the lattice L# = Zb, + Zb, + Z%bg + Z%IM =
UL. Itisthe dual lattice of £ if and only if U G is an element of GL(4, Z), for the product of an
element m of the dual lattice £’ with an element [ of £, each in the corresponding basis, is given
by (Um)" Gl = m! (U*G) 1. We calculate

0O —-1 0 0
UG =| € GL(4,7),
0 0O 0 -1
0 0O 1 0
so £# is the dual lattice. O

Definition 1.3.11. Define e :=(1+ ,/p) / (2\/p) + L.

Lemma 1.3.12. L#IL = (Z/pZ)e.

1+vp

Proof. We write e := - 2\/’_’. Clearly e is not an element of o, but pe = \/p% is an element

VP
of 0. Since p is prime, there isno 0 < m < p such that me is contained in o. We have
1 1 1+
—:—1+2<—+—) =—1+2 \/ﬁ,
VP 2yp 2 2yp
1 90 -1 _ 4P
SO 2¢ is an element of o and we have 0" = 25 Z + o. Therefore

1
e - {n;T@mmezw ne {0,1,...,p—1}}
1+
s e o)
2p
= (Z/pZ)e.
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1 Déefi nitions of Hilbert Modular Forms

1.3.3 The quadratic form ¢ on the Dual Lattice and on £# /L

On the dual lattice, the Gram matrix of ¢ is given by

0 0 -
0o 0 -

S

S

P

and g(z) = 32'U'GUx holds for all z € L#, if = (21, x5, x5, x4) is used for 10y + wabo +
l’g%bg + x4%b4. Then we get

$§+$3$€4+p—11‘_§ 1
p 4 p p
€7

q($1,$2,$3,$4) = —T1T2 —

We know that ¢| takes only integral values and since q(b; + by) = —det B = 1 and L#/£ =
(Z/pZ)e we can easily define ¢ onL#/£ modulo Z by

1+ -1
q(me) =m2q(e>+Z=m2q( \/ﬁ) +Z=m2<](0,0,0,1)+Z:m2pT+Z.

2,/p
Lemma 1.3.13 (Quadratic forms on F, = (Z/pZ)). For every prime number p # 2 there are
exactly 2 types of quadratic forms ¢ # 0 : F, — F, in the following sense: For two quadratic
forms g1, ¢, of the same type there exists ¢ € F,, such that ¢; (cz) = ¢2(x) forall z € F,. One type
maps I, surjectively onto the subspace of squares, the other maps surjectively onto the union of
the complement and {0}.

Proof. 1) Two quadratic forms are equivalent, if the intersection of their images does not only
contain 0.:

For every quadratic form ¢ we have ¢(n) = n?q(1) and especially ¢(0) = 0%¢(1) = 0. Let
¢ and ¢, be quadratic forms F, = (Z/pZ) — F,. If there are z; ,x5 inF, \ {0} such that
¢1(x1) = ga2(x2), then z; # 0 # x4 holds and since F,, is a field, we have

q(x) = il @) = (v ) q (@) = (227) g (22) = go(way " 2o)
and ¢; and ¢, belong to the same type.

ii) One equivalence class of quadratic forms contains the quadratic form n — n? and contains
all quadratic forms whose image is the set of squares:

The map n — n? is a quadratic form F,, — F,, whose image is the set of squares (in F,).
Part i) says that if ¢ is a quadratic form and there is = € I, such that ¢(x) # 0 is a square,
then ¢ is equivalent to n2.

40



1.3 Orthogonal Hilbert Modular Forms

iii) F, contains exactly 1%1 squares:

Forz € Z we have (p—x)* = p? —2pxr+2? = 2? (mod p) and (p+z)? = p*+2pz+2% =
x2. The second equation guarantees that all squares in F,, but 0 are given by 12, ..., (p—1)2.
The first equation shows, that it suffices to consider #,..., ((p — 1)/2)%. So there are at
most (p — 1) /2 squares unequal to O.

Letz > ybein{1,2,...,22}. Then

—yt= (x—y) - (x+y) £0 (modp).
—_—— =

Hence there are exactly p%l non-zero squares in I,,.

iv) Every two not identically vanishing quadratic forms not equivalent to n? are equivalent:

We denote by () the set of non-zero square numbers in IF,,. So for every quadratic form ¢
its image is given by @ - ¢(1) U {0}. Since @ has exactly 1%1 elements, there are exactly 2
nontrivial @ orbits in [F5 one of which contains the squares.

O
Definition 1.3.14. The Legendre symbol is given by

y 0, ifd=0 (mod p),
<]—)> =191, ifd#0 (mod p)and d is a square modulo p,
—1, else.

In order to calculate the Legendre symbol, we can either calculate all squares 02,12, ... (p — 1)?
(this suffices, for all squares are one of those modulo p), or we use the Euler criterion (cf. [Le96,
chapter 5.1]):

Theorem 1.3.15 (Euler criterion). For every prime number p # 2 and every integer m we have

(ﬂ) =m=""Y  (mod p)

p
So (%) = (-1)®V/2 =1 (mod p), since p=1 (mod 4). We check

q(0,0,1,0) = q(1/y/p) = -1/p+ Z
and obtain

Remark 1.3.16. ¢ represents the squares, i.e. the image of ¢ contains the squares in Z/pZ.
Hence there is o € (Z/pZ) such that

q(ne) = an’/p
and o = (p — 1)/4 + pZis a square, i.e.
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1 Déefi nitions of Hilbert Modular Forms

This is of course equivalent to

Remark 1.3.17. There is v € L#/£ with
q(nv) = n®/p.

Proof. By Remark 1.3.16 « is a square modulo p, so there is 5 with o = 32. Then 3! is an
element of the field F, and ¢(5'e) = a~2/p = 1/p. O
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2 Some Modular Forms

We give some examples of Hilbert modular forms and of other modular forms important in our
case. These are Theta series, which are Siegel modular forms and can be restricted to Hilbert
modular forms using the modular embedding of Hammond, elliptic modular forms with charac-
ter, since the restriction of Hilbert modular forms to the diagonal yields elliptic modular forms
with characters and elliptic modular forms for congruence subgroups, which are isomorphic to
vector valued modular forms and arise in Borcherds’ theory.

2.1 Hilbert Eisenstein Series

We define Hilbert Eisenstein series and state that the ring of Hilbert modular forms for even
weight and trivial multiplier system is the direct sum of the space of Eisenstein series and
the space of cusp forms. The proofs can be found in [Fr90, p. 60 - 66]. Additionally we give
Hecke’s way of calculating the Fourier coefficients of the Eisenstein series as they are explained
in [Si69].

Definition 2.1.1. Given k£ € N we define
H? — C

Egg :
T — ZMer\F 1|oe M = ZM:(CCL BYera\r N(er + d) =2,

The function E17 is called Eisenstein series of weight 2k with respect to the cusp oo.

Proposition 2.1.2. The Eisenstein series 17 converges absolutely for k£ > 1 and represents an
extended Hilbert modular form of weight 2k with trivial multiplier system, which has the value 1
at the cusp oo. It vanishes in all the other cusps.

Proof. Freitag proves most of this, but only shows that E1'is a Hilbert modular form not an
extended Hilbert modular form. Since itis I'/T', = I'/T', (compare Remark 1.2.24), it follows
EI(7) = Bl (7) for all 7 € H? immediately. O

The importance of Eisenstein series is given by the following proposition, which can be found in
[Froo].
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2 Some Modular Forms

Proposition 2.1.3. For every Hilbert modular form f of even weight 2k > 2 with trivial multi-
plier system, there is an unique element E in the space spanned by all Eisenstein series of weight
2k, such that f — E'is a cusp form.

In case of a single cusp of T, this is the trivial observation that for every Hilbert modular form f
of even weight 2k, f — a;(0) E4l is a cusp form.

Siegel [Si69] described a way of calculating the Fourier coefficients of Hilbert Eisenstein series.
He considers a more general definition for Hilbert Eisenstein series (he calls Hecke Eisenstein
series) than we did so far and uses a notation which has to be explained before using it. He
denotes the degree of the number field X by g, its discriminant by d and in case that there are
units in o with negative norm he considers an even natural number &£ > 0. Then in our case
g = 2and d = p. For every ideal u and the fundamental ideal © = (,/p) = /p - o he defines
u* = (ud) ™. Siegel defines the Hecke Eisenstein series

Fi(u,2) = N(u") Z’N()\z +p) % zeH?*  forallz € H? and all ideals u in K,
ul(Ap)

where the summation ranges over a set of representatives (A, 1) # (0,0) of u x u/ o*, where o*
operates on u x u by componentwise multiplication. The series has the Fourier expansion:

(27T2)k ’ 1k 2miS(vz)
Fe(u,z) = C(u, k) + =1 dz Z or_1(u,v)e , Where
' 110

C(u, k) = N(u) 37 N(u™) and

u|(p)

oroa(u,v) = Y sign(N(a¥)) N((e)uo)* .

o~ (a)ulv

There he summarizes over all principal ideals (1), () under the given restrictions and v ranges
over all totally positive numbers in 9~1. In our case N(gy) = —1 and thus % is even. So o;,_; can

be rewritten into
oro1(u,v) = Y N

teud
t|(v)o

Now we can substitute £ by 2k, write 7 for z and define u = o and d = p:

C(2k)EM (1) = Fy(o,7) = C(2k) + (M) VBTN omea (1)) where

— 1!
2k —1)! =~
>0
2R = Y N = Y NG and
ideals (u) ideals (1)
oua(v)= Y N(O* )= ) N&*!
®I(/pv) ®)1(/pv)
tey/po tey/po
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Note that we have written ((2k)EL (1) = ((2k) + Y, a,e* ™) with some known a,,. Siegel

advises to restrict the Fourier expansion of EZ to the diagonal Diag = {r € H?;, 7, = 7o},

which yields an elliptic modular form as we will see in section 4.2. Its weight and character

are known, so we can give a finite dimensional space of elliptic modular forms in which it is
contained. As its Fourier expansion has constant coefficient ((2%) and the other coefficients can
be calculated explicitely, we can easily calculate ¢(2k) by linear algebra.

Remark 2.1.4. Some of the (truncated) Fourier expansions of Eisenstein series can be found in
the tables A.8, A.10 and A.12 in the appendix.

2.2 Theta Series and Modular Embedding

Siegel modular forms can be restricted to Hilbert modular forms by the modular embedding
of Hammond. It is described in Hammond’s two papers [Ha66a] and [Ha66b], of which the
second one is just a short summary of the first one, so both papers share the same title: “The
Modular Groups of Hilbert and Siegel”. Note that Hammond uses the term “modular imbed-
ding”, while we will use the term “modular embedding” instead. We will use Hammond’s
embedding for theta products and give a first result for the ring of Hilbert modular forms.

Definition 2.2.1 (Modular embedding, &,, and Sp(n,R)). We denote the Siegel half space
by &, = {X +1iY; X, Y € R™" X +iY symmetric,Y > 0} and the symplectic group by
Sp(n,R) = {M e R¥2 M (2 ~F» )M = (_% ") }. We define the diagonal embed-
ding (o, ¥o) by
H* — G,
$o
x +—— Diag(x) and

((a1 by ) . (a" bn )) . (Diag(al ..... an) Diag(bi,..., bn))

c1 di cn dn Diag(c1,...,cn) Diag(di,...,dn)

A modular embedding of K is a pair (¢, V) consisting of a holomorphic injection ¢ from H"
into the Siegel half space &,, and a monomorphism ¥ from Sp(1, R)" to Sp(n, R), such that

(i) thereis N € Sp(n,R) such that o(7) = Ngo(7) and U (m) = NUy(m)N~* forall 7 € H"
and m € Sp(1,R)",
(i) ¥(Sp(1,0)) C Sp(n, Z),

(iii) if f is a Siegel modular form of weight %, then the composition f o ¢ is a Hilbert modular
form of weight £ for .

Proposition 2.2.2 (Proposition 2.2 in [Ha66a]). The restriction (iii) of Definition 2.2.1 can be
replaced by
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2 Some Modular Forms

(iii’) the matrix N from (i) holds ¢ = 0,,.
Definition 2.2.3. We call two modular embeddings (1, V1) and (y9, ¥5) equivalent, if there is
an element M € Sp(n,Z) such that s = My, and ¥, = MU, M~ hold.

In the case of Hilbert modular forms for quadratic number fields we obtain the following

Theorem 2.2.4 (Theorem 3.4 in [Ha66a]). Let K be the real quadratic number field of discrim-
inant D. The orthogonal modular embeddings for K correspond in an one-to-one manner to
ordered pairs (u, v) of integers such that:

1) D =u? +?

2) v iseven.

This can be reformulated into

Theorem 2.2.5 (Theorem 3.6 in [Ha66a]). Let X be a totally real quadratic number field of
discriminant D and let ¢ be the number of prime divisors of D. There are modular embeddings
for IC if and only if D contains no prime divisor of the type 4m + 3 (where m € Ny). In this case,
the number of modular embeddings for K is given by 271,

Remark 2.2.6. In case p € {5, 13, 17} there is exactly one equivalence class of modular embed-
dings by Theorem 2.2.5 (thenp = D = 1 (mod 4)). We have 5 = 12 + 22, 13 = 3? + 22 and
17 =17 4 42,

Muiller [M{i83] gives an explicit formulation of the modular embedding for totally real quadratic
number fields:

Example 2.2.7. Let K = Q(v/D) where D = u®+v% u,vinZand v evenand w := 1(u+v/D).
Then a modular embedding is given by the pair (¢, ), where

RECORED
»(¢) = S<2v <> S((%)c)

b
son — [P@ PO
¥(c) ¥(d)
In this S (a¢) = a(; + @, for a € o and ¢ € H2. Details about Fourier coefficients of Hilbert
modular forms, which can be obtained this way, can be found in [M83].

S

and

The following definition of 4, and 6 can be found in Miller [Mi85], Hammond [Ha66a] and
Hermann [He81], of which the last forgets the % in the definition.
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2.2 Theta Series and Modular Embedding

Definition 2.2.8 (.., 0, ©,, and ©). Given m’ and m” in {0, 1} with m|m/ + mym} € 2Z
write m = (m/, m”) and define

AN /
. m m , , ,
O(T) = D expmi <<g+ 7) T <g+ 7) +gtm/+(m)tm’/2> , TEG

There are exactly 10 such theta series and we denote their product by ¢. Additionally we define
O,n=0,01vand © = 0 o).

Hammond [Ha66a, p. 507] writes that his modular embedding produces symmetric modular
forms, so we have

Lemma 2.2.9. If f is a polynomial in the ©,,, then f(7) = f(7) holds for all 7 € H?. Hence
all modular embeddings of Siegel modular forms, which are polynomials in theta products, are
extended Hilbert modular forms.

Theorem 2.2.10 (Theorem 4.1 in [Ha66a]). If K is a totally real quadratic number field, which’s
discriminant is the sum of two squares, then there are three algebraically independent (extended)
Hilbert modular forms for X of weight 4, 6 and 10, namely EJ, Ef and ©2.

In case K = Q(v/17) Hermann (cf. [He81]) constructs another Hilbert modular form coming
from theta products:

Lemma 2.2.11 ([He81]). In case K = Q(+/17) there is an extended Hilbert modular form we

denote by 7, of weight 2 with multiplier system ju7 (117(J) = —i, pur(T) = i and pi7(T,) =
657ri/4):

T2 iz@uoo@oon@oooo + @1100@001090001
+ ©1001©011090000 — ©1001©0100O0010
+ ©10000010090011 — ©1000©0110O0001 -

Remark 2.2.12. In order to calculate a finite number of summands of the Fourier expansion of
©,,, we have to use

I\t ’
Qm(T) ~ Z exp e ((g + %) T (g + m?) +gtm// + (m/)tm///2>

and choose N large enough. We calculate

t t.
7ri<<g+%) T(g+m7/)+gtmu+(m/)tm///2> 7ri<g“'7—g+gtr7—%+(%> rTg)
‘ = Cg4€
!

7ri<gtrTg+gtr(T+Ttr)%>

= C4€
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with ¢, depending only on ¢, m’ and m” and since 7 is symmetric, this can be reformulated into

. tr tr tr ﬂ/) . t t /
cgem (9 Tg+g (T+T ) 5 Cgewz(g 'Tg+gtttm )

= Cgemg“T(ﬁm’)'

We write 7 = A" A and get ¢"7(g + m') = (Ag)"(Ag + Am/). In the Fourier expansion, the
coefficient of g™ := e™™(11+72) js a polynomial in h := e™™(1—72)/vP and h~!, so we focus on
the powers of g (compare section 5.3) and get

wigT(g+m’) mi(T1+712)g" M (g+m')

g€ = cyd(1y — )€
with a real symmetric matrix M of rank 2. So, for large ||g||c, itis ||[¢"M (g + m')|| >
19" Mg|loo — g™ Mm/||oo =: (9, 9)m — (g, m’)ar and the equivalency of norms can be used to
find NV appropriate for a given number of Fourier coefficients (depending on the concrete shape

of M).

2.3 Hilbert Poincaré Series

If we take a bounded holomorphic function H? — C and summarize over the shifted quotients
of this function over some factor of automorphy, we obtain a Hilbert modular form, which we
call Hilbert Poincaré series. For each multiplier system there is a Hilbert Poincaré series which
does not vanish identically.

We modify Freitag’s definition [Fr90, Prop | 5.3] in order to get Hilbert modular forms with
nontrivial multiplier systems:

Proposition and Definition 2.3.1. Let ¢ : H* — C be a bounded holomorphic function, k € Q,
k>4, weH*andpu:T — S' = {z € C; |2| = 1} amultiplier system. The series

_ ok _ p(MrT) 90|k
F(2) = Fpu(r) = Z N(M7 —w)*N(er + d)Fp < N( MT—_

(& q)=Mer

converges absolutely and uniformly on compact subsets of H?. It therefore represents a holomor-
phic function on H?. This function satisfies the transformation law

Fl'M=F  forall M € SL(2,0).

Proof. Incase p = 1 and k € Z, k > 4, the proposition is a corollary of [Fr90, Proposition |
5.3], where T is any discrete subgroup of SL(2,R)™. In our case, I' = SL(2, 0) is isomorphic to
such a subgroup with the same operation on H?.
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We have

' p(M)T

N(M7 —w)* N(er + d)kp(M)
< max (’ (M)T

- N(M7 —w)* N(cr + d) I+

' p(M)T
"IN(M7 —w)kI N(cr + d)I*]

).

where |k] = max{n € Z; n < k}and [k] =min{n € Z; n > k},forall M = (2%) € I" and
T € H2. Thus absolute and uniform convergence follow immediately from the case ;= 1. We
have FF = >",, fIM for f(z) = ¢(2)/ N(z — ).

Remember the multiplicative structure of multiplier systems introduced in Definition 1.2.8. It
says that f|M|N = f|(MN) holds. Thus F|N = >, fIM|N = >_,, f[(MN) = F proves
the proposition. O

Definition 2.3.2. All series of the type ), f|M are called Poincaré series .

The following proposition can be found as a remark in [Gu88]. We will give a proof.

Proposition 2.3.3. The Poincaré€ series defined in Proposition 2.3.1 define cusp forms of weight
k. Given w, u and k as in the proposition, there is always some r» € Q and bounded ¢ : H? — C,
such that Fé’fﬁ does not vanish identically and defines a Hilbert modular form with multiplier
system .

Proof. The weight is clear from the definition. Freitag proves that for even k and p = 1 the
Poincaré series Fg“l) is a cusp form, by showing that each summand of F 1 converges with
7 — oo to 0 and summation and limit can be interchanged. We can redo this for rational £ > 4,

almost as we did for the proof of the convergence of the Poincaré series, by comparison with

FCH2D and FJH2D),

In case i« £ 1 we will see in Remark 4.1.9, that all Hilbert modular forms with multiplier system
1 are cusp forms.

Let &, 1 and ¢ be as in proposition 2.3.1. We want to find » € Q,r > 4 and ¢ such that Fm

does not vanish identically. We enumerate I" together with the summands and write F( )
>, anpt(n), where p(n) equals 1 applied to the n-th matrix in I'. In case . = 1, Freitag uses the
fact that if > a7 converges absolutely and >« = 0 for all but finitely many m € N, then
a, = 0 for all n € N. This is not valid for general 1, but it remains valid, if we require that for
some ny € N the term a,,, has larger absolute value than the other a,,:

Lemma 2.3.4. Given k € Q, k > 0, a sequence (a,)ney With a, € C, such that >~ af™™
converges absolutely for all m € N (where a**™ := a*a™ with a* defined independently of m as
some k™ power of a,), and z : N — S?, such that Znﬂ( n)a fﬁm = 0 for all m € N, then there
is no ng € N such that |a,,,| > |a,| foralln € N\ {n}.
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Proof. We give an indirect proof. Assume that |a;| > |a,| for all n > 1. Without loss of
generality, we have a; = 1. Since Y -, u(n)al™™ converges absolutely for all m € N and
|a,| < 1foralln > 2, there is R € N such that | Y77, yu(n)a*™| < 1 forall m > R. So we
have [>07 | pu(n)akt™| > 1—1 = 1forallm > R contradicting |>">° | u(n)ak™™| =0. O

We choose some 7, € H? and consider

aFe — (M)
M N(Mty —w)* N(ero + d)ru(M)

for all M inT'. In order to use the Iemma, we want to change ¢, such that there is an unique
M whith |a5#| maximal. We have |a%?| = |a®%,|, so we choose a set I'* of representatives of

L/{+E} and get >, r abe =2 > mer+ a®¥. The group T'* acts properly on H2. We know
that 3°,,cp+ @by converges absolutely, so

(1) there is M, € T such that |a}; ol > lak#| forall M e T,

(2) the set A := {M6F+\{MO} 5| = |at |}isfiniteand

|a k<p|’
0

(3) d:=sup { Gyl MeTt\ A M+ MO} is a positive number smaller than 1.

We define the biholomorphic map

D2={z€C; |2| <1} — H?
(m) — (2 22)

and the holomorphic map

H>? — C

llo=t (r)—=3
T erDQ,w(x)eATom

The map ¢ simply is a polynomial on D? lifted to a map on H?, vanishing in all points M,
with M € A and of value 6(My7y) = 1. Here we need the proper action of I'" to guarantee
My # Myt forall M € A. So |§ o +)| obtains a maximum on D? which we denote by . We
define the function

H2 — C

Ayl
\]
AS)
—~
\]
N~——
VS
—_
+
-
all
.
S| =
Ho
N
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and get
(lo(Momo)] - (1+ 5455 )
> [p(MoTo)| if M =My=(2h),
oM = { Pl if M € A,
(M) - [1 4 L4 207m)
< lp(Mo)| - (1+ 54)
[ = ile(Mn)l, it M e D\ (AU {M)).

The holomorphic function ¢ is bounded, so Proposition 2.3.1 guarantees that for all m € N the

function Fgfjm) is a Hilbert modular form of weight & + m. We get
> ’a’;;g , it M = M,
ay?| { = |ayy7] if M € A,
< 1ldy| < ]a’;;g .M e\ (AU{M)).

and hence know by Lemma 2.3.4 that there is m € N such that FL."™ = 37 a§7™? does not
vanish in 7. O

We give a result for Hilbert modular forms in the special case of H? and I' = SL(2,0). The
general case can be found in [Fr90, 1.5]

Theorem 2.3.5 (Existence theorems). 1) Leta,b € H? be points which are inequivalent with
respect to I'. There exists a Poincaré series F' (hence a cusp form) of suitable weight such
that

I1) There exist three Poincaré series
F07 F17 F2

of a suitable common weight, which are algebraically independent.

2.4 Elliptic Modular Forms with Character

We give a short introduction, fix notations and give some well known facts about elliptic mod-
ular forms with trivial character. We will always consider the normalized form of the modular
forms. The ring of elliptic modular forms with character comes as a corollary. Most of this
section can be found in [KK98].

Every subgroup of SL(2, R) operates on H by the corresponding Moebius transformations and

we write (24) z = &4,
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2 Some Modular Forms

Definition 2.4.1 (Elliptic modular form). A meromorphic function f : H — C is called mero-
morphic elliptic modular form of weight £ € Q with multiplier system x : SL(2,Z) — C*
if

() f(Mz) = p(M)(cz +d)*f(2) = (M) f(2) for all M = (¢4) € SL(2,Z) and
z € H, where In is the main branch of the complex logarithm,

(i) f(00) := limpy(2)—oo f(2) exists (in C U {oo}) and
(iii) There is k € N such that 4* = 1 (u has finite order).

If fisaholomorphic functionand f(oo) is acomplex number, f is called (holomorphic) elliptic
modular form . If additionally f(oc) = 0, we call f an elliptic cusp form.

Remark 2.4.2. Since p is finite, there is M € Nsuchthat f(z+ M) = f(z) forall z € H and the
limit in (ii) can be restricted to bounded real part of z. The meromorphic elliptic modular form
f is a holomorphic elliptic modular form, if and only if all the Fourier coefficients belonging to
negative exponents of ¢ = > vanish.

We give some important examples of elliptic modular forms:
Definition 2.4.3 (Eisenstein series E}). For given k € 27, k > 4, we define
1 —k 1 —k
Ek(z):m Z (mz+n) =3 Z (mz+n)" = Z 1] M.
(m,n)eZ2\{0} (m,n)€Z2,gcd(m,n)=1 MeSL(2,Z) 00 \SL(2,Z)

This defines an elliptic modular form of weight £ with trivial multiplier system x = 1, we call
(normalized) elliptic Eisenstein series of weight % . It has the Fourier expansion

27rz
Ek(z):1 —1‘C ZO’k 1 m, z € H,
m>1

where ay.(m) := 3 4 @* and g 1= *™* . We get Ej,(co) = 1 from the constant term in the
Fourier expansion.
Definition 2.4.4 (Discriminant). We define

=
~ 1728
This is an elliptic cusp form of weight 12 with trivial multiplier system without any zeros on H.
Definition 2.4.5 (Dedekind n-function). We define

[e.e]

T}(Z) _ ewiz/lQ H (1 _ e2m’mz) )

m=1

B - E2).

This defines an elliptic cusp form H — C of weight% with multiplier system v, induced by
v (T) =™/ and  u,(J) =e™*  (compare also [EI06]).

It satisfies 77* = A. For prime numbers p we denote by n® the function H — C, z — n(pz).
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2.4 Elliptic Modular Forms with Character

Definition 2.4.6 (Absolute invariant). We define the meromorphic elliptic modular form

7= EKZZ).
It is a modular form of weight 0 with trivial multiplier system.

Theorem 2.4.7. The ring of holomorphic elliptic modular forms with trivial multiplier system is
generated by the two elliptic modular forms E, and Eg, which are algebraically independent.

Proof. A proof can be found in [Bu97, Propposition 1.3.4] 0

Corollary 2.4.8. Every holomorphic elliptic modular form is a polynomial in £,, Fg and 7,
hence all multiplier systems occurring in Definition 2.4.1 are powers of the multiplier system of
n and all weights are half-integral.

Proof. Let f # 0 be an elliptic modular form of weight £ € Q with multiplier system p. We
distinguish two cases:

a) wW(T)=1.Wehave J-T-J-T-J-T=FEand f(Tz) =1-1%f(z) = f(z) forall z € H, so
we calculate

Fle(T)(2) = [T (2) = fliJ (1 +2)

— () (=(1 + 2))f (1_:2)

' —1
= u(J) texp —%Jrk:ln—i(lan) f(1+z)
e—iHl

and obtain (JTz = —1=, JTJTz = =42 and JTJTJTz = 2)

T

p()*f(z) = n(T) flE(IT)(2)

3kmi 1 1
:exp(— m+klni3(1+z)+klni3(1— )+klnz‘3(1— +Z))f(z)
—— 142 z
e—iH ~ ~ - ~ ~ -
€e—ill e—iH
3kmi -1
:exp(—%—l—klnz?’(l—kz)—kkln—ﬁ?)f(z)
€—iH
3kmi 1
—exp (- m+klnz’3(1+z)+klnz’3-i1+ )/)
~——— z
€—iH ——

c—iH

= exp(—2kmi) f(2).
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f does not vanish identically, so y(J)® = e, Since f|}/J(2) = pu(J) ' exp(kIn(—z)) f (=
we get

u(J)*f W (I

{0
ol

k:— + kIn(i*z) — k:%i+ln <§)> f(2)

—kmi) f
and conclude i (J)? = e7*™. So
/’L(J)g —kmi
pu(J) = € = pu(J)?

implies u(J) = 1 and k € 2Z and f is a polynomial in F, and Eg by Theorem 2.4.7.
b) w(T) # 1. Then we have

WD)f(oc) = lim w(T)f(z)= lim f(Tz)= lim f(z) = f(oo)

Im(z)—o0 Im(z)—o0 Im(z)—o0

and conclude that f is a cusp form. The index of the first non-vanishing coefficient of its
Fourier expansion gives the order m of which f vanishes in co. So we can divide f by n™

(which vanishes only in oo and there of order 1) and get an elliptic modular form of weight

k — %, which is no cusp form. Therefore its multiplier system v, ™ is trivial and fn~" is a

polynomial in E, and Eg by Theorem 2.4.7.

2.5 Elliptic Modular Forms for Congruence Subgroups

Borcherds products are lifts of nearly holomorphic modular forms for congruence subgroups.
We give some definitions and examples and investigate a certain subspace, which is needed for
the Borcherds lift.

2.5.1 Basic Notions

We give a number of definitions (based on Koecher and Krieg, [KK98]) and state a result of
Rademacher, who gives a set of generators for I'y(p) for some p.

Remember that p is a prime number with p = 1 (mod 4) throughout this paper.
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2.5 Elliptic Modular Forms for Congruence Subgroups

Definition 2.5.1 (I'y(p), x,). We define
a b
Lo(p) := € SL(2,Z); c=0 (mod p)

and
Po(p) — {=1,1}
Xp - a b d
cdl xold) = (5>
where (;—‘f) is the Legendre symbol defined in Definition 1.3.14. Since p { d forall ¢ ) € T'y(p),
this is an abelian character even if x|,z = 0.

Rademacher investigated the ring of congruence subgroups of the modular group SL(2,Z) in
[Ra29] and especially got the following result:

Theorem 2.5.2 (I'y(p)). The group I'y(p) = {(2Y) € SL(2,Z) | ¢ =0 (p)} is generated by

11 2 3 -1\ .
T= , Vo= , V= ifp =15,
01 5 2 10 3

3 -1 5 -1 8 -1 9 -1\ .
T, Vy= , Vs = , Vo= , Vio = if p=13and

13 4 260 5 65 8 91 10

—4 -1 —-12 -1 —15 -1 —13 -1 .
Tu‘/;l: 7‘/7: 7‘/9: 7‘/13: pr:17

17 4 85 7 136 9 170 13

Definition 2.5.3 (Cusp). Remember, that cusps were already defined in Definition 1.1.5, now
we need the special case n = 1and I' = I'g(p). Soa cusp of I'y(p) isanelementx € RU {0}

such that there is M € SL(2, R) with Moo = « and the action of the subgroup (M ~'T(p) M)

of M~'Ty(p) M fixing oo is generated by one element z — z + b with some 0 # b € R. We say
that two cusps x1, k2 € RU {oc} are equivalent (with respect to GG), if there is matrix M € G

such that Gk, = ko.

Lemma 2.5.4. T'y(p) has exactly two classes of equivalent cusps, one containing co and the
other one containing 0.

Proof. Clearly oo is a cusp of I'g(p). For M = (¢ %) € I'y(p) we have

Moo = 3% ifc=0,
e, else.
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Forevery ¢ € Qwitha,c € Z, ged(a, ¢) = 1 and plc, there is (d,b) € Z? such that ad + cb = 1.
So (%) is contained in T'y(p).

0 is cusp of ['y(p), because its fix group in Iy(p) is the set of all (plr ‘1)) with r € Z and so
J7Y(To(p))od = (J'To(p)J)~ contains (for example) (,%). Consider some rational number
% with ged(b, d) = 1 not contained in T'g(p)oo. Then p t d and ged(pb, d) = ged(b,d) = 1. We
getba, b € Z such that ad + pbc = 1, so the matrix M = ( % §) is contained in I'y(p) and maps 0
to L.

So every rational number ¢ is a cusp: If there is M € T'y(p) such that Moo = ¢, then MT M1
is a nontrivial element of I'y(p) fixing ¢. If there is M € Iy(p) such that M0 = g, then
MJTPJ=1 M~ is a nontrivial element of T'y(p) fixing ¢, so in both cases ¢ is a cusp.

Given some irrational x, the matrix (%) J € SL(2,R) maps oo to x. It suffices to look at this
matrix by Remark 1.1.6. For (¢ %) € I'y(p) we calculate

= 1 —k a b 1 k ; ke+d —c
0 1 c d) \0 1 (—a+ke)k —b+kd a— ke

and compare with a translation matrix + (§ ¢). We have equality only in the two cases (2 })
+F, S0 k IS no cusp.

o

We are interested in certain modular forms for I'y(p):

Definition 2.5.5 (Modular forms for congruence subgroups). Let ;. be an abelian character
Fo(p) — C* and k& € Ny a non negative integer. A holomorphic map f : H — C with the
transformation law

fIeM = f forall M € T'y(p),

for which f(co) = limpn(:)—eo f(2) and f(0) := lim, .o f|J(2) = lim,_o 2" f(z) exist in
CuU{oc} iscalled nearly holomorphic modular form for I'y(p) of weight & with character .
If f(oo) and f(0) are complex numbers, then f is called a (holomorphic) modular form for
[o(p) of weight k& with character u. If f(oo) = f(0) = 0, then f is called cusp form.We define
the spaces:

Ak (p, ) = nearly holomorphic modular forms for I'y(p) of weight k& with character
My (p, 1) - holomorphic modular forms for I'y(p) of weight & with character

Sk(p, 1) = {f € My(p, p); f cusp form}

A (p:xp) = {f(2) = Xz a(n)e?™= € Ag(p, xp); a(n) = 0 for x,(n) = —¢}
Mi(p, xp) = A5 (P, Xp) N Mi(p, X5)

S, xp) = Ai(p, Xp) N Sk(p, Xp)
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where ¢ is +1 or —1. For simplicity of notations, we will omit the 1 and write for example
A (p, x,) instead of A7 (p, ;).

Remark 2.5.6. We have My(p, x,) = {0} and My(p, 1) = C (cf. [KK98, Satz 111.7.4]). A table
of dimensions of the space S (p, x,,) of cusp forms can be found in [Mi89, p. 295 et seqq.].

We are mainly interested in modular formsin ), A, (p, x,), butthering >, Ay (p, 1) of modular
forms with trivial character operates on >, A(p, x,,) by multiplication.

Definition 2.5.7 (Order in a cusp). A nearly modular form f for a group I" with cusp ~ has
order m in «, if for M € SL(2,R) with Moo = & the translations of A/ ~'T"M are generated by
amap z — z + ¢ and there are Fourier coefficients ¢, € C (k > m), a,, # 0, such that

fleM(z) = Z ape’ k10 forall z € H.

k>m

Remark 2.5.8. The order in a cusp is a geometric notion. Consider the cusp co: We map
H/T by z ~ €2™#/9 to the unit disc, mapping oo to zero. Then the Fourier expansion f(z) =
> ism k€™ /% maps to the power series f(z) = >_,.,, ax2* and the notion of zero order or

pole order of f and f are the same. The argument translates one to one to other cusps.

Remark 2.5.9. It is easy to see that the order of a modular form f in a cusp is the same as the
order in all equivalent cusps.

2.5.2 Examples

The easiest examples of elliptic modular forms for congruence subgroups are elliptic modular
forms for the full group SL(2, Z). The next type of example is similar: For every elliptic modular
form f for SL(2,7Z), z — f(pz) is an elliptic modular form for T'y(p). Hecke used this to
describe a modular form without roots as quotient of powers of the Dedekind »n-function. At
last we give Eisenstein series for I'o(p) for trivial character. Eisenstein series for nontrivial
character exist, but we need some preparations and postpone them until the next section.

Lemma 2.5.10. Let f be a nearly holomorphic elliptic modular form for the group SL(2,Z) of
weight & with trivial character and of order m in the cusp cc. Define f®) : H — C, z — f(pz).
Then f and f® are nearly holomorphic elliptic modular forms for the group I'y(p) of weight &
with trivial character. They have the following orders in the cusps 0 and oo (as modular forms

for I'y(p)):

cusp || oo | O
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Remark 2.5.11. If we consider nontrivial characters x in Lemma 2.5.10, the modular form f
has the character |r,(,) and the modular form f*) has character 1, where

S

Sl

S
=

b a b
Ly =1 for all € L'o(p).
d c d

SR o)

To calculate the order at the cusps, it is necessary to consider {M € SL(2,Z); u(M) =1}
instead of SL(2, Z).

Proof of Remark 2.5.11. The transformation property comes from

() e) sz
-/ < C/anTptpfr d)
(%) e
( oo d (cr +d)* fP(7)

Proof of Lemma 2.5.10. All cusps of SL(2,Z) are equivalent. So f has order m in the cusp oco
and in the cusp 0.

Consider the cusp co. The translation subgroup of I'y(p) is induced by the translation z — z + 1
on H and we have

Z) — E ake2k7rzz

k>m
f(p § ap e2pk7rzz — E : ak/pe2k:7rzz’
k>m k>pm,kepZ

so the given orders at the cusp infinity are valid.

The subgroup of I'y(p) fixing 0 consists of the elements of the type +( . ¢ ) with ¢ € Z. So the
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action of J~'Ty(p)J is generated by the matrix 77 = (; »), while

f|kJ(Z) = (_z>_kf(JZ) _ Z ak€2k7riz _ Z ak/pGZkﬂiz/pand

k>m k>pm,kepZ

FPLT(2) = (—2) KO (J2) = (—g)kf (_7]9) =7 (;)

— E ak€2kmz/p.

k>m
We obtain the order pm for f and the order m for £() at the cusp 0 with respect to T'y(p). O
We get the following Theorem of Hecke (cf. [Og73, Theorem 6, p. 28]) as an example:
Theorem 2.5.12 (Hecke). The function
HY =P /n® =14 0(q) : H— C, 2 — 1n(2)"/n(pz)
is a modular form of weight ”—;1 for I'y(p) with character y,,.
We get a simple
Corollary 2.5.13. In case 24|(p? — 1), i.e. p # 2, 3, the function
H® = () [y = ¢"5 + ... H— C 2 n(pz)/n(2)

is a modular form of weight 25+ for I'y(p) with character x,.

Proof. In case 24|(p* — 1) we have

ﬁ(pZ)p: P10, n(pz) p: Pzzl - (1)\ P
7 (B - A ()

For every prime p # 2,3 we write p = 2k + 1 and since 3 { p we get 3|(p + 1)(p + 2) =
(2k + 2)(2k + 3) = (2k + 2)2k = 4k(k + 1) (mod 3). Additionally either k or k + 1 are even,
S0 24|4k(k + 1) = (p* — 1). O

Another Corollary from Lemma 2.5.10 and Remark 2.5.11 is the following
Corollary 2.5.14. Letp =1 (mod 4) and set & = 24/ ged(p — 1,24). Then

77k

is a nearly holomorphic modular form of weight 0 for I'y(p) with trivial character. The exponent
k is one of the numbers 1, 2, 3 or 6.

H =

k
H—Cz+— n(z) — ¢(-P)/ged(p-1,24) |

n*(pz)
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Proof. By Lemma 2.5.10 together with Remark 2.5.11 the function H has character vy =
, =D/ eed®=124) — 1 gnd weight L (k — k) = 0. Its Fourier expansion starts with ¢(*~ k)24 _
q24(1 P)/(24eed(p=129)) = ¢(1=p)/ecd(p=129) Since p = 1 (mod 4), we have 4| ged(p — 1,24) and
k divides 6 = 24/4. O

Remark 2.5.15. There is a more geometric proof of Lemma 2.5.10, the lemma can be directly
obtained from the following diagrams:

fatcusp oo : ((Fo(p))eo = (1)) z
z+1 e2miz e*™mz 4 Of(...)

where 7 : H/T', — D is the universal covering and I, = (T').

We calculate JTo(p) = T°(p)J (where I'%(p) = {(2%) € SL(2,Z); b=0 (mod p)}). So we
get for the cusp 0

fateusp0: (J(Do(p))o=(I7)J) z2J——>7=—1

T

T+7p 7r eQmT/p eQmmT +O( )

0P +0(...)
with universal covering = : H/ () — D.
f at cusp 0o« ((Do(p))oe = (7)) 2P
T W\\
F®
T 2miz 2mipmz
z+1 e o) ¢ +0(...)

and

12—pz

f® atcusp 0 : (J(To(p))o = (TP) J) Z—J>T:—Z—>T/p

T+p _ T eZﬂ'iT/p 627TimT/P + O( . ) )

0m+0(-..)

From Koecher/Krieg [KK98] we take

Theorem 2.5.16 (Eisenstein series for I'y(p)). If S € Pos(n,Z) is an even matrix and p :=
min {/ € N;| [S~'even}, then 7 — ©(r, S) is a modular form of weight % for I'y(p), where

_ Z em’(gth)T
geEL™
)

= D15, 2m)q"

m=0
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2.5 Elliptic Modular Forms for Congruence Subgroups

is the © Nullwert of S. In this £(.S, 2m) is called representation number, that is the number of
g € Z™ with ¢g'Sg = 2m.

We formulate a special case of a lemma of Hecke [Og73, Lemma 6, p. 32]:

Lemma2.5.17. Let x be a primitive character modulo p (i.e. if  is the product of two characters,
one of them is trivial, e.g. x, is primitive and the trivial character 1 = X; is not primitive) and
denote the map SL(2,Z) — C, (¢4) — x(d) by x. If there is

F(r) =" aq” € Axlp.x)
v=1
such that a,, = 0 for all (v, p) = 1, then f = 0.

Proof (Ogg). Since the Fourier expansion only contains a, where p|v, we have f (7 + %) = f(7).
For x,y € Z we define

1 .T/p 1 0 1 y/p (1+:E w+y+xy>
’7/ = = P

0 1 p 1/ \o 1 Py

and obtain
flv=1T.
It is possible to choose = and y such that v € T'y(p) and x(1 + y) # 1, so we get f = 0: We

need x, y in Z such that p|(x + y + zy). Choose any y such that x(y + 1) # 1. Then there are
a,f € Zsuchthatap + 5(1+y) = 1. Ifweset z := 3 — 1, we get

—ap=01+y) —-1=1+2)(14+y)—1l=z+y+ay
and the right side is divisible by p. O
Bruinier and Bundschuh [Br98, p. 3] derive the following
Corollary 2.5.18. Ax(p, xp) = A;Jg(p, Xp) @ Ay (P Xp)

In order to prove this, we need some definitions and Lemma 2.5.23.

Definition 2.5.19 (slash operator, W,,, U,, V;). Let f : HH — C be a holomorphic function,
keZ zeHand M = (%) € GL*(2,R) = {M € GL(2,R) | det M > 0}, then we write

fle M(z) = (detM)k/z(cz—l—d)’kf(Mz)

for the slash operator of weight k. One easily checks f|.M|.N = f|x(MN) for all k € Z and
M, N € GL*(2,R). We define the matrices

1
Wy = and V, =
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2 Some Modular Forms

and the Hecke operator |;, U, (normalized as in [BB03])

o= % 1L,

j(mod p)

Remark 2.5.20. Both the so called Fricke involution |, W, and |, U, act on Ax(p, x,).

Proof of Remark 2.5.20. Forevery (¢%) € Ty(p) itis

0 —1 a b —c —d d —c/p) [0 —1
p 0 c d pa  pb —bp a p 0

soforall f € Ax(p, x,) and M € I'y(p) we have
d —c/p
o= 1]
—bp a k k

hence f [, W, € Ax(p, xp) and |, W, acts on Ax(p, x,)-
We want to show f |, U, | (¢4) = f |x U, forall (¢b) € T'o(p). For (¢4) € T'y(p) we have

Z f’ a Z f’ a+jc b+ jd

j(mod p) c d j(mod p) pd

Al

e

Forj,1 € {0,1,...,p— 1} define

. b+jd—(a+jc)l
a+ je =
My =" b
pc d—lc

Then (§7) (25) = M;; (§)), so we still need to show M;; € T'y(p) for appropriate I = I(5)

0
dependin% on j and that the corresponding map j — () is bijective.

Since (2%) € T'y(p) we have p | cand p { a, implying p 1 (a + jc). Additionally b + jd and
a + jc are coprime, so for every j € {0,1,...,p— 1} thereisl =[(j) € {0,1,...,p — 1} such
that M, € I'y(p). Furtheron we get the injectivity of the map j — [(j) by investigation of M:
If1(j1) = l(j2) fOr 51,72 € {0,1,...,p — 1}, then p divides the difference

(b+ jid — (a+ ji0)l) — (b+ jad — (a + jac)l) = (ji — j2)(d — cl).
Since p divides ¢ but not d, clearly p divides j; — j» and necessarily j; = js. O

We need the notion of Dirichlet characters and a fact about Gaufd sums:
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2.5 Elliptic Modular Forms for Congruence Subgroups

Definition 2.5.21 (Dirichlet character mod N). (cf. [Za81, p. 34]) Let NV € N. Every character
X : (Z/(NZ))" — C*, where (Z/(NZ))* = {n (mod N)|(n, N) =1}, is called Dirichlet
character. For every such character x we identify y withthemap f : Z — C, f(n) = 0 if
ged(n, N) > 1and f(n) = x(n (mod N)) if ged(n, N) = 1.

Lemma and Definition 2.5.22 (Gauf3 sum). If p is an odd prime number and y is a primitive
Dirichlet character (i.e. it has no nontrivial divisors, cf. [Za81, p. 37]), then the Gaul sum G,
is given by

Go= 3 e,

[ mod p

where ¢ = e2™/?, It holds

o VP, ifp=1 (mod 4),
X iy/p, (fp=3 (mod4).

and
ZXP )¢ = xp(a)Gy

for all a € N (cf. [Le96, p. 171 et seqq. and Satz 19.8, p. 298]).

From Bruinier and Bundschuh [BB03, Lemma 3] we take the following lemma, adding part (ii)
which comes immediately from their proof.

Lemma 2.5.23. Let f = Y _,a(n)q" € Ap(p,xp) and e € {£1}. Writee, = 1ifp = 1
(mod p)and e, =i ifp =3 (mod 4). Then

(i) f belongsto As(p, x,) if and only if
f U, = ey /Df | W)

(i) f=/f"+f with f* € Al (p,x,) and f~ € A4, (p, x,) for

1 Ep _ 1 Ep
fr= f \/—f|kU|kW and f 2f_2\/]_?

f |k Up |k Wp-

For sake of completeness we give the following proof:

Proof (Bruinier, Bundschuh). The function h = f |, U, | W, is contained in Ax(p, x,,) and the
condition in the lemma is equivalent to

h = e,\/Df (where ¢, is the complex conjugate of ¢,,).
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2 Some Modular Forms

We have
1 7 0 -1
=3 A7)
; \0 k 0
j(mod p) p p
p 0O
=Wk Vot > f’ ’
Jj(modp)* 0 1
where in > 4, We summarize over a set of representatives of (Z/pZ) \ pZ. For a given

j € Z that is coprime to p let b, d € Z such that jd — pb = 1. Then (; g) € I'y(p) and

j -1 j b 1 —d
p 0 p d 0 p

Thus

p—1 p —d
h=fle Wy le Vo + Z Xp(d)f‘k
d(mod p)* 0 p

=Fle Wy e Vot ) _a(n)g" > xp(d)e(—nd/p).

nez d(mod p)*

If we insert the value of the latter Gaul} sum (cf. Lemma and Definition 2.5.22), we obtain

h=Fle Wyl Vot Ev/p Y xp(n)a(n)g".

neZ\pZ

By Lemma 2.5.17 it suffices to compare the Fourier coefficients for &, p 1 n in order to decide
whether an element of Ax(p, x,) is contained in A} (p, x,) respectively in 4; (p, x,). Hence we
get all stated results from the Fourier coefficients of h — f | W, |, V, (remember V,(z) =
pz). O

Proof of Corollary 2.5.18. A(p, x,) is the sum of A/ (p, x,,) and A, (p, x,) by Lemma 2.5.23.
This sum is direct by Lemma 2.5.17. O

Hecke introduces Eisenstein series for the Haupttypus (—k, p, 1), cf. [He40, Satz 11]:

Theorem 2.5.24 (Eisenstein series for Haupttypus). The Eisenstein series

E(p) _ _'_ Z Z d| 2"

n=1 \d|n,ged(d,p)=1
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2.5 Elliptic Modular Forms for Congruence Subgroups

is an elliptic modular form of weight 2 for the group I'y(p). For even k& > 4

El(r) = pr+ 3 o (n)2",
n=1

where

o)
pr = (—1)¥ WC(’C)

op(n) = d’,

din

and

which is the Eisenstein series for the full group SL(2, Z) of weight k& and the Eisenstein series
E,(f) = 2z — Ej(pz), which are both elliptic modular forms of weight & for the group I'y(p).

A more general definition of Eisenstein series can be found in [Mi89, 7.2.14, p.288]. Some more
examples can be found at the homepage of William Stein [Ste04]. For a correct usage of his
page, we give the following

Definition 2.5.25 (Newform, oldform). Let f be a cusp form for I'g(n) with character y of
weight & (in case n = 1 we write ['((1) = SL(2,Z)). Then for every N > n, n|N € N the map
7 +— f(N/nT) is a cusp form for I'y (V) with character y of weight k. We denote such modular

forms as “oldforms” and the set of oldforms by S°9. Its orthogonal complement (So'd)l in the
space of cusp forms of fixed character we denote by S, its elements we call “newforms” .
2.5.3 Eisenstein series of Nebentypus

We give a second example of Eisenstein series, the Eisenstein series of Nebentypus, for which

we need some preparations. Especially we need L-series and a method to evaluate some values

of L-series.

Definition 2.5.26 (L-series). Let 1 < N € N and let x # x, be a Dirichlet character modulo N.
Then

Lis,x) = x(m)n™
n=1
converges for all s € C with Re (s) > 1. Compare [Za81, p. 41, 42].

For all s with Re (s) > 1 we can rewrite L(s, x) into the absolutely convergent Euler product

Liso) =[] 1=

p prim X(p>pis
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2 Some Modular Forms

If y is distinct from the principal character o which is given by

7 — C

Xo * 1, |f(n,N>:1,,
n —
0, else,

then the L-series L(s, x) converges for all s € C with positive real part and can be holomorphi-
cally extended to C. Then also L(1, x) # 0. An important general result on Dirichlet series is
the following

Theorem 2.5.27 (Satz 1in 1. §7, [Za81]). Let p(s) = >~ | a,n~° be a Dirichlet series converg-
ing for at least one point s € C and let f(¢) = >~ a,e”™ be the corresponding exponential
series (converging for all ¢ > 0). If for ¢ — 0 the function f(¢) has the asymptotic expansion

f(t) ~ b+ byt +bot> + ... (t—0),
then () can be holomorphically extended to the entire complex plane and
o(—n) = (=1)"n!b, (n€eN) (2.1)

holds. More generally, if for ¢ — 0 the function f(¢) has the asymptotic expansion
b1 )

then ¢ (s) can be meromorphlcally extended. Then o(s)— 11 is an entire function and the values
©(0),p(—1),... are given by the formula (2.1).

An important special case is given by

Theorem 2.5.28 (Satz 2 in 1. §7, [Za81]). Let x be a Dirichlet character modulo N and let

L(s, x) be the corresponding L-series. Then L(s, x) can be meromorphically extended to the

entire complex plane C, more precisely holomorphic up to a single pole with residue ¢(N)/N =

Z(lgm)gjv + in s = 1 in the case of the principal character x = y,. Additionally we have
m,N)=1

N

L) = =g o B ()

m=1

for all natural n, where B, is the n-th Bernoulli polynomial.

Remark 2.5.29. The Bernoulli polynomials (cf. [He40, p.824]) are defined as usual by

z+1
/ By(t) dt = z*
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and can directly be calculated. We give a few polynomials (cf. also [Za81, p. 25, 51])

Bo(l')zl
1
Bl(:p):x—é
1
Bg(:c):xz—erg
3 1
Bg($)2$3—§$2+§l’
1
By(z) = 2* — 22° + 2* ~ 39

We calculate the L-series L(s, x,) at s = —1 for some primes, cf. also [Za81, I. §7]:

p K 13 17 29 37
L-Lp)|-2 -2 -4 6 -0

Zagier gives a method to calculate L(1, x) in [Za81, II. §9].

We give a functional equation for further calculations ([Za81, p. 53]): If x is a primitive Dirichlet
character (i.e. it has no nontrivial divisors, cf. [Za81, p. 37]), then

p%l—‘ (S + 5) L(S,X) = .GX 125p(12 T (71 . 5) L(l — S,)z).

lw

™ ™
2 /D 2
In this G, is the GauB sum of Definition 2.5.22 and  is the character complex conjugated to .
We have 6 = 0 for y(—1) =1and § = 1 for y(—1) = —1. Since in our case y is a real character,

we have y = y. Hecke (cf. [He40, p. 823 et seqq.], there B, = g, and ¢ = p) uses the Bernoulli

polynomials to show
GyL(k,x) = 27m ZX Bk( )

Note that this is a finite sum. Hence we can dlrectly calculate the Fourier coefficients of the
two Eisenstein series for the Nebentypus (—k, p, x,) given in the following Theorem of Hecke
[He40, Satz 12], which we normalize as done in [BBO3]:

Theorem 2.5.30 (Eisenstein series for Nebentypus). Let & > 2. There are two Eisenstein series
G, and H, in M, (p, x,) of weight & > 2:

G =1+ 1—/{:Xp szk 1XP )

nld\

Hy = i Z d*'x,(n/d)q

n=1 d|n
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G, corresponds to the cusp oo, Hy to the cusp 0. From its Fourier expansion we see that H,
vanishes in oo of first order.

Remark 2.5.31. In [BB03] Bruinier states that £, = Gj, + 2H,/L(1 — k,x,) belongs to
M (p, x,) (We have p =1 (mod 4)) and is of the form

E;:1+ZB(n)q":1+ 1—143)( szk1>(p )+ xp(n/d)) ¢"
p

n=1 n=1 djn

So we have for all n € N:

2

B = =)

> d" 7 (ld) + xp(n/d))

dln

This result can also be found in [He40, (38), p. 823], but one has to use the functional equation
of the L-series and Lemma 3 in [BB03] to check that both results coincide.

2.5.4 A basis of the plus space
We investigate the plus space A5 (p, x,) and give a criterion for the existence of certain elements
with given principal part of the fourier expansion.

First we need two definitions:

Definition 2.5.32 (Principal part). If f =" _,
call >, _,a,q" the principal part of f (at co).

a,q™ is a modular form in Aj(p, x,), then we

Definition 2.5.33. For all integers n define

p

p=l 2ming/p ) (n)2 2, ifn=0 (mod p)

—1+
) ]Z% p 1, ifn#0 (mod p)

In the special case p = 1 (mod 4) (then x,(—1) = 1 and ¢ represents the squares by Theorem
1.3.15 and Remark 1.3.16, so ¢ = 6 = 1 in the notation of Bruinier and Bundschuh), we give the
following theorem of Bruinier and Bundschuh:

Theorem 2.5.34 (Theorem 6 in [BB03]). There exists a nearly holomorphic modular form f €
A (p, xp) with prescribed principal part >~ _; a(n)q¢" (where a(n) = 0 if x,(n) = —1), if and
only if

> " s(n)a(n)b(—n) =0

n<0
for every cusp formg = > b(m)q™ in S} (p, x,), where k = 2 — k. The constant term a(0)
of f is given by the coefficients of the Eisenstein series F':
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We will need the case £ = 0,k = 2,p € {5,13,17} for which we give a Lemma of Hecke
[He40]:
Lemma 2.5.35. For prime numbers p = 1 (mod 4), the dimension of Sy(p, x,) is given by

2|52 ).

So the obstruction space is empty in the case £ = 0,p € {5, 13,17} and we obtain

Corollary 2.5.36. For all p € {5,13,17}, there is a nearly holomorphic modular form f €
A (p, xp) With prescribed principal part >~ _ a(n)q¢™ if and only if a(n) = 0 for all n € N with
Xp(n) = —1.

By Remark 2.5.6, this nearly holomorphic modular form then is unique. Hence we can define:

Definition 2.5.37. Incase p € {5,13,17}, for all m € N with y,(m) # —1 we write o=y
for the unique nearly holomorphic modular form in A{ (p, x,) with principal part s(m)~'¢™.
The f,,, form a basis of AJ (p, x,).

Bruinier gives some more information about this basis:

Proposition 2.5.38 (Proposition 7 in [BB03]). The space M, (p, x,) has a basis of modular
forms with integral rational coefficients.

and

Proposition 2.5.39 (Proposition 8 in [BB03]). Let f = > a(n)q" € A/ (p, x,) and suppose
that a(n) € Q for n < 0. Then all coefficients a(n) are rational and have bounded denominator
(i.e. there is a positive integer c such that cf has coefficients in Z).

Remark 2.5.40. By Proposition 2.5.39, each element of the basis {f,,} has rational Fourier
coefficients with bounded denominator.

2.6 Vector Valued Modular Forms

We give an overview over vector valued modular forms related to Hilbert modular forms for
quadratic number fields. This section is based upon [BB03].

Definition 2.6.1 (Weil representation). For sake of simplicity we define e(z2) := &™*. pisthe
unitary representation of SLy(Z) on C[£#/£] with

p(T)ey = e(q(7))ey,

1
e =1 3 et
\/ﬁéeﬁ#/ﬁ

where C[L#/L] = <£#/£>(C is the complex vector space generated by £#/£. We fix the basis
{ev =1-v; v€ E#/ﬁ}.
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2 Some Modular Forms

Definition 2.6.2 (A ,: vector valued nearly holomorphic modular forms). A nearly holo-
morphic modular form for SL(2,7Z) of weight k£ with representation p is a holomorphic map
F :H — C[L£#] L] satisfying

F(yt) = p(y)F (1) forall y € £L#IC, 7 € H
with Fourier expansion
F(r)= Z Z a(y,n)e(nt) e,.
NELHF /L nez;r_q(v)

In this n > —oo means that there is M € Z such that »n runs over all integers greater than M
and L is the even lattice defined in Lemma 1.3.2. We write

F(r)= > Fy(r)e, forallreH
~eL* /L

and denote by Ay, , the space of nearly holomorphic modular forms for SL(2, Z) of weight £ with
representation p.

Remark 2.6.3. Bruinier and Bundschuh define » = b, — b_, where (b, b_) is the signature of
the lattice £. In our case this simplifiesstor =b, —b_ =2—-2=0.

Lemma 2.6.4 (Lemma 1 of [BB03]). The Assignment F' — f, where

ir/Q

_ 1
5 pU=PRE | W, = 5 Z E,(pr),

~eL#/r

S

defines an injective homomorphism Ay , — A5.(p, x,). Here e = x,,(a) = 1 (cf. Remark 1.3.16)
is given by the quadratic form on £#/£ . The function f has the Fourier expansion

F=33 Y atuwdt

nez »\/GL#/[:
pq(y)=n (p)

where

F, = Z a(y,n)q"?.

nel

Proposition 2.6.5 (Proposition 2 of [BB03]). Let f = > a(n)¢" € Ai(p,x,). Then the
function

F= Y oG =i 3" (p(M) " e) f i Wy e M

yeLHE/L MeTo(p)\SL2(Z)
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belongs to A ,. The components F, have the Fourier expansion

Fy= Y a(n)e(nt/p) +i"*p*>71 2 f |, W,
nez
n=0 (p)

E,= > a(n)e(nt/p) (v#0). (2.2)
nez
n=pq(v) (p)

Theorem 2.6.6 (Theorem 5 of [BBO03]). Let f = > a(n)¢" € A (p, x,) and define F' as in
Proposition 2.6.5. Then F' € A;, , and the components 7, have the Fourier expansion

Fy=2 Z a(n)e(nt/p),
nez
n=0 (p)

Fy,= ) a(ne(nr/p) (y#0). (2.3)
nez
n=pq(7) (p)

The map f — F and the map described in Lemma 2.6.4 are inverse isomorphisms between
As.(p, xp) and Ay ,.
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3 Theory of Borcherds Products

Borcherds [Bo98] describes a lift of modular forms where the image is given as an infinite
product of simple factors. Bruinier and Bundschuh [BB03] reformulate Borcherds theorem for
Hilbert modular forms. We start with the Theorem and then investigate the ingredients.

3.1 The Theorem of Borcherds, Bruinier and
Bundschuh

Borcherds products are Hilbert modular forms vanishing on Hirzebruch Zagier divisors, which
have an absolutely convergent product expansion on so called Weyl chambers. We give the
definitions and formulate the theorem of Borcherds products.

Definition 3.1.1.

T(m):= U {(7'1,7'2) EHXxH, anm+ I+ I +b= O} ,
(a,b,\)es
—q(a,b,\)=ab—N(X\)=m/p
S(m) := U M (X), where
Aeo/\/p
—NQ)=m/p

M) :={(r,m) e HxH; Am(r)+ Alm(r) =0}
-
:{(7-1,7-2>€HXH; Im(Tg):TIm(ﬁ)}

T(m) is called Hirzebruch-Zagier divisor of discriminant m , where one assigns the multi-
plicity 1 to every irreducible component of 7'(m).

Definition 3.1.2 (Weyl chamber). For f = >~ a(n)¢" € Af(p,x,) wecall W C Hx Ha
Weyl chamber attached to f, if 17 is a connected component of

HxH\ (] S(-n).
n<0
a(n)#0

Definition 3.1.3 (W, \) > 0). For W C H x H, especially if W is a Weyl chamber, and
A€ o/y/pwewrite (W, \) = (A\,W) > 0, if A\Im (71) + AIm (72) > 0 holds for all (71, 75) in
W.
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We give the Theorem of Borcherds, Theorem 13.3 in [B098], about Borcherds products in the
version of Bruinier and Bundschuh, compare Theorem 9 in [BB03] and Theorem 3.1 in [Br04]:

Theorem 3.1.4 (Borcherds, Bruinier, Bundschuh). Let f = >~ a(n)q" € Af(p, x,) and
assume that s(n)a(n) € Z for all n < 0 (where s(n) is defined in Definition 2.5.33). Then there
is @ meromorphic function ¥ on H x H with the following properties:

(i) ¥ is a meromorphic modular form for I' - with some multiplier system of finite order. The
weight of W is equal to the constant coefficient a(0) of f. It can also be computed using
Theorem 2.5.34.

(if) The divisor of W is determined by the principal part of f. It equals

> s(n)a(n)T(—n).

n<0

(iii) Let W C H x H be a Weyl chamber attached to f and put N = min {n;a(n) # 0}. The
function W has the Borcherds product expansion

U(r,m2) = e(pw + pwT2) H (1—e(vm + 572))8(1)”7)&(1)”5)-

vEo//p
(v,W)>0

Here py, and pyy are algebraic numbers in K that can be computed explicitely. The product
converges normally for all 7 € W with Im () Im (72) > |N|/p outside the set of poles.

(iv) There is a positive integer ¢ such that ¥ has integral rational Fourier coefficients with
greatest common divisor 1.

Definition 3.1.5. If W is a Weyl chamber and n an integer, we denote by R(WW, n) the finite set
ofall A € o/, /pwith A > 0,N(\) = n/p and

Mm (7)) + AIm (1) <0, A Im (7)) + &AM m (r2) > 0
forall 7 € W.

From [BB03] we take
Remark 3.1.6. Additionally we have

(i) Forall 7 € W the Weyl vector (py,,, pw) is given by
pw Im (11) + pw Im (r2) = >~ s(n)a(n) Y~ min(|AIm (1) |, [N Im (72) ).

n<0 Ae€o/\/pP
A>0
N(X)=n/p
In this pyy is the element conjugated to p,,,. We have
: ~ 1 L
> min {|AIm () |, [AIm () | } = ) > (coAIm (1) +EoA Im (72)) .
A€o/ \/B 0/ \eR(Wn)
A>0
N(X)=n/p

74



3.2 Integersin K

(it) Every modular form for I'x, whose divisor is a linear combination of Hirzebruch-Zagier
divisors T'(m), is given as a Borcherds product as in Theorem 3.1.4.

3.2 Integersin K

Before we can move on with the theory of Borcherds products, we have to investigate some num-
ber theoretical properties of 0. Especially we give, for fixed norm, a finite set of representatives
of o modulo multiplication with +¢2 and use this to investigate the sets S(m), which bound the
union of all Weyl chambers.

Lemma 3.2.1 (Fundamental unit). We write £y =: x +yo,/p for the fundamental unit of o with
Zo, Yo € Q Then xg >0 and Yo > 0.

Proof. We have N(gy) = €98 = 1 and g9 = zo + yo/p > 1. Sowe getey > 1 > || > 0
and conclude yo = (g0 — %0)/(24/p) > 0 and xy = (g0 + &9)/2 > 0 independent of the sign of
€0- L

Lemma 3.2.2 (Numbers of fixed norm). Let p be a prime number, X = Q(,/p) and o be the
ring of integers in IC. For every m in Z \ {0} there is a finite set ;7 which holds

0 m
T:=)\€e —; N)\:——}: +Xe2k kezZ e TV,
{ T N =T = (g }

more precisely, if we write \; + X2\ /B/p := g5\ for all A € o /,/p, we obtain that
0.
\/]—?7

is a set of representatives of Z /~. with respect to the equivalence relation ~ induced by multipli-
cation with €3 and —1. For A = A\; + A\2,/p/p in J we have depending on m = —pN(X) and
p:

J = {)\:A1+)\2\/13/pe N(A):—%,)\l >O,>\2>O,5\15\2§0}

P m >0 m <0

P A S T | X < e | M S ey | e ST
5| M<gvm | e<iVm | M <HRVEm | A< pVem
B3] M<ivm | < hyvm | S geveom | e < B m
17]| A <8ym | A <33ym | A < BT/ T | A, < 8VITy—m

Therein we write o, = (2zoyo)*/ (5 + pyg)* with the fundamental unit ¢ = o + o/
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3 Theory of Borcherds Products

Proof. Let T be the set of A ino/,/p with —N(\) = m/p and let Z be non empty. Let X be an
element of Z. Then we have

—N(\gg?) = = N(\) N\(@*% =—N())

and A, ** is an element of o/, /p, S0 Ay, := Ay ** is contained in Z. We get from N(\) = N(—))
that if \ is contained in Z, —\ is contained in Z too. So the second form of Z is proved except
for the finiteness of 7. Let A = \ + >\2§ with A\;, Ay € Q. We investigate the behavior of \
under multiplication with £32:

p p
Eg <)\1 -+ )\2%) = (SC% +py§ + 2\/]77.T0y0) ()\1 + %)\2)

2 + py?
= (@5 + pyo) + A2(2x090) + v/ (Al(zﬂfoyo) + )\20717%)

I W/ (3.1)
p
with Aj, \s € Z/2. We have 5 = (2 — y0,/p) from N(go) = +1, s0

_ p p
£ (>\1 + )\2%) = (=5 + pys — 2v/PTovo) (>\1 + %)\2)

22 + py?
= Mi(zg + pyo) — Aa(2z00) + VP <_>\1(2x0y0) + )\207%)

with 5\1, 5\2 € Z/2
We distinguish the two cases m > 0 and m < 0, the case m = 0 belongs to the trivial case
A=0.
m >0 W.lLo.g. let A\, > 0. We show that we can achieve A\; > 0 by multiplication with an
appropriate power of £2:
Look at (3.1). Since pA] +m = A3, we have 0 < /p|A;| < A, and therefore s is positive
(remember that (o — /pyo)? = 22 + pyd — 220y0,/p > 0). It remains to look at A;. If

~

A1 > 0 we have \; > 0, if it is negative we calculate

A= M(@d + pyd) + \/ pAT 4+ m(2x010)

m>0
> M(xh 4+ pyg) + /AT (2Toy0)
= M (z§ + py5) — Mv/P(2T0y0)
= A1 (2o — vPyo)
~——_—————

<1
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m <0

3.2 Integersin K
So in case A\; < 0 we have 5\1 > A\;. Since /\1,):1 € %Z, there is £ € Z, such that

A= e\ =X, + /pA; has coefficients A;, Ay > 0.

Have a look at (3.2). Analogously we get Ay > 0, it remains to investigate A1. In case
A1 < 0 we obtain A\; < 0, otherwise the point of interest A\; = 0 is given for

2r0m0 \’
A =pAl+m = >\2<7> +m
2 = PNy DAy x3+py§

This determines A\, > 0 uniquely and for larger values of A, we get X\; > 0. Thus the given
set 7 is finite (note that for given ) and m the choice of \; is unique up to sign) and is a
set of representatives. We get explicitely:

)\2 S \/ m<1 - pap)ilu

A < \/map(l — pay,)~1, where

2
N .:( 2x0Yo )
o\wg+pys)

and insert the values ¢y = (1 + v/5)/2, (3 + v/13)/2 and 4 + /17 to obtain:
5 = e — e -,
143 6 9
6 2 2
1 6 9
1T 22 121

(2-4-1)2 26 64
Qq7 = =

2117) 32112 1089
W.l.o.g. let \; > 0. We show that we can achieve Ay > 0 by multiplication with an
appropriate power of :

From pA? +m = A3 we get A; > |Xo|\/p . Together with the second binomial formula
we get that )\, in (3.1) is positive.

In case Ay > 0 We have \y = pA; (2zoy0) + Ao (22 + py2) > 0. If Ay < 0 we get

Ao = pA1(220y0) + Ao (23 + pyd)

A —m
=D/ - ’ 2x0y0 + Ao (2§ + pyg)

—m>0
> /plXel(2zoyo) + Az (2 + pyg)
= )\2(:133 +py§ — 2x0Yo\/P) = A2 (xo — \/ﬁyO)Q > \o. (3.3)
—_———

<1, sinceegp>1
and | N(eg)|=1
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3 Theory of Borcherds Products

Due to the discrete possibilities for A, (in Z/2) there is k € Z, such that A= gdb )\ =
>\1 + \fAQ has coeff|C|ents)\1, )\2 > 0.

Have a look at (3.2). Analogously we get A1 > 0 and it remains to investigate \y. If Ay < 0
then we have )\, < 0, otherwise the critical point A\, = 0 is given by

A—m 2 + py?
0= —X(2z0y0) + Aa(2f + pyg) /p = — : 2x0y0 + )\20717?40.
This is equivalent to
A2 2 2\2
2 m(2$0y0)2 = )\gw and A\ > 0.
D

Larger values for \, give positive \,. We precisely get

)\2 < M and
\/ 1 — pay,
—m

A1 <

N

p(1—pay)
Only those A belong to 7 and its finiteness is proved. Analogously to (3.3) we obtain for
)\2 >0 5
Ay > Ao (29 — ?/0\/]_9)2 .
1
<
Especially 7 is a set of representatives of Z /~.. [

Lemma 3.2.3 (Shape of S(m)). For every prime number p and every m > 0 the set S(m) is the
intersection of H? with an empty or an infinite union of hyperplanes of the real vector space C2.
We have

Sm) = J{(z1,22) e HxH; AIm(z)+ AIm (z) =0},

AET

where 7 is as in Lemma 3.2.2. Especially S(m) is invariant under the stabilizer I, of infinity.

Proof. S(m) has the given shape by Definition 3.1.1. Let Z be the set of X in o/,/p with
—N(A\) = m/pand let Z be nonempty, e.g. let A € 7 be an element. Clearly the set

M) ={(r,72) EHxH; Am(r)+Am(r)=0}

is mapped onto itself by real transformations H? — H? 7+ 7+ r, 7 € R2 Let 7 in M()\) and
k € Z. Then 7%) .= e3f7 = (e3F7, 5612 holds

g5 2" A Im (Tl(k)) + 5 *XIm (Ték)) =0,
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3.3 Weyl Vector

so 7" is an element of M (g5%*\).

I is generated by real transformations and multiplication with ¢2* (k € Z), so we have shown
the invariance under I' .. We rewrite M () into

M) = {(zl, %) €H x H; Im(z)= _TA Im(zl)} .

Since forall k € Z\ {0} we have e;2* /2572 # 1, the sets M (\) and M (52" \) do not coincide,
so Z is either empty or has an infinite number of elements. O

Remark 3.2.4 (Calculation of S(m)). Let m > 0. If we use both Lemma 3.2.3 and Lemma

3.2.2, we get a program for the calculation of S(m). We take all positive A, in 1Z smaller than
17’;}%. Then A; > 0 is uniquely determined by the formula pA? + m = 3. We only have to

check whether \; € Z/2 or not. Then we have calculated S(m) modulo multiplication by 2.

Lemma 3.2.5. If m > 0 and x,(m) = —1 then S(m) = 0.

Proof. We write A = \; /2 + ,/pA2/(2p) where A, and A, are integers and get the equation
—4pN()\) = b* — pa® = 4m.

Especially there is no such A, if 4m and therefore m modulo p is no square. O

3.3 Weyl Vector

We calculate the constants py and py and simplify the representation of R(WW,n). Some
results can be found in Table A.6.

Lemma 3.3.1 (Empty S(m) and py). If S(m) is empty, there is exactly one Weyl chamber,
namely H?. In this case py = 0.

Proof. The first statement is trivial. Consider the case S(m) = (), so W = H is a Weyl chamber.
By Remark 3.1.6 we have

pw Im (71) + pw Im (r2) = > s(n)a(n) Y min(|AIm (1) |, [N Im (72) |).

n<0 Ae€o/\/p
A>0
N(A)=n/p

If we fix 7 in H and write 75 = it, the limit ¢ \, 0 shows that p;; = 0. If we fix » and write
z1 =it we get pyr = 0. ]

Lemma 3.3.2. Weyl chambers are open in H?Z.
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3 Theory of Borcherds Products

Proof. Consider m € N (m > 0). Since there is a finite set 7 as in Lemma 3.2.2 with

0 m
T=Sx e —|NN=——4={tX|keZ e ,
{ £ INO) p} {EAct | 7}

the set 7 is closed in R*, so also | J, ., {T eH? | Im (y;) = I (y2)} is closed in H?.

As a consequence, each component of the complement ist open. Since each Weyl chamber is a
finite intersection of such components, it is open alike. O

Lemma 3.3.3 (pi and py). Letp =5, p = 13 or p = 17 and let m € N such that x,(m) # —1.
If W is a Weyl chamber attached to f,, (cf. Definition 2.5.37), we have

AE
Pw = €o+oz 0

AER(W,m)

and

oW = Pen
P €0+Eo Z 0

AER(W,m)

Proof. By Remark 3.1.6 we have:

1 _
pwin +pwya = »_s(n)aln) —— > (oM +Eopa)
oo 01T %o AER(W,n)

(Sm,n

forall 7 € W,y; = Im (1), y2 = Im (7). The Weyl chamber is an open set, so for sufficiently
small 91,05 > 0, 61 + 62 > 0and 7 € W we have (1 + iy, 72 + id2) € W and get

pw (Y1 + 61) + pw (y2 + 62) = — Z (20A(y1 + 61) + EoM (Y2 + 62)) -
AER(W,m)
We substract the equation for 7 and obtain

1
€0+ ¢€o

w(61) + pw(d2) = Z (80)\51 + €_OX52) )

AER(W,m)
If we insert 6, = 0 into this equation and divide by §; > 0, we get

1
Pw = — Z €0,
€0+ %0 AER(W,m)

while, if we insert §; = 0 and divide by J, > 0, we get

1 _
pw=——— Y, B\
€0+ %0 AER(W,m)

We especially proved that py is the element of X conjugated to py, by the field automorphism
- ]
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3.3 Weyl Vector

Let p € {5,13,17}, m € N with x,(m) # —1 and consider f,,(7) = >, a(n)q¢". We want to
calculate R(W,n). Define
0 n
R(n):=qXx€ —,A>0,N(\ :—}.
= {re >0 -2

We write A = A\; + A\y//p and get
0
R(TL) = {)\1 +)\2/\/]_? € %,Al +)\2\/]_9 > 0,pN<)\1 +)\2/\/]_9) :p)\% — )\% :n}

:{%; ,ueo,,u>0,N(u):—n}.

For all n < 0 with a(n) # 0 we have

Mm (7)) + X Im (r) < 0,
RW,n)={re Z:A>0 NN =2 vrew: () _(2)
VP p e2\Im (1) + (50)A Im (72) > 0
Im (1) < =2 Im (7 ,
— e ZaasoNyy=Lvrew: () r (). L (3.4)
VP p Im (1) > % Im (73)

Lemma 3.3.4 (Choice of Weyl chamber). Let p € {5,13,17} (or any other prime p with
N(eg) = —1), let m = —n be a natural number and = € H?. Then W (7) defines the Weyl
chamber attached to 7 := 7 + (id, i6) for sufficiently small 6 € &C, § > 0, in the following sense:
If 7 is contained in a Weyl chamber, then we define W (7) to be this Weyl chamber (6 = 0). Else
if Im (1) # Im (72) there is a Weyl chamber, which we denote by 1/ (7), and some 6, > 0 such
that for § = (id1,40;) we have 7+ § € W(7) for all 0 < 07 < dg, 07 € Q. In the case that 7 is
not contained in a Weyl chamber and Im (7;) = Im (73), there is an unique Weyl chamber, which
we denote by 1 (), and some 6, > 0 such that 7 + (—id,/p, id2./p) is contained in W () for
all 0 < 05 < 0 with 95 € Q.

Our standard choice for 7 will be 7 = (—igg + igo) and 7 := (—izg + 46, igg + ).

Proof. If 7 € H is not contained in a Weyl chamber, then 7 € S(m). By Lemma 3.2.3 we
know that S(m) is modulo multiplication with €2 a finite union of hyperplanes M ()). The
projection of these hyperplanes on the imaginary parts are straight lines through 0 intersected
with H?2. Hence for 7 € S(m) the point (Im (7;) , Im (73)) lies on the straight line through 0 with

direction (Im (1) , Im (7)) and the choice of W (7) described in the Lemma is unique and well
defined. ]

Now we can easily calculate R(WW,n).

Lemma 3.3.5 (Calculation of R(W,n)). Let p be an odd prime, let m = —n be a natural
number and 7 € W for some Weyl chamber . Then R(1V, n) can be calculated by

For every element )\ in a set of representatives of 2(—m) modulo multiplication with £2 do
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3 Theory of Borcherds Products

e Multiply A with £2 (and denote the result again by ) until Ay, + Ay, > 0 for the imaginary
part y of 7.

o Multiply A with £,2, until Ay, + \y» < 0.

The resulting M () is an element of R(W, n) and this procedure gives all of its elements when
applied to all X in R(—m)/e2.

Proof. We have £, > 1and N(gp) = +1,500 < €2 = 52 < 1. Let 7 € H? and \ € o /,/p with
A > 0. Write y; = Im () and y, = Im (73). Then A = N(X)/A = =™\ < 0 and we get

oy k— _ _ ~ k—
e2F Nyy +edFhy, X oo, g0 X dy + g Ay % —o00
~— ~—
>0 <0

and L B
5(2) )\yl + 5(2) )\yg > )‘yl —+ )\yg
N
>1 >0 <1l <0

So the algorithm described in the lemma gives some A = £2*\ with A\ € R(W, —n), k € Z and
clearly it suffices to apply this algorithm on a set of representatives of Z modulo multiplication
with £2. O

Lemma 3.3.6. Let p be a prime number with x,(—1) = 1. Define x = (—igg, ig). Then z is
contained in the Weyl chamber 1/ (z) attached to f, and we have R(W (z), —1) = {1//p}.

Remark 3.3.7. The restriction (W, A) > 0 in the formula of Borcherds products can be replaced
by (7,A) > 0 for a point 7 € W, where we define (7,\) > 0 if A\Im (1) + AIm (72) > 0. This
follows directly from Remark 3.4.1.

From (3.4) we get

Remark 3.3.8 (Interpretation of R(W,n)). If W is a Weyl chamber attached to f,,, then the
boundary of 1V in H? is a subset of

U MyuM(EN).
AER(W,n)
Especially the boundary is the union of two M ().

Proof of Lemma 3.3.6. We have x € W (x), iff z ¢ S(—1). Forall A € o/,/p with N()\) =
—1/p we have

v €M) <= —Xgg+ =0
= gy = A5 - (=)&)
= XN =M= -NOWE? =g !
=  A==x5/Vp
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3.3 Weyl Vector

In this case . 0 e )
=N )=~ 2= S
p VP VP VP VPP
shows that = is not contained in S(—1) and x € W (x) holds. We have R(—1) = {% ke Z},
because o* = ¢ consists of the elements in o of norm 1 and N(gy) = —1. We have ¢/ \/p =

—20"/ /P, 50

£2k 28 Im (2,) — (50)* Im () < 0,
RW,-1)={-"%: keZVzeW: s s
VP ec®™ ) Im (1) — (55) Im () > 0

The restrictions on R(W, —1) for z = = (N(eg) = —1) are:

ey (7)< 0and 2 1 (50)% T > 0.

After multiplication by 2**' > 0 and addition of 1 this yields

e < land g2 > 1.

This is equivalent to &£ = 0. So
R(W, =1) C{1/y/p} -
The continuous restrictions for 7 in W (z) are
Im(m) —Im(m) <0,
e2Im (1) — (£9)* Im (72) > 0,

and every point, for which the first or the second inequality is valid as an equality, is contained
in

S(1) > {r c 12 Imj;) - Imjg) - o} U {T € 12 \"5/—32_) Tm (1) — %; Im () = o} ,

so the inequalities hold for all 7 € W (x) due to their continuity and the connectivity of W (x).
U

From Lemma 3.3.6 we get the following

Corollary 3.3.9. The first factor of the product expansion of the Borcherds product correspond-
ing to f; is given by e(pw 7 + pw2), Where
_1+4V5
Pw = 2\/5
_3+V13
Pw = 6\/ﬁ

4+ /17 .
= if p = 17 and more general
[41% U1 D g

pw = =0 ifp=1 (mod 4).

S(g0)y/P

ifp=>5,

if p=13,
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3 Theory of Borcherds Products

Proof. By Lemma 3.3.6 we have R(W,—1) = {1/,/p}, so we get the stated result by the
formula py = % > xer(wn) Ao Of Lemma 3.3.3 and the values of ¢, given in Definition
1.2.13. O

3.4 Weyl Chambers

We investigate properties of Weyl chambers. Especially we find that the concrete choice of Weyl
chamber in Theorem 3.1.4 influences the resulting Borcherds product only up to a constant
factor.

For this section let j € N such that y,,(j) > 0 and let f; = ﬁq*j +O0(1) € Af (p, Xp)-

Remark 3.4.1. If W is a Weyl chamber attached to f = >~ _,a(n)¢" € Af(p,x,) and X €
o //p, then for every a(—p N(X)) # 0 the condition (A, W) > 0 is equivalent to the existence of
a point (11, 75) € W with AIm (7;) + A Im (72) > 0.

Proof. In case N(A) = 0, the condition A Im (1) + AIm (73) > 0 holds for no 7 € H2 . In case
N(A) = A\ > 0, both X and X share the same sign. Thus for all 7 € H? we have

AMm (77) +A Im (72) > 0 iff  A>0,
0 >0
>

so especially it does not depend on = or . In case N(A) < 0 and a(—pN())) # 0 every
element 7 in W has AIm (1) + AIm (5) # 0. This depends continuously on 7, so the sign of
Alm (1) + A Im (72) is constant on the connected set 1. O

From the Definition of S(m) and of Weyl chambers we get:

Remark 3.4.2 (Symmetry).

e S(m) is a symmetric subset of H?, i.e. either both or neither (7, 7») and (7, 1) are con-

tained in S(m), since every M(\) U M(X) is symmetric and for A € o /,/p we have
A€o//pand N(A) =N(}).

e The Weyl chambers are not necessarily symmetric, but if 1 is a Weyl chamber, then W :=
{(72,71)|(m1, 2) € W} isaWeyl chamber, too.

Remark 3.4.3. If W is a Weyl chamber attached to f; = ¢/ + O(1), then D, W is a Weyl
chamber attached to f;.
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3.4 Weyl Chambers

Figure 3.1: Imaginary parts of Weyl chambers

Lemma 3.2.2 together with Lemma 3.2.3 shows that S(j) is a countable (or empty)
union of hyperplanes Ey = {r € H? Im(m) = %Im (m2)} which is, modulo mul-
tiplication with €3, a finite union of hyperplanes. The sketch shows the case S(j) =

Umez {Esgma U Esgmb} in a projection of S(j) and its hyperplanes and the Weyl cham-

bers on the imaginary parts. Each Weyl chamber is the product of its projection on the
imaginary part and R?, if we write H? = RT x RT x R2,

Proof. Let A € o /,/p with —N(X) = j/p. Then we have
D.yM(X) = {D.z € H*; AIm (2) + Alm (22) = 0}
"L e B Alm (55%1) + Alm (5572m) = 0}
={r e H* £°AIm (r1) + 5 “Am () = 0}
= M(g5°N) .
U

Lemma 3.4.4 (Change of Weyl chamber). Let ¥; and ¥, be Borcherds products in the sense
of Theorem 3.1.4 for f with different Weyl chambers 1/, and 1/, attached to f. Then there is
c € C\ {0} such that Iy = cW,.

Indirect proof of Lemma 3.4.4. W, and ¥, are Hilbert modular forms of weight & with divisor
F. So ¥, /W, is a Hilbert modular form of weight 0 and divisor 0, so it has a trivial multiplier
system and constantly equals some ¢ € C \ {0}. O
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3 Theory of Borcherds Products

In a special case we can give a longer but easy and direct proof which uses the product expansion
of the Borcherds product:

Direct proof of Lemma 3.4.4 in the case W, = DE W, k € Z.

Let W, = D, ,W,. We have

Am (71) + AIm () < 0 and

A€ RWh,j) <= VT eW;: - aswellas \ € ——
g2\ Im (71) + e3A Im (r2) > 0 VP
2 J—
M g3\ Im (z1) + €2AIm (22) < 0 and
2<’:(’Q>QVZ€W2: 0 (z1) o (2) aswellas,eg)\ei
egAIm (21) +egAIm (29) > 0 p

<= o) € R(Wy,j) ,

thus

€o - u:€2>\ o - -
ey 2. S ENT =gy DL @tm=clon
0 AER(W1,5) 0 HER(W2,5)

Additionally for all A € o /,/p we have

AMW) >0<=VreW;: AMm(r) +Am(r) >0
T1=€22 —
= Ve Wyt e2AIm (2) + e2AIm (25) > 0

To=E0222

= (e2\, W) > 0.

We insert this into the product expansion in Theorem 3.1.4 on page 74 and get from the conver-
gence of the products W, (7), where 7 € Wy, and Wy (z), where z € W, the equation

Ui () = elpy, 1 + o) [ (1—e(vm +7my)) @7 e

ve€o/\/p
(v,W1)>0
=1 =1
—~ =
+—D= ) s(pua(z)%2ﬁ)a(pya(2)%2§)

=" e(pw,e021 + pwiedz) [ | (1 — e(vegz + vega)
veo/\/p

(V,W1)>0
=e(pw, 21+ Pnza) [ [ (1= e(pz + Jiz)) PP = Wy(z) = Uy(D,,7) .
ve€o/\/p
(1, W2)>0

W, is a Hilbert modular form of weight & holding Wy(D.,7) = pg,(Ds,) - N(gg')* - Uy(7), SO
W) = i, (Deg)(—1)F s, O

86



3.5 Hirzebruch-Zagier Divisors

3.5 Hirzebruch-Zagier Divisors

All divisors of Borcherds products are Hirzebruch-Zagier divisors and vice versa (cf. Remark
3.1.6). In his book ([Ge88]) van der Geer describes for discriminant D the shape of some
special sets of quadratic equations. A special case of this gives us the number of generating
equations of 7T'(m) for given p and m. Then we just have to find sufficiently many independent
equations, which works well in the cases we need.

We rewrite the Definition of 7'(m) (cf. Definition 3.1.1) in an equivalent form:

T(m):= |J M(a,b ), where

(a,b,\) e
—q(a,b,\)=ab—N(X\)=m/p

M(a,b,\) ::{(7'1,72) ceHxH anmn+In+In+b= 0}.

We want to investigate the operation of SI.(2, 0) on 7'(m). Since Hilbert modular forms are in-
variant under SL(2, o) up to multiplier and (c7 +d)* # 0, their roots are invariant under SL(2, o),
i.e. SL(2,0)T'(m) = T'(m). One easily checks that SL(2, o) permutes the sets M (a, b, \). We
need a representation
T(m)= |J SL(2,0)M(a,b,\)
(a,b,\)eV

with an appropriate minimal set of representatives V. We will not use van der Geer’s set of
representatives of the equations, but will instead simplify the vectors (a, b, ) by the following
rules. For all G € SL(2, o) we have:

GM(a,b, \) = {GT | arimy + AT+ A +b = 0}
_ {T 1 aG'NG NG NG b= o} .
After multiplication with the common divisor we get:
(*) Multiplicativity: Clearly we have M(a,b,\) = M(n-a,n-b,n- ) foralln € Z\ {0},
S0 we can assume that the triple (a, b, \) is coprime over Z, in the sense that there is no

common divisor of a, b and X in o which is not a unit and contained in Z. Especially we
have M (a,b, \) = M(—a,—b, —\), SO we can choose a sign.

) J: B
JM(a,b,\) = M(b,a,—\)
So we can interchange a and b.
(m T B
TM(a,b,\) = M(a,b+a—X—X\\X—a)

If |2)\;] = [A+ | and |a| are comparatively small compared to |b|, this allows the reduction
of b with an appropriate power of 7.
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3 Theory of Borcherds Products
(Te) Ty ~
T.,M(a,b,\) = M(a,b—a— \eg — A&, A — a&y)
This is a second possibility to reduce b.
(D.,) Diag(eo,e5"):
Diag(&foa 661)M(a, bv )‘) = M(_aa _ba —>\€g)
= M(a, b, \e?)

So we can simplify A without changing a and b. So, w.l.0.g. we have A = \; 4 ,/pA; with
|A1], [A2] < N with a constant N depending only on the norm of .

(Ty) Ty = (é}f)
T,M(a,b, ) = M{a,b+ N(i)a — M — X, A — aff)

Remark 3.5.1. We are only interested in those 7'(m) with x,(m) > 0, also for example M/ (0, 1, 0)
is the empty set. This restriction seems to reduce the problems only by some easy cases.

Corollary 3.5.2. From the multiplicativity, (), we get for all natural numbers m and n that
T(m) C T(mn?). If we had T'(m) = T(n? - m) for some n > 0, then ¥ ...,/ ¥,, was a (holo-
morphic) Hilbert modular form without zeros. But there are no holomorphic Hilbert modular
forms without zeros of positive weight, since the reciprocal was a (holomorphic) Hilbert modu-
lar form of negative weight (which was holomorphic in the cusps, since it was holomorphic in
H?), so the case T'(m) = T'(n* - m) does not occur.

Before we cite van der Geer, we will give a warning:

Remark 3.5.3. There are triples (ay, b, M), (ag, by, \2) in Z? x o /+/13 with the properties
M(ay,b1, A1) N M(ag, ba, A2) # 0 and SL(2,0)M (a1, b1, A1) # SL(2,0)M(ag, ba, X2). In the
following we will understand that the components of a union Fy = UgFp are the sets £’z no
matter if they are connected components of Fy.

Proof. We calculate (Maple™) that M, := M (2, 4,3+ 41£33> and M, := M (0, 0,1+ 52£63>
have the following property:

MiN M, = SL(Q, U)Ml N M, = {p} )

_ (1 55 10-5V13 . /2141345635v/13 11 55 /73, .. /2141345635V/13
where p = (24 sg VI3 + i35 26 =51 3 VI3t 25.32.13 . 0O

We need the following (cf. Definition [Ge88, 1.2, Seite 6]):
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3.5 Hirzebruch-Zagier Divisors

Definition 3.5.4.

a b o b!
SL(ox ®b) = € SL(2,K):a,d €ox,bc bt ceby=SL(2K)N

c d b o

We will use [Ge88, V. Modular Curves on Modular Surfaces] and adjust it to our case. The short
form of what we need is the following: “It was shown by Franke that for prime discriminants
Fx has one or two components, the latter if and only if N is divisible by the square of the
discriminant. Franke’s results were extended to the general case by Haussmann. Both of them
use the theory of hermitian lattices.” ([Ge88, p. 93 et seqq.]).

Two ideals a and b are coprime resp. relative prime, if a+b = o holds. In this case we investigate
instead of D the ideal generated by D and get o +(D) = o for a = 0. We consider }C = Q(/p),
where p = 1 (mod 4), so the discriminant of IC is D = p.

Definition 3.5.5. Let a be an ideal in o of norm N(a) = A. A matrix B € M,(K) is called

skew-hermitian if B
'‘B=-B,

where B is the component wise conjugated matrix. A skew-hermitian matrix is called integral
with respect to a, if it has the form

a/D A
N
witha,b € Z, A € a~!. Itis called primitive, if it is not divisible by a natural number m > 1.

Definition 3.5.6. Let B be an integral skew hermitian matrix and N € N. We define

Fi=p\[{ze () UPK): (2B | =0
1
=\l {z € (H*)* U PY(K) : ay/pz122 — Azp + Az + %\/]3 = O}
= F\F z € (HQ)* U Pl(lC) 1 azi129 + <i)21 + iZQ + E =0
vB) R

and
FN = U FB

B skew hermitian
integral, primitive
det B= N/A
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3 Theory of Borcherds Products

as well as

Tn= |J Fve= U Fg.
t>1,t2|N ...
B skew hermitian
integral

det B= N/A

We get from Definition 3.5.6 the obvious

Lemma 3.5.7. Two matrices B; and B, define the same component oi Iy, in the sense that
Fp, = Fg,, if they there is an element 7" € SL(o0 @a) such that B; = +'T'B,T.

Definition 3.5.8.

Ry :={q:qprime, ¢|D, q [N} ,

Ry :={q : qprime, ¢|D, ord,(N) > 2ord,(D)} ,
r = ‘R1| y

o i= ‘R2| .

We just need the case a = 0 = ox. Then I'x = SL(2,0) = SL(0 ®a).

Theorem 3.5.9 (Theorem (3.2) in [Ge88]). Two elements B; and B, in F'(N, a) belong to the
same SL(o @a)-orbit if and only if the r, invariants 6,, ¢ € R, and the r, invariants n,, ¢ € R,
assume the same values for both of them. Moreover, if for none of the primes ¢ dividing D one
has xp()(N)(A, D), = —1 then there are 2" orbits.

Definition 3.5.10.

Gp={T €SL(o®a): (T)'BT =+B}

Ep={T €Gp: (T)BT =B}
For the formulation of the theorem about the number of components of £’y we need the Hilbert
symbol, so we define:

Definition 3.5.11 (Hilbert symbol). Let ¢ be a prime number, denote by Q, the set of g-adic
numbers and write Q; = Q, \ {¢}. The Hilbert symbol (,), : Q; x Q5 — {—1,1} is defined
for all non-zero g-adic numbers a, b by

1, ifthereare (z,y,2)" € Q3\ {0} : 2% = ax® + by?,
(a,0), := 1, else '

Lemma 3.5.12 (Some properties of the Hilbert symbol). For all non-zero g-adic numbers
a, b, c we have:
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3.5 Hirzebruch-Zagier Divisors

Proof. i) trivial,
ii) forz =0,y =1,z = bwe have 22 = az? + b%*y?,
iii) i) and ii) with b = 1,
iv) forz =1,y = 1,2 = 0 we have 2? = ax? — ay?,
v) forz =y =2 = 1 we have 22 = ax? + (1 — a)y?,
]

Theorem 3.5.13 (Theorem (3.3) in [Ge88], also [Ha80]). The curve Fy on Y, if non-empty,
has 2"1+7271[G; . Ep] components. Moreover, if d is the square-free part of D (in our case
d=p= D), then

G+ Byl =2 (-1,D), = +1 forallq € R, and
B:LB| =2
R, contains no prime dividing d.

Otherwise we have (G : Eg] = 1, since obviously [Gp : Eg] € {1,2}. In this (=1, D), is the
Hilbert symbol (cf. Definition 3.5.11).

We restrict this to the case a = (1) = o. Then, for all N € N with x,(N) > 0, we get the
following cases :

() p /N:
We have Ry = {p} and Ry, = {}, so [Gp : E] = 1 by Theorem 3.5.13. Thus
2t Gy Byl = 214071 1 =1,

We get Ty as union of at most |{¢t € N : #*| N'}| components SL(2, 0) F's

(i) p|N, p* JN:
Then R, = {} and Ry, = {}, SO [GB : EB] = 2. Hence 27"1+7"2—1[GB : EB] =2"1.2=1.
We get that Ty is a union of at most |{¢ € N : t*| N'}| components SL(2, o) F'.
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3 Theory of Borcherds Products

(iii) p?|N:
In this case Ry = {} and R, = {p}. In order to calculate [G 5 : Eg], we need to calculate

the Hilbert symbol. We skip this, for it will suffice for us to treat only Hirzebruch-Zagier
divisors T'(m) and Borcherds products ¥,,, with m < p2.

Definition 3.5.14. Let q be a prime, then D(q) := disc(Q(,/q)) is called the discriminant of
Q(\/q9)- By xp we denote the primitive Dirichlet character modulo | D| with

xp(2) = {1 g

for every prime p.

(mod 8)

) (D) =siEn D, xo(p) - (2)

b

Lemma 3.5.15 (Lemma V(1.4) in [Ge88]). The curve Fy on Xt is non-empty if and only if for
each prime ¢ dividing D and not dividing NV we have

Xp(g)(N) = (A, D),

We only need the case A = N(o) = 1and D = p = 1 (mod 4) a prime. Then Fy on X is
non-empty if and only if
p fN and x,(N) # (1,p), = 1.

Some concrete results are given in table A.4 on page 147 and table A.5 on page 148. For the
values of x,, compare also table A.2 on page 145.
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4 Properties of Hilbert Modular Forms

What are the possible multiplier systems for Hilbert modular forms defined in Definition 4.1.3?
How do Hilbert modular forms behave under certain transformations not contained in the
Hilbert modular group? We will give some answers and investigate how we can get new Hilbert
modular forms by differentiation. The latter gives no new results in the cases p € {5,13,17},
but might be useful in other cases.

4.1 Multiplier Systems

Gundlach presents in [Gu88] a program how to calculate the possible weights and multiplier
systems of Hilbert modular forms. We adopt it to our case. Note that we have seen in Theorem
2.3.3, that for every multiplier system there is a not identically vanishing Hilbert modular form.

Gundlach gives the following

Definition 4.1.1 (Warg, @m 1, b js Cmts diny). LU M = (7 7) and M’ = ([ ;) be two matrices
in SL(2,R) and 7 an arbitrary point in H2. Write (; ) := MM’. Define, using the argument
function arg : C* — (—m, 7], the map wayg : SL(2,R) x SL(2,R) — {—1,0,1}:
1 -
Warg (M, M') := 2—(arg(c - M'{(T) 4+ d) + arg(d'T + d') — arg(cT + d))
™
This is independent of 7, for calculations use 7 = e¢i. For any list R = My, Ms, ..., My of
matrices in SL(2, R) and a generating system & := {G;, ..., G, } of SL(2, 0) we define:

k—1 l
warg(R) - Zwarg <H Mma Ml-i—l)
=1 m=1

and
ch:\{lSjSk: Mj:Gl}‘u
dui=|{1<j<k: M;=G'}],
am,l:Cm,l_dm,lu

bnj = Warg(R) = Y gl warg (G, (GI) 7).
=1

Therein we denote by Gl(j) the image of G, under the ;™ imbedding of SL(2, K) in SL(2, K)2, so
we have G\ = G, and G\¥ = G,.
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4 Properties of Hilbert Modular Forms

Lemma 4.1.2. The definition of w,,, is independent of 7 and the image of w,,, is a subset of
{-1,0,1}.

Proof. For 7 € Hand M = (¢}%) € SL(2,Z) we know that M/ is contained in H and we have
arg(7) € (0, 7). Further on, we have arg(a - b) — arg(a) + arg(b) € 2nZ forall a,b € C. For
7€M, M= (2}) €SL2Z) and M' = (%) € SL(2,Z) with MM’ = (g) e SL(2,Z)
we get:

2 Warg (M, M') = arg(cM'7 + d) + arg(c'T + d') — arg(ér + d)

=k +arg((cM't+d)- (T4 d)) —arg(¢t + d)
cM't+d) - (dT+ d’))
er+d

:k1+k2+arg(<

/ b/ d / d/
:k1+k2+arg<c(a7+ ~)+ ECTJF ))
cT+d

= ]{71 —+ ]{]2 —+ arg(l) = kl + ]{72 € 271'{—1,0, 1}

with k; € {—27,0} and ky € {0,27}. Since the arguments of arg are contained in H and arg
is continuous on H, the function w,,, is continuous as function in = with discrete image, hence
constant. n

Definition 4.1.3 (Multiplier systems). A map v : SL(2,0) — C\ {0} is called multiplier
system of weight (r1,79) , if v(—FE) = 1 and

o(L- M) =v(L) - v(M) - exp (27 (Warg (LY, MD) 1y + warg (L2, M@) 15))

holds for all matrices L, M € SL(2,0). We will only need the case of homogeneous weights
(r,r).

Remark 4.1.4. By Lemma 4.1.2 every multiplier system of integral weight is a character. Addi-
tionally we get simplified rules of calculation for all multiplier systems from w,,,(7,,73) = 0
for all o, 8 € KC (For the definition of 7}, and 73 compare Corollary and Definition 1.2.22). So
for every multiplier system p we have p(7%,)u(T3) = p(To1p) = p(Thyp) forall a, g € K.

Proof. If the weight (r1,72) € Z? is integral, then 27i(rwayg + rway) € 2miZ, so the multiplier
system is commutative. O

A special case of Theorem 2.1 of [Gu88] is the following

Theorem 4.1.5. Let ¢ = {G4,...,G,} be a generating system of SL(2, o) with the system of
n defining relations &,, = E, where R,, = [["(Ry.;) with R, ; or R, in & and R,
denotes a relation énﬂ = —FE with the same notation. Write R,, := R,.1,... Rn, for
1 <m < n+1. Thenforw: & — C* v(M) = exp(2miw(M)) and (ry,72) the following

statements are equivalent:

94



4.1 Multiplier Systems

i) v(Gy),...,v(Gy) generate a multiplier system of weight (ry, r2), i.e. v is the unique multi-
plier system given by its values on €.

i) Forall 1 < m < n we have

g 2
Z amw(Gp) + Z b 7 € Z
=1 =1

and
g

2
> avsl@) + 3 (b + 5 ) 1y € 2.
7j=1

=1

Remark 4.1.6. The given linear restrictions for multiplier systems can be written in the form of
an upper triangular matrix ([Gu88, Satz 2.2]) of full column rank with integral coefficients. One
then easily finds all multiplier systems, since v only depends on w modulo Z. Hence all possible
multiplier systems can be determined from the upper triangular matrix by solving from j = g+ 2
downto j = 1fore; € Q9*2. Therein the first ¢ components are w(G1) to w(G,) and the g + 1%
and g + 2" component are r; and 5.

Remark 4.1.7 (Finite order of multiplier systems). Since the coefficients of the matrix are
integral, w and r are rationals. Hence every multiplier system has finite order, i.e. for every
multiplier system 1 there is a power k € N such that % = 1 is the trivial multiplier system. Then
Definition 4.1.3 is equivalent to Definition 1.2.8.

Proof. The statements i) and ii) are exactly the statements (1.11) and (1.12) in [Gu88]. The
greatest common divisor % of the denominators of the components of w holds p* = 1. O

Lemma 4.1.8 (Cusp forms for nontrivial multiplier systems). If f is a Hilbert modular form
of weight k& with multiplier system . and

a) thereis o € o such that p(7,) # 1 or
b) 1(D-y) # (—1)*,
then f and its restriction to the diagonal are cusp forms.

From table 5.1 and table 5.2 we get:

Remark 4.1.9. In case p = 13 and p = 17 there is, for all multiplier systems p # 1, an integer
o € osuch that u(T,,) # 1 holds. Hence every non-trivial Hilbert modular form for Q(1/13) and
Q(+/17) with non-trivial multiplier system is a cusp form and for Q(+/5) there are no non-trivial
multiplier systems.
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Proof of Lemma 4.1.8. By Remark 4.1.7 the subgroup t, := {v € o| u(T,) = 1} has finite
index in 0. By Lemma 1.1.11, f has a Fourier expansion of the form

f(T) _ Z age27riS(gT)’

get]

where a, # 0 only if g > 0 and g > 0 hold. If we write 7 = (21 + iy1, 22 + iy2) € H?2, we get
(cf. [Fro0, p. 49]):
lim  f(7) =ao

Y1-Yy2—00
(z1,22)bounded

and for all v € o0 we have
f(Tyr) = u(T,) N(OT + 1)* f(7),

—_———
=1

S0 ag = pu(T))ao follows. From

f(DeoT) = M(Deo)NQgOil)kf(T)

and D.,0o = oo we get analogously ay = u(D.,)(—1)%ao. So in both cases i) and ii) we get
ap = 0 and f is a cusp form. O

We get the

Corollary 4.1.10. If p = 13 or p = 17, then all Eisenstein series for nontrivial multiplier system
vanish identically.

Lemma 4.1.11 (Hilbert modular forms of odd weight, Bruinier). Every Hilbert modular form
of odd weight is a cusp form. Especially the restriction to the diagonal of a Hilbert modular form
of weight 3 is trivial and there is no Hilbert modular form, whose restriction to the diagonal is
the elliptic Eisenstein series of weight 6.

Proof. Let f be a Hilbert modular form of odd weight &£ with multiplier system p. In case
w(De,) # 1, this follows from Lemma 4.1.8. Let u(D,,) = 1, then

M(DS_Q):l

F(Dey) = pu(Dey) - N(OT +£5) (1) = —pu(Dey) f(7) —f (7).

So we get from lim, o f(7) = lim, ¢ f(D.,7) = —lim, o f(7) that lim,_, f(7) = 0, which
is equivalent to lim, ., f(7) = 0, since H?/T'x has exactly one cusp modulo equivalency and
when we apply J, the contribution of the multiplier system is only a constant factor. Let f be a
Hilbert modular form of weight 3 with trivial multiplier system. Since there are no elliptic cusp
forms of weight 6 but 0 (cf. Theorem 2.4.7), we have f(r,7) = 0 for & = 3. O

Lemma 4.1.12. All non-constant Hilbert modular forms have positive weight.
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Proof. If f is a Hilbert modular form of weight £ < 0 with multiplier system . Then there
is m € N such that f™ has the trivial multiplier system and m#k is an even number. Then
(EIN=mk/2 . fm s a Hilbert modular form with trivial multiplier system of weight 0, so f™ =
c- (EH)™k/2 with a constant ¢ € C* (cf. Lemma 1.1.21). Since E¥ (2, z) = Ej(z) forall z € H,
the Eisenstein series EZ has zeros on H? and f is no holomorphic function, hence f is not a
Hilbert modular form. O

Remark 4.1.13. Gundlach only considered subgroups of the Hilbert modular group. For the
extended Hilbert modular group we can use Lemma 1.2.12, on the other hand, the reduction
process in chapter 6 will give us a complete list of all Hilbert modular forms for symmetric
multiplier systems, which are the only ones which can be continued to multiplier systems of the
extended Hilbert modular group, and hence supply the complete list of multiplier systems for the
extended group.

4.2 Symmetry and Restriction to the Diagonal

The map H? — H?, 7 — 7 = (1o, 71) interchanges the two halfplanes. Even if it is not
contained in SL(2,0) and only contained in SL(2, 0), it defines a map from Hilbert modular
forms to Hilbert modular forms. We will exploit this property.

We extend the principle that the non-trivial field automorphism of K corresponds to the inter-
change of components of H? (cf. Remark 1.2.3) to matrices, multiplier systems, modular forms,
divisors and Weyl chambers. Therefore we define

Definition 4.2.1 (7, M, 1, f, W). Consider a point 7 € H?, amatrix M = (%) € SL(2,0), a
multiplier system 4 : SL(2,0) — C, a Hilbert modular form f : H* — C for Q(,/p) of weight
k with multiplier system ., a divisor 7" and a Weyl chamber 1. We define the reflection of the
point 7 by

T = (7-177—2) - (7_277—1)7

the reflection of the matrix M by

S]
=l

M = :

ol
SY

the reflection of the multiplier system p by

SL(2,0) — C,
M (M)

)

the reflection of the Hilbert modular form f by
_ H? — C,
] = ,

(11, 72) = f(72,7)
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the reflection of the divisor T by
T:={(k,7)€ZxH*| (k,7) €T}
and the reflection of the Weyl chamber W by
W:={reH?|7ec W}

If 4 = 7 then we call © symmetric . In case f = f we call the Hilbert modular form f
symmetric , in case f = —f we call it skew symmetric. That just means that f is an extended
Hilbert modular form with multiplier system /i with fi|s1,2,0) = p and fi(~) = £1, depending on
f being symmetric or skew symmetric.

Theorem 4.2.2 (Reflected Hilbert modular forms). Let f be a Hilbert modular form for Q(/p)
of weight & with multiplier system p.. Then f is a Hilbert modular form for Q(y/p) of weight &
with multiplier system 7. If f vanishes on the divisor 7', then f vanishes (of same order) on the
divisor T. If ¥ = f is a Borcherds product for the Weyl chamber W and g € AZ (p, x,), then
W = f is the Borcherds product for the Weyl chamber W and ¢ of same weight and reflected
multiplier system.

Proof. 7z is a multiplier system. From M € SL(2,0) we get M € SL(2, 0) and we obtain

F(Mr) = f(Mr, Mry)
= f(Mry, M)
= f(M7)
= u(M)(@ry + d)*(cry + d)F f(F)
= a(M)(en + d)*(er + d) f(7) .

Clearly = maps equivalence classes of cusps to equivalence classes of cusp and f is a Hilbert
modular form of the stated type.

Let U = f be the Borcherds product for > a(k)¢* € Af(p,x,) for the Weyl chamber V.
Consider an integer & with —m < k < —1. For every A € o /,/p with — N()\) = k/p, we have
A €o/ypand —N(A) = —N(X) = k/p. Additionally we get M (X) = {7 | 7 € M(\)} from
Definition 3.1.1. Thus S(k) = Urco/ 5, - N()=—k/pM (A) is symmetric for all —1 < k < m and

W is a component of H? \ Z;:l_m S(k), i.e.a Weyl chamber.

We check that (zz, W) > 0 is equivalent to (u, W) > 0.

Let W be the Borcherds product for >°7°  a(k)q* and Weyl chamber TW. From the definition
of py we get pyr = pw. Then for all 7 € W with Im (7;) Im (3) > | min {n; a(n) # 0} |/p we
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have
V() = elpgm +7wm) [[ (1= elm + 7m0
veo/\/p
(v,IW)>0
=e(py T2+ Pw) H (1 — e(vry + 7my)) @P®?)
veo/\/p
(v,W)>0
= U(T).
The rest follows immediately from the previous results and Theorem 3.1.4. O

Corollary 4.2.3 (f + f). If f is a Hilbert modular form for a symmetric multiplier system
(i.e. w(T,) = n(T,)) of weight k, then f + f is a symmetric Hilbert modular form of weight &
with multiplier system x. Analogously f — f is a skew symmetric Hilbert modular form for the
multiplier system . of weight &, in other words f + f and f — f are extended Hilbert modular
forms.

Remark 4.2.4 (Symmetric multiplier systems). Let ;. be a multiplier system. Then 7 is the
multiplier system given by

i) () = u(J),
i) 71(T") = p(T) and

iii) 71(T,,) == p(T) = (T - T") = L8

Additionally the equality

1(Tovp) = p(To - Tp) = (o) - u(Ts) - (4.1)

(
holds for every two matrices 7, = ({ ¢ ) and T = (} 7 ), where o, 8 € K. Especially we have,
as we will see in Corollary 5.2.1, for p =

(5) exactly one multiplier system, the trivial multiplier system 1, and 1 = 1.

(13) exactly three different symmetric multiplier systems 1, namely the ones given by

(u(T), (T, 1(Ty)) € {(1,1,1), (1, €273, Ami/3) (1, mif3 ¢2mi/3)1

as we easily get from the restriction u(T,,) = u(T},) = &(Tj;)).

(17) exactly eight different symmetric multiplier systems, namely i, (61,2, ft2,2, f12.3, ft3.3, i34 =
pi7 (cf. Lemma 2.2.11), uss, pse. We have fip1 = 13, fiox = foa, fis1 = p32 and
H3,7 = [38.
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Proof. We have 7 = T'and J = J, s0 i) and ii) are trivial. For 7,, = ({ ¢)and T = (}7),
where o, 3 € KC, we clearly have T,, - T3 = T\, and

Wag(Ta, Th) Ly arg(0-7+1)+arg(0-7+1) —arg(0-7+1)=0+0—-0=0

holds. We show iii): We have

w(T) = (T - T " (T) - (T3 - exp(ri(wag(T, Ty + wag(T, (To) ™))

and conclude for every multiplier system p from (4.1): u(T - T;') = w(T) - u(T;1) and 1 =
w(E) = w(Ty - Tt = u(Ty,) - u(T,; ). We obtain the claimed statement. O

Corollary 4.2.5. If f is a Hilbert modular form for Q(,/p), then in case p =

(5) f -+ f is a Hilbert modular form,
(13) 3 + f3is a Hilbert modular form,

(17) f?+ f2is a Hilbert modular form.

Proof. In case p = 5 there is only the trivial multiplier system, which is symmetric. In case
p = 13 the modular form f2 has the trivial multiplier system, which is symmetric. In case
p = 17 the square of every multiplier system is symmetric, as we can see from the table 5.3 on
page 121. The statement follows from Corollary 4.2.3. 0

Corollary 4.2.6 (Borcherds products have symmetric multiplier systems). If the Hilbert mod-
ular form W = 0 is a Borcherds product with multiplier system p then the multiplier system p is
symmetric and W is an extended Hilbert modular form.

Proof. By Theorem 4.2.2 (Reflected Hilbert modular forms) we know that ¥ is the Borcherds
product for W of the same weight for the same modular form g. So by Lemma 3.4.4 (Change
of Weyl chamber) there is ¢ € C* such that ¥ = ¢U and ¥ and ¥ share the same multiplier
system. ]

We give an obvious but useful property of Hilbert modular forms (cf. [M{i83, Lemma 2]):

Lemma and Definition 4.2.7 (Restriction to the diagonal). Define the map 6 : H — H?, z —

(z,2). If f: H? — C is a Hilbert modular form of weight & with multiplier system y for K, =

Q(yp), then ' = fod : H — C, z+— f(z,z2)isan elliptic modular form of weight 2% with

character p SL2.2) If fisacusp form, then F is a cusp form. We will say that F' is the restriction
L(2,Z

of f to the diagonal and therefore implicitly identify H and Diag = 6(H) = {(z, 2); z € H}.
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4.3 Twisted Symmetry

Proof. Forall M = (¢%)inTx and 7 € H? we have
f(MT) = v(M)N(cr + d)Ff(1).
Since ¢ and d are rational integers we have ¢ = ¢ and d = d. Hence we have for all z € H:
F(Mz) = f(M(z,2)) = p(M) ((cz + d)*)” f(2.2) = p(M)(cz + d)** F(2).

Additionally, by Remark 1.2.17 the Hilbert modular form f has an absolutely convergent Fourier
expansion f(7) = 3 c.» age™ 597 where a, # 0 implies g > 0and g > 0. So F has the
absolutely convergent Fourier expansion

F(z) = Y Aye’™m

mG%Z

with

A, = Z agy

get# S(g)=m

and n appropriate, such that nS(g) € Z for all g € t#. In case A,, # 0, we know that there is
g € t¥ witha, # 0and Sg = m. Hence m = Sg = g+ g > 0 and F is an elliptic modular
form. If f is a cusp form, then Ay = ao = 0 and F' is a cusp form. 0

4.3 Twisted Symmetry

Depending on the multiplier system and weight of a Hilbert modular form, we get the exis-
tence of certain roots of Hilbert modular forms by investigation of the map 7 — D, 7 =
(637—17%27—2)'

We define Diag, := M (0,0, —&)) = {7 € H?*| —&ym = o7} and investigate for 7 € Diag_,:

Dz—:oF == D€0(7-277-1>

= (537275_0271)

9—€0_ _9 €0
Eo—/T1,&0 ———T2
€o —&o

= (—€080T1, —€0E0T2)
-

If fis a Hilbert modular form for SL(2, o) of weight £ with multiplier system 1, then (In denotes
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4 Properties of Hilbert Modular Forms

the main branch of the complex logarithm)
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x>
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™
—
N~—
=
-
—
\]
N~—

(Dso)ekln((fsoﬁ)_l)Jrkm'f(?)
(Dey)e™™ f(T)

If 1 is a symmetric multiplier system, then f + f and f — f are Hilbert modular forms of weight
k, the first one symmetric, the second one skew-symmetric and for f # 0 we have f + f # 0 or

f-T#0.

Lemma 4.3.1. Let f be a Hilbert modular form of weight & with multiplier system .
a) If f is symmetric and 1(D.,) # e~*™, then f vanishes on Diag_ .

b) If f is skew symmetric and p.(D.,) # —e~*™, then f vanishes on Diag,,.
Remark 4.3.2. Note that £, = 1SL(2, o) Diag,,.

Remark 4.3.3. For concrete values of (D, ) inthe cases p € 5,13, 17 compare Corollary 5.2.1.
Proof of Lemma 4.3.1.

o If f is symmetric, then for all 7 € Diag, we have:

hence f(7) = 0 follows from p(D.,)e*™ # 1.

o If f is skew symmetric, then for all 7 € Diag, we have:

f(1) = [(DeyT)
= (D)™ f(7)
= —p(Dy)e™ ™ f(7) |

thus f(7) = 0 follows from p(D.,)e*™ #£ —1.
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4.4 Differentiation
4.4 Differentiation

We can get Hilbert modular forms by differentiation of other Hilbert modular forms. We will
first introduce the differentiation procedure in the elliptic case and thus motivate two differ-
entiation processes in the case of Hilbert modular forms. In the case of Q(1/5), Q(v/13) and
Q(+/17), this method does not provide new Hilbert modular forms applied to a number of given
generators, but the technique might be useful in other cases. Additionally it provides a method
to calculate Hilbert modular forms of non-homogeneous weight k = (k1, ko) with &y # k.

Similar to the elliptic case we can get new Hilbert modular forms by the way of differentiation.
We start with the investigation, that for an elliptic modular form f of weight £ € Z with mul-
tiplier system 1 with respect to the group I', the derivative D f is nearly a modular form, in the
sense that for all A/ € T" we have

D f(Mz) = D(f o M)(z) - (D M)(2) "’
= D(up(M)(ez + d)* f(2))(cz + d)?
— jp(M)(ez + )" D f(2) + ke (M) (cz + d)* 1 (2) - (4.2)

If the underlined summand was 0 then D f was an elliptic modular form of weight k& + 2 with
character 1. At least we have

Lemma 4.4.1 (Differentiation in the elliptic case). Let f and ¢ be elliptic modular forms for
the discrete subgroup I' of SL(2,Z) and let f be of weight £ € Z with character ;. and ¢ of
weight [ € Z with character j,. Then

F:=kf(Dg)—1UD f)g

is an elliptic modular form for the group I' with character ;i ;1 of weight & + 1 + 2.

Proof. By (4.2) we have for all z € H:
F(Mz) =kf(Mz)(D g)(Mz) — (D f)(Mz)g(Mz)
ks (M) (cz + d)f(2) - (g(M)(ez + d) (D g)(2) + lepy (M) (ez + ) g(2))
— 1 (up(M)(ez + )3 (D f)(2) + kepp(M)(cz + )+ (= >) ug(M)(cz +d)lg(=)
— (M) g (M) (cz + d) 42 £ (2) (k(D 9)(2) + Ele(cz + d)~ z))
— g (M)py(M)(ez + )42 (UD f)(2) + Kle(ez + )" (2)) - (2

(M)pg(
§(M)pg(M)(cz + d)* 2 (k f(2)(D g)(2) — U(D f)(2)g(2))
F(M)pg(M)(cz + d)F 2 F(2) .
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4 Properties of Hilbert Modular Forms

The problems with Hilbert modular forms are that there are two differentiation operators D, and
D, and the need to consider rational weights. We give two solutions, but first give the following

Lemma 4.4.2. Let f be Hilbert modular form with respect to I" of weight & = (k;, k) € Q?
with multiplier system 1., and let g be a Hilbert modular form of weight I = (I1,1») € Q* with
multiplier system 1.,. Then

[f, g1 = k1 f(D1g) — (D1 f)g
is a Hilbert modular form with respect to I' with multiplier system ¢, of weight (ky + I; +
2, ko + [5) and

[f, gl2 == kaf (Dag) — la(D2f)g
is a Hilbert modular form with respect to I" with multiplier system sz, of weight (ky + 11, ko +
ly + 2).
Additionally we have for all 7 € H? and M = (¢ %) e I:

(D1 (M) = (M) (e + &) *2(ery + d)** (kic(er +d) 7' f(7) + (D1 f)(7))
and

(D2 f)(M7) = p(M)(eri + ) (€12 + d)***2 (koe(ery + d) 7 f () + (D2 f)(1)) ,
where we set a* := ¥ with the main branch of the complex logarithm.

Remark 4.4.3. All results of this section are formulated and proved for I' = SL(2, 0), but are
valid for all groups commensurable with the Hilbert modular group instead of I" and the proves
translate one to one. The extended case is more complicated, since D f = Dof and Do f = Dy f
imply that for extended modular forms f and g we have [f, g]1 = [f, g].. If both f and ¢ are
extended Hilbert modular forms, neither [f, g]; nor [f, g]» have to be extended hilbert modular

forms.

Remark 4.4.4. In Lemma 4.4.2 we have [f,g]; = 0ifandonlyif f =0, g =0or fi = ¢* . gi
with some constant ¢* € C* and [f, gl = O ifand only if f =0, g = 0 or f22 = ¢* - g* with a
constant c* € C*.

We get especially for every Hilbert modular form ¥ and all a, b € N:
[T, 0] =0 = [T, 9],
Proof of Lemma 4.4.2. Forall M = (2}) € T"and 7 € H* we have
F(MT) = p(M)N(er + d)* f () = p(M)eh Ilentrshatnend) £ ()

with the main branch In : C* — R x (—m, 7| of the complex logarithm (cp. Definition 1.1.19).
Additionally we have for z € H
d
e In(cz+d) _ -

e In(cz+d) | 1 (a—1) In(cz+d)
dz cz+d

rC=QcCc-e¢ .
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4.4 Differentiation

Mark that the main branch of the complex logarithm is not differentiable on the negative real
axis. We could work around with a germ of the logarithm function, but our case is simpler, for
cz + d € R is equivalent to ¢ = 0 and in this case the derivative vanishes, so the equation is still
true. Hence we get for all A/ € I"and 7 ¢ H?

(D1 /(M) = (Di(f 0 M))(7) - (Dy M (7))
= p(M)ekrnlertd)+hz In(era-+d) (7310(07'1 +d)7 f(7) + (D1 f)(7)) - (em1 + d)?
_ M(M>e(k1+2) In(eri+d)+k2 In(ere+d) (k10<07'1 + d>71f<7'> + (Dl f)(7'>) )

Note that e2™™(c71+4) js independent of the choice of the logarithm, so there do not arise any
problems in

exp (k11n(cm + d) + ko In(ery + d)) - exp (k1 In(ery + d))
=exp ((k1 + 2) In(cry 4+ d) + k2 In(cr + d))

by the specific choice of logarithmic branch (of course it is the same on both sides of the equa-
tion). Analogously we get

(D f)(MT) = M(M)ekl tn(eri +d)+ (k2 +2) In(@rz-+d) (k25(572 + E)_lf(T) + (D2 f)(T)) .

If we insert the corresponding terms in the definitions of [f, g} and [f, g]», we get the stated
result by simple calculation as in the proof of Lemma 4.4.1. O

Proof of Remark 4.4.4. If f £ 0 and g # 0 we have locally, away from the zeros of f and g and
the inverse images of the negative real line with respect to f, ff, g and gé», with the help of the
main branch of the complex logarithm

kif(Djg) —1;(D;f)g =

kif(Djg) =1;(D;f)g
L. ng D;f
g

k;iD;(lng) =1;D;(In f)
Dj(kjIng) = D;(l;In f).

MIHI

Since k1n z = In 2* up to a (locally constant) integral multiple of 27i we can further deduce

Dj(kjlng) = Dj(l;In f)
D;(In(g*)) = D;(In(f" ))
D;(In(g*) —In(f")) =

In ¢¥ — In f% is constant.

MII
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4 Properties of Hilbert Modular Forms

Again we only change a constant and we get locally

In ¢g" — In f% is constant,

g"
<= In = is constant,

fl

g
<= Z— isconstant.

fh
The identity theorem then proves the global statement. O

Lemma 4.4.5 (Differentiation of Hilbert modular forms (1)). Let f be a Hilbert modular
group with respect to I' of weight £ with multiplier system 1., let g be a Hilbert modular group
with respect to I" of weight [ with multiplier system 1., and let & be a Hilbert modular group with
respect to I" of weight m with multiplier system 1;,. Then

F:=klLf(D1g)(D2h) + klfg(D1 D h) — kmf(D2 g)(D1 h) — kmf(D1 D2 g)h
— (I +1m)(Dy f)g(Dg h) + (Im +m?)(Dy f)(D2 g)h

is a Hilbert modular form with respect to I' with multiplier system ¢ 14,1, Of weight £ +1+m+-2.
Remark 4.4.6. If we have 0 € {f, g,h} or g € C*h, then F vanishes identically.

Remark 4.4.7. If we write

[f, gl == k1 f(D1g) — 1:(Dy f)g and
[f.g)2 == kaf(D2g) — 12(D2 f)g ,

for Hilbert modular forms f of weight £ and ¢ of weight [ as in Lemma 4.4.2, we get
F=[f,[g,hl2)1.

This is not an intrinsic choice and other choices could be sensible. Especially we have F =

1,19, hl1]2- Evenif f, g and h are extended Hilbert modular forms, in general F will not be an
extended Hilbert modular form.

Proof of Lemma 4.4.5. By Lemma 4.4.2 the function
G :=1g(D2 h) —m(Dag)h

is a Hilbert modular form with respect to I" of weight (I + m, [ + m + 2) with multiplier system
fgitr, and again with Lemma 4.4.2 the function

F = kf(D:G) — (1 + m)(D: f)G

is a Hilbert modular form with respect to I with multiplier system ¢ ¢p, 1, of weight (k + [ +
m+ 2,k + 1+ m+ 2). We easily see that both definitions of F" are equivalent. O
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4.4 Differentiation
Proof of Remark 4.4.6. This follows directly from Remark 4.4.4. O

The second variant we take directly from [Al05], where it is formulated for Siegel modular forms
(compare also [A006]):

Theorem 4.4.8 (Differentiation of Hilbert modular forms (2)). Let f be a Hilbert modular
group with respect to I" of weight & with multiplier system 1.4, let g be a Hilbert modular group
with respect to I" of weight [ with multiplier system 1., and let 2 be a Hilbert modular group with
respect to I" of weight m with multiplier system s,. Then

kifi kofa  ksfs
(fi,fos f3) == D1 fi Difo Difs
Dy fi Dafe Dafs

is a Hilbert modular form of weight £ + [ + m + 2 with multiplier system s - y14 - 45, 1t vanishes
identically if and only if f;, f, and f5 are algebraically dependent.

Proof. We expand by the last line and get

(f1; fos f3) = (D2 fi)lf2, f3]1 — (D2 fo)[f1, f3li + (D2 f3)[f1, falr-

Forall M = (2%) € T'and 7 € H? we get

(fi, fos fs)(M7) = ((D2 fi)[f2, f3]1 — (D2 fo)[f1, fal1 + (D2 f3)[f1, fal1) (M)

Eegmj‘wluzus)(M )(ery ) TR Gy o @)ttt
4.4.2

(D2 £)(f2: f = (D2 £2)[ 1, fols + (D2 )1 fo) (7)
+c(er +d) 7 (kafilfa, fsh = kafol o, foli + Esfalfrs folh) (T)>
= (papaps) (M) (cmy + d)FiTmthe2(Gry 4 d)betmetet2 (g £ (1)
kifi kafe ksfs
+ e props) (M) (e + d)f Mt it 2 (e  d)ftmetttp gD, Dy fy
kifi kafe ksfs
= (mpops)(M)(ery + d)MF0F™ 2y 4 d)te et (o f) (1),

since the first and the last line of the given matrix coincide.

It remains to proof that (fi, f2, f3) vanishes identically if and only if f;, f, and f; are alge-
braically dependent. The case that one of the functions f,, f> or f3 vanishes identically is trivial,
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4 Properties of Hilbert Modular Forms

we will assume that this is not the case. We use the idea given in [Al05] and rewrite

ek b i Rfi o kikafy Faka f3 f
(f1, fo. f5) = = 2/€2 : Difi kfs Dy fy kiR Dy S
Dofi kifs* ' % Do fo kaf3 R Dy f

Then substract from the second row k, f5* f{ "> times the first row and substract from the third
row ks fo1 17" times the first row to get

k 0 0
fk2+k3 fl k1 fl k1 1f1 fkl kq
(fi. fo. f3) = = 22 Difi Ds <§T2> D, (%)

f1+k:2+k3f1 klfl k1 D1 (ff ) D1 (%)
- k1 k1 :
b n(lE) 2(5)
1 1

So the modular form (f1, f2, f3) vanishes identically, if and only if the Jacobian of (Fy, Fy) :=
(fa1 f7%2, f37 f7%) vanishes identically, so if and only if £} and %, are analytic dependent. Since
F1 and F5, are meromorphic Hilbert modular forms of weight 0, they correspond to meromorphic
functions on the compact space (H?)*/T" (compare Remark 1.1.9) and we can use the result of
Thimm (cf. [Th54, Hauptsatz Il, p. 457] and [Re56, p. 278]) that in compact complex spaces, an-
alytically dependent functions are algebraically dependent. Since we can treat different weights

separately, F; and F; are algebraically dependent if and only if f;, f; and f3 are algebraically
dependent, so we have proven the theorem. O

Remark 4.4.9. For f;, f, and f5 as in Theorem 4.4.8 we get
kifi  kafs  ksfs

<f17f27f3>: DQE DQE DQE :_<E7E7E>u
Difi Dife Difs

so if f1, fo and f3 are extended Hilbert modular forms, £ is an extended Hilbert modular form
with multiplier system ju; - po - pus - 1" Where p*|sp,2,2) = 0 and p* () = —1.

For calculations we need the following

Lemma 4.4.10 (Differentiation of the Fourier expansion). Let f be a Hilbert modular form

with Fourier expansion
f(T) _ Z aV627ri(uTl+UTg)

veo /\/p
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4.4 Differentiation

for all € H2. Then

1 4 _
- [)1 f<7_> _ Z Va/V€27FZ(VT1+I/T2)

271
v€o /\/p

and )
— D2 f(T) — Z valye27l'i(l/T1+P’TQ)

271
v€o/\/p

and the given series converge absolutely for all 7 € H?2.

Proof. For all 7 € H? we have

d d

627ri(u7'1 +7UT2) — 27?2'1/62“(”1 +7UT2) and 627ri(u7'1 +UT2)

dTl dTQ

_ 27T2~v627m(u7'1+wrg) )

Forall v € o/\/f) with v > 0 we have v < ¢ and for all v ¢ o/\/ﬁwith v < 0 we have
lv| < e (compare the derivatives and 0 < 1 = €°). In addition to that we may rearrange
the series due to the absolute convergence and obtain for all 7 € H? with Im (r;) > 5 and
Im (72) > 5=

D, f(T) =D, Z aIV627ri(V7'1+ﬁT2)
veo /\/p

— ])1 Z G,VGQM(VTI +7UT2) + ])1 Z aIV627ri(V7'1+§T2)
veo /\/p veo /\/p

v>0 v<0

We abbreviate f,(7) := a,e?*71+772) and get

S (D)) = 2w | D va, ™R pomi [N va, e
veo VP v€o /\/p v€o /\/p

v>0 v<0

<27 Z Ve—Vaye%ri(V(Tl*#)JrUﬂ) + 21 Z Veuaye27rz’(u(7—1+i)+yq—2)

v€o/\/p vEo /\/P
v=0 v<0
<27 Z |ay|€27ri(v(lm(n)—%)+mm(m)) + o7 Z |a1j|€27ri(u<1m(7—1)+%)+;Im(T2))
veo /\/p veo )/
v=0 v<0
<27 Z |ay|€27ri(v(lm(n)—i)+mm(m)) + o7 Z |ay|€2m(y(1m(ﬁ)+$)+mm(72)).
1/60/\/5 I/EU/\/;_)
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4 Properties of Hilbert Modular Forms

The right hand side converges since f(m — 2 , 7o) and f(1 + 5= L 7,) converge. Especially the
right hand side is independent of the real part of ;. Hence we can deduce due to the holomorphy
of f

fri+h,m)— f(7)

D) = fny

heR* h

~ lim Zuea/\/ﬁ fo(mi+h,72) — Zuela/\/ﬁ fu(T)
h—0 h '
heR*

Both sums converge absolutely, so

D, f(x) —hm Z Iy 7‘1+h;L'2) fy()
hER* veo /\/p

Forevery v € o /\/p, sufficiently small ¢ > 0and |h| < ¢, the difference quotient -"r2)=fv()
equals D f,(&,,) with some appropriate &, |{, — 7| < ¢, due to the mean value theorem. Because
of [ Dy fu(wiy)| = [ Dy fi(7)| the sum >, D1 fi(7 4 h)| is locally bounded. Hence sum
and limit can be interchanged and we get

. L+ h,m) — f(T
veo /,/p heR*

- Z Dl fu(T)

vEo/\/p

for all 7 € H? with Im (1) > 5= and Im (72) > 5-. The derivative D, f : H*> — C is invariant
under the transformations 7" and 7T}, so it has an unique Fourier expansion on H2. So the cal-
culated coefficients are correct and the expansion converges for all = € HE. Along with f also
f o7 — f(m, 1) meets the restrictions and we get the result for le(TQ, 1) = Dof(7) as well
as for Dy f(7). O
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5 Calculation of Borcherds Products

We investigate the remaining tasks for the concrete calculation of Borcherds products as de-
scribed in Theorem 3.1.4. We calculate a basis of AaL(p,Xp) via Eisenstein series in some
space M, (p,1) and rational function in n and 7(®) and determine the multiplier system of a
Borcherds product from the Weyl vector. At last we describe a way to calculate the Fourier
expansion of a Borcherds product up to some degree.

5.1 A Basis for the Plus Space

We calculate the basis {f,,; m € N, x,(m) # —1} of Af(p,x,), p € {5,13,17}, defined in
Definition 2.5.37, i.e. we give an algorithm capable of calculating each of the infinitely many
elements of the basis up to every desired precision.

Let p € {5,13,17}. Note that the modular form

HY . H - C,zw— n(z)"
n(pz)

is contained in My (p, xp) by Theorem 2.5.12 and, since 24|(p*—1) holds for all pin {5, 13,17}
(5> —1=24,132-1=7-24and 17 — 1 = 12 - 24), the modular form

9 _ AT (HD) P H—C, 2 n(pz)?
1(z)
is contained in MPT_l (p, Xxp) by Theorem 2.5.13. The Fourier expansion of H 1) starts with 1, the
Fourier expansion of H (@ starts with q (P*—1)/24 — c2miz(p*~1)/24 G given a basis of M1 (p, 1),
we can calculate the Elements f, - H f o, - H@ ¢ Mp 1(p, 1) by comparison of Fourier
expansions. By Remark 2.5.6 we know that we only need to compare the first 77~ ‘1 coefficients

and can easily check whether a given set of linear independent modular forms is a basis of
MpT_l (p,1). In our cases, it happens that a basis can be obtained by multiplication of Hecke’s

Eisenstein series of Haupttypus, E) (the elliptic Eisenstein series for SL(2,7)) and E,gp) =
z +— Fy(pz) (cf. Theorem 2.5.24) and the Eisenstein series of Nebentypus, G, = 1+ ... and
H, =q+ ..., (cf. Definition 2.5.30), where one takes care of character and weight.
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5 Calculation of Borcherds Products

There are three more useful functions. First
H=n"/®)*,  (k=24/ged(p— 1,24))
is contained in Aq(p, 1) by Corollary 2.5.14. Second, by Definition 2.5.30, the function

EyFg

Byi 2 Ef () —52(02)

is contained in Ay(p, x,,). Finally

By

)22 j(p2) = A (p2) = @7+ 744+ 196884¢" + O (¢*)

J

is an element of Ay(p, 1). The modular forms A and ;) operate on A (p, Xp) by multiplication
and E, works as a first good gess for f,. For an easy algorithm, we will also calculate the
fe=q¢"+0(1) € Ay (p, xp)- Assume that we have already calculated fy, ... f,_1. Then define

(1, if nisoddand n < p,
fa 172, if 1 <n < =55 and nis even,
fu = oo et H, if _gE=55 <n<pandniseven, (5.1)
Ey, ifp=n,
faep - 5P, ifn>p.

Alternatively we can write f, = f"~2f,forevenn < p,n > 4. Ifwewrite f = 3% a(m)s(m)q"

then ) m}n
f= (f -y a(m)f(m)>

m=1—n

is the desired basis element. In case (p — 1)k/24 > 1 (where k = 24/ ged(p — 1, 24)) we can
simplify the algorithm by setting f,, = fI'2f, for even n < p.

Remark 5.1.1. We can show by calculation of Fourier exponents that £ is a Theta Nullwert in
case p € {5,13,17}. Especially we set

2 1 21 2 1
1 21 1 4 3 1 4 1
My = , Mg := and M7 =
14 5 3 10 13 1 10 17
5 10 13 26 17 34

The inverse matrices M/, * are each contained in (Z/p)***, so by Theorem 2.5.16, the functions

.
o E ety Mpgz

gezZ4
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5.1 A Basisfor the Plus Space

are modular forms for I'g(p). Then we can compare Fourier coefficients and get

Ef(z) =Y €™M forallpe {5,13,17}.

gezZ4

Remark 5.1.2 (Precision invariant under multiplication and division). For concrete calcula-
tions it is necessary to truncate each expansion »  a(n)q" to get a finite sum > a(n)q". If

foy = d* (SiLealn)g” + O ) and fio) = ¢' (S0, b(n)a" + O(¢¥*)) are given with
k,l € Z,a(0),b(0) # 0and M, N € N, then

min(M,N) n
f(l)f(2) = qu Z <Z a(m)b(n — m)) "+ 0 (qmin(M,N))

n=0 m=0

and

% =q" (Z c(n)q" + 0O (qM“)>

n=0

with appropriate coefficients c(n) (multiply with f,) and compare the coefficients in front of ¢",
the resulting linear equation system has upper triangular form and hence can easily be solved
for the first M + 1 variables ¢(0), ..., ¢(M)). So, in order to determine the first V coefficients of
a product or quotient of Fourier expansions, for each of the factors the first IV coefficients have
to be determined.

5.1.1 A Basis in the case Q(v/5)

In case Q(+/5) we can directly apply the methods worked out above to calculate the first p + 1
elements of a basis of Alj(5,x5). All further elements can easily be obtained by repeated
multiplication with j®), as described in (5.1).

We calculate
HW =1-5¢+5¢* + 10¢* — 15¢* — 5¢° — 10¢° + 304" + O (¢*)
H@ — A . (H(l))*5 =g+ +2¢+3¢" +5¢° +2¢°+6¢"+ O (qg) )

H=n%/(n®)°=HW/HY = ¢" — 6+ 9¢ + 10¢* — 30¢* + 6¢" — 25¢° + O (¢°) ,
GO = g7 4+ 744 + 196884¢° + 21493760¢'° + 8642999704 + O(¢*°)

113



5 Calculation of Borcherds Products

and get
E+
fl - H( )
fo=H-fi+fi=q¢>+0(1) € 4; (5 x5),
fs= 1 —15f—108f1 = ¢ >+ O(1) € Ay (5, x5),
Fo=H-f5—0fy —27fy + 48 = ¢4 + 15 — 216¢ + 4959¢* + O(¢°) € AL (5, v5),

1 1
fs = 5 Fo+ 10f4 +30f, = §q_5 + 15 4 275q + 27550¢* + O(¢°) € AL (5, x5),

fo=3% fi = 10f5 — 11 £, — 690 f; = ¢~ ® + 10 + 264¢ — 136476¢* + O (¢°) € A (5, xs),

=q '+ 5+ 11g — 54¢" + O(¢°) € A7 (5, x5),

In this case the n-quotient /(@ is equal to the Eisenstein series H.

5.1.2 A Basis in the case Q(v/13)

H'9 s contained in Ag(13, x13) and its Fourier expansion starts with ¢”, so we need to find an
element g of Mg(13, x13) with Fourier expansion starting with ¢%, since then f, = g/H®.

Lemma 5.1.3 (Calculation of f;). The modular forms Eg, E'¥, ES® E,, ESYEN® | H,H,,
H,G, and G4H, form a basis of the vector space Mg(13, 1) of holomorphic modular forms
for I'y(13) of weight 6 with trivial character (for notations compare Lemma 2.5.24 and Lemma
2.5.30). We get

A2 = -9 ):9(2)77(2>

=7 z (132)1 forall z ¢ H
where

1 253 _3) 13 a3 109 a3 a3 4
— B, — —22 pUs) _ EYE, + ——EME! H,H
9= 90720"% ~ 907207 1915202 41 383012 t gtttz

457 5
0 - _ao,H
19152 47 19152 42

and surprisingly find f, = E; /H, as in case p = 5, even if now H, # H@ and therefore might
have zeros.

Sketch of proof. We divide the given modular forms in Mg(13, 1) by H@ and obtain a set M of
(132—1)/24 = 7 linear independent functions in A, (p, x,,) with Fourier expansions >, . . a,¢".
By Remark 2.5.6, each modular form is uniquely determined by its principal part, so the given
modular forms form a basis of M(13,1) and f; is a linear combination of A/, which can be
easily determined with a computer. O
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5.1 A Basisfor the Plus Space

We calculate

HY =1 —13q+ 65¢° — 130¢° — 65¢* + 728¢° — 871¢° — 715¢" + O (¢*),

HO = AT (HO) ™ = 7 4 4%+ 2¢° + 3¢" + 5¢" + 7" + 11¢" + 0 (¢),
H=n/")? =¢'—=2—-q¢+2¢° +¢* +2¢" —2¢° —2¢" + O (¢*),

03 = 713 4 744 + 196884¢"% + 214937604 + 864299970¢°° + O(¢™?)

and get

fi=g/HY = ¢+ 1+ q+3¢° —2¢" + O (¢°) € AJ (13, x13)
fo=Hfi+fH=q¢2+0(1)e A7 (13, x13)
fs=f—=3f—6fi=q"+4+9¢—2¢"+12¢" + O (¢°) € AJ (13, x13)
fi=Hf} = fs+ fo+6fi = ¢ *+3—8¢+16¢> +29¢* + O (¢°) € A (13, x13)
fs =17 = 5fs—15f3 =30 — 60f1 = ¢ + O (1) € Ay (13, x13)
fo=H[} —3fs —4fs +3f3+4f +12f1 = ¢+ O (1) € Ay (13, x13)
fr=I —Tfs — 285 — TTfs — 1825 — 378f, — 7141 = ¢ " + O (1) € Ay (13, x13)
fo =H T —5fr — 13fs — 16f5 — 15f1s — 2f3 + 30fo + 174f; = ¢ 5+ O (1) € A (13, x13)
fo=f2 —9fs —45f; — 156 f5 — 441 f5 — 1080 f, — 2382 f35 — 4680 f, — 8397 f,
=q¢~" + 13 — 9¢ + 36¢° — 198¢* + O (¢°) € A (13, x13)
fro =H Y — Tfy — 26fs — 59f7 — 103 f5 — 143 f5 — 154 f4 + 54 f5 + 524 f5 + 1285f;
=q~ '+ 4 — 40q — 200¢° + 60¢" + O (¢°) € A (13, x13)
1 =ft = 11f10 — 66fy — 275 fs — 913 f; — 2585 fs — 6512 f5 — 14762 f4 — 30525 f5
— 58036 f> — 102718 f; = ¢ "' + O (1) € Ay (13, x13)
fro =H Y —9f11 — 43 f10 — 134 fy — 320 fs — 629 f7 — 1065 f5 — 1364.f5 — 988 f,
+ 915 f5 + 4652 f5 4+ 11758,
= ¢ % + 12+ 48¢ — 272¢° — 255¢* + O (¢°) € AJ (13, x13)

1
fis =5Eo +2f12 + 810+ 6fy + 263 + 85 + 24,

1
= aq*13 + 7+ 39g + 221¢° 4+ 494¢" + O (¢°) € A (13, x13)

fia =3 f1 — 2f15 — fro — 3f10 + 2fo + fa + 4fs — T48 )
=q " +6+504¢° — 1232¢* + O (¢°) € AJ (13, x13)
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5 Calculation of Borcherds Products

5.1.3 A Basis in the case Q(/17)

Since the Fourier expansion of H starts with ¢2, we do not have f, = H f; as for p = 5 and
p = 13, so we need to calculate both f; and f». Therefore we determine f;-H@ and fo- H(@ in
the space M4(17,1) as a linear combination of a basis. Then we continue by writing f3 = f3,

fi=fifa ...
Lemma 5.1.4 (Calculation of f; and f5). The modular forms
E,, B8, (E{)?, H2, HyGs and G2

form a basis of the vector space M, (17, 1) of holomorphic modular forms for I';(17) of weight
4 with trivial character (for notation compare Lemma 2.5.24 and Lemma 2.5.30). We calculate

P TG Ry o

I IGU n(T)n(177)7’
where
1 119 an 3/, am2 245 , 51 13
- iy —(E )——H 2 GoHy — =G
9 =560 T g T g 2 30 T2tttz T 50
1 1241 1 2 9] 1 3
_ _ g0 —(E<”>) S H2 L GoH, 4+ 2GR
92 = 55501 ~ oggo™t T g \ M2 3072 T gzt 3t

The proof is analogous to the proof of Lemma 5.1.3. We calculate
H® =1—17g+ 119¢* — 408¢* + 476¢* + 1309¢° — 5236¢° + 4233¢" + O (¢%) ,
H@ — A2, (H(l))_17 _ q12 +q13 + 2q14 + 3q15 + 5q16 + 76]17 + 11q18 +0 (q19) ’
= 773/<77(17))3 _ q—2 - 3q—1 1 5q— 7q4 + 9q8 - 11q13 + 3q15 o 9q16 +0 (qlg) :
U7 = ¢7'7 4 744 + 19688447 + 21493760¢> + 864299970¢°" + O(¢%®)

and obtain

1 119 (17) 3 (17) 2 245 9 51 13 9 n
s i) —(E ) 2w 220G, - oG
S (960 g0 Tl 322 16 2 T 302 ) anyT

1
=q '+ 5 a2 6" =207+ ¢ — ¢ +20° + 0 (¢) € AT(17,xar)

1 1241 17) 1 (17) 2 21 1 3 n
= By— oo B+ o (BOD) = HE - HyGo+ G )
J (2880 Toss T\ 3202 162 ) any

3
=7q7° + 520+ 3¢ — ¢* +6¢° — 6¢° — 8¢"* — 3¢"° + O (¢'") € AT (17, x17)
3 9 _ _
f3 :ff - §f2 + Zfl =q° +0(1) € Ay (17, x17)
1 9
fi=fofi — fs+ Zfz - §f1

7
=¢ '+ 5 + 8¢ — 2¢° + 11¢* — 5¢° + 16¢” — 564" + O (¢"°) € Af (17, x17)
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5.1 A Basisfor the Plus Space

fo=ff = gfst gfst Lh— T =7+ 0 (1) € A7 (17, x17)

fo=Fafi = 2f5+ fa = gfs - %fz - 1ngl =q¢ " +0(1) € A7 (17, x17)

fr=f] = st st = i fs = etk i =07 +0(1) € A5 (17, x10)
fs=ffl = 3f+ Zf6 - %fz; - %f?) + 26i47f2 - ngQfl

15
=¢" + o — 8¢+ 24" — 10¢" + 274" + 216¢” + 288¢"° + O (¢") € AF (17, xa7)
9 33 135 1215 225 2835 11673
_rM9_ Y e _ _
Jo=li=ght ol —gh-mghtight 5= 55
7
=q 7+ = — 18¢ — 27¢* + 36¢" + 243¢° + 41¢° — 279¢"* + O (¢"*) € A{ (17, x17)

2
1 223 173 39 467 40873 7045
_ 8 = _aeY e e e _ _
Jio =faft —4fo 2f8+5f7 S f6 1 fs+ —fa 16 f3 956 fa 5

2
:qilo + O (1) & Aa(17, X17)
11 11 187 55 2123 891 15499 11341
e b1l sc, 00, o9l B
fu =fi 2f10 4f9+ 3 IE 8f7 16 fe ) 5+ TRA 556
287463 630223

o — —11 —
T2 12T Tooa fi=q¢  +0(1)€ Ay (17, x17)

11 21 723 577 313 avae
o opl0 s 2L 125 ol olo
fiz=fafi" —5fn 4f10+ 5 fo —28f3 fr+ 5 fo + 3 fs 556
114813 228167 121379

S

3

3 J1

—~12 —
- i - O() e A= (17
256 12 oo 2T a1 =0 HO) € AT xr)
13 13 117 221 6279 1157 14989 40105
_r13 Y Y 0 o - oY
fis =f; 2f12 2fn-i- 1 fio0 + 16 fo 39 fs 3 fr+ 39 fe + 556 f5
653003 f 661193 ot 927173 ot 12277915 f
512 7% s12 T 1024 72 40096 7!
=q " + 7+ 13 — 52¢° — 182¢* + 468¢® — 403¢° + 4172¢"* + O (¢*°) € AJ (17, x17)
31 315 303 1003 3069 105351
— 12 65 — 6 Sl e PNl _
fiu=fofy fi3 fi2 + 5 fn 16 f1o 5 fo 39 fs + 16 fr 256 fe
129619 £ 96075 ft 258723 ; 3568301 £ 6432951 ;
128 7% 956 Yt 12 P 4006 ‘P 1024 !
= q_14 + @) (1) c Aa(17, X17)
15 45 265 735 8163 23345 91005 197265
_r15 Y Y I i e o st
fis =f; 5 f1a 4f13+ 3 fi2 + 16 fi1 9 f1o o1 fo+ 198 fs+ 256 fr

1207365 3217191 4388475 26582645 33676545 397673595

52 767 1022 P o0as Tt Taoos BT s 2T io3m
=q~ " + 4 —15¢ — 240¢" — 1800¢® — 2060¢° — 7140¢"* + O (¢"°) € A{ (17, x17)

1
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5 Calculation of Borcherds Products

41 27 3493 10233 13149 82621

14
— _ o 1 o _ _
fi6 —f2f1 7fis 4f14+ 9f13 16f12 16 fi 64 fio + 32 fo— 256

933777 997075 194025 3092257 45672899 214903451

256 Jr - 1024 Jo + 128 Js = 4096 Ja— 4096 % 16384
83440457

8192 h
31

=q 1%+ o 32— 24q% + 56¢* — 2074¢°® — 2240¢° + 15904¢" + O (¢"*) € AJ (17, x17)

fe

2

1
fin =§Eo + fi6 + 3f15 + Tfis + 15fg + Tfs + 14f4 + 8f2 + 31f

I -~ 9
=54 17 4 5 T34+ 51¢° 4 204" + 1581¢° + 2499¢” + 12019¢"* + O (¢"°) € AJ (17, x17)

fis =3P fi — fir + fis — fis — 2f13 + fo + 2fs — fa+ fo — T46f1

21
=q "+ o~ bdg+ 54q” 4 459¢" — 2484¢® — 5542¢° + 3024¢"* + O (¢"°) € AJ (17, x17)

5.2 Weight and Multiplier Systems

We investigate the weights and multiplier systems possible for Hilbert modular forms following
the work of Gundlach [Gu88]. In the cases p € {5,13,17} we present a way to determine the
multiplier system of a Borcherds product depending only on the Weyl vector.

From Theorem 4.1.5 we calculate

Corollary 5.2.1 (Multiplier systems and weights of Hilbert modular forms for p = 5,13, 17).

(5) feM(u)\{0}=keNyand u=1:

All weights of Hilbert modular forms for Q(+/5) are integral and there is no multiplier
system but the trivial one.

(13) f € M (w) \ {0} = k € No, u(J) = p(T)* = p(To)* = 1

All weights of Hilbert modular forms for Q(+/13) are integral. All multiplier systems s
can be obtained by the choice of a,b € {e*™/3 ¢'™/3 1} as the extension of u(J) = 1,
u(T) = a and u(T,,) = b. Inall these cases we have u(D.,) = u(JT 1 J15,JT.-1) =

w(JPu(Te) ™t = w(TT,) ™t = w(T) " u(T,)~* and all multiplier systems are characters.

(17) | € MF(u)\ {0} = k € No/2, 4*(T) = u(T,,)* = (~1)** and u(J) = p(T)*:
All weights of Hilbert modular forms for Q(1/17) are half integral. Write a := 1 for
integral weight, « = e™/* else. Then we get all multiplier systems by the choices of
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5.2 Weight and Multiplier Systems

1 u(J) u(T) 1(Tw) 1(De,) s symmetry
0,0 1 1 1 1 10,0 symmetric
[h1.2 1 e2mi/3 emi/3 1 H2.1 symmetric
[i2.1 1 elni/3 e2mi/3 1 [0 symmetric
o 1 1 23 oAmi/3 los 0T = flos
Ho,2 1 1 etmifs e?mif3 Ho,1 Ho,2 = [lo,1
fio 1 23 1 A3 120 5 = fi1a
. 1 o2mi/3 o2mi/3 oAmi/3 . T = firo
12,0 1 etmi/3 1 e2mi/3 1,0 2,0 = [2,2
2,2 1 emi/3 e'mi/3 e2mi/3 1,1 f2,2 = H2,0

Table 5.1: Multiplier systems for p = 13.

be{-1,1}andc € {1,i,—1,—i} asextensions p of u(J) = b-a?, u(T) = u(J)? = b-a™?
and u(T,,) = a - c. For D, we then have u(D.,) = —u(J)*u(T) " u(T,)°. If the weight
is integral, . is a character.

Proof. [Gu88, §5] and [MWS].

For calculations note, that each multiplier system, restricted to the subgroup of translations 7,
is a character. Incase p = 17 itis T, = Ty, 57 = T°(Tw)? and T = T_y, 77 = T°(To,) 2
If we apply Definition 4.1.3 to the equation 1, = J1 =J1.,J1 =, we get for half integral
weight (p = 17) and every multiplier system p

by calculations and u(J)? = —1, u(T)* = —1 and pu(T,,)* = —1. O

Table 5.1 consist of a collection of all characters in case p = 13. We get the tables 5.2 and 5.3 for
the multiplier systems for p = 17 from the corollary. The multiplier systems, whose restrictions
to the diagonal are trivial, are underlined in Table 5.3. We have seen in Remark 4.2.4 that a
multiplier system is symmetric if and only if u(7,,) = u(T)/pu(Ty).

Corollary 5.2.2 (Half integral weight implies eight power). If f is a modular form for Q(v/17)
of half integral weight k, then

(i) fisamodular form with one of the multiplier systems (51, ..., i3 5.
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5 Calculation of Borcherds Products

character | u(J) w(T) | w(Tw) | u(Dey) | b ¢ | symmetry | diagonal | square | weight
Lo 1 1 1 1 1 1 | symmetric 1 140 Z
M1 -1 -1 1 1 -1 1 | =p3 ,u,l]z 140 Z
H12 1 1 -1 1 1 —1| symmetric 1 140 Z
13 -1 -1 -1 1 -1 =1 |3 =pi1 ,u}f 140 Z
o1 1 1 7 -1 1 v | T2l = Moa 1 12 Z
2,2 -1 -1 i ~1 | =1 4 |symmetric| pl? [11,2 Z
2,3 -1 -1 | —i ~1 | =1 —i|symmetric | pl? [11,2 Z
2.4 1 1 —1 -1 1 —i | i = plo1 1 12 Z
3.1 i —i Vi i 11 | s = pse fh? foo | Z/2\Z
13,2 i —i | =i i L =1 | fma=psy| p2 | Z/2\Z
3.3 —i i Vi i —1 1 | symmetric I poo | Z/2\Z
[h3.4 —i i | =V i —1 —1| symmetric |  p$ poo |Z/2\Z
135 i —i | i —i 1 i | symmetric | p8 pos | Z/2\Z
[h3.6 i —i | —ivi| —i 1 —i | symmetric | pl8 pos | Z/2\Z
a7 —i i ivi —i | =1 i |Tsg=jpss| p tos | ZJ2\7Z
L33 —i i —iVi| =i | =1 —i|Tizs = p7 ps pos | Z/2\Z
4 e™/* em/12 1 compare with the character of the Dedekind n-function .
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5.2 Weight and Multiplier Systems

Ho
T
Hi1 @ H1,3
T
H2,1 H22 ~ H23 MLZ
/! AN

o\ o\
7 N
H31 H3,2 H33 H3.4 H3s5 H36 H3,7 H3.8

Table 5.3: Taking squares of multiplier systems for p = 17. The multiplier systems with trivial
restriction to the diagonal are underlined.

(ii) f*isa Hilbert modular form of weight 4 - k£ with multiplier systems z; .

(i) f® is a Hilbert modular form of weight 8 - £ with trivial multiplier system .

The following question arises naturally for a given Borcherds product: What is its multiplier
system? There is a simple answer in case p € {5,13,17}. We follow a suggestion of Bruinier,
that all necessary information should be given by the Weyl vector:

Theorem 5.2.3 (Multiplier systems of Borcherds products). The multiplier system of a Borcherds
product for Q(v/5), Q(v/13) and Q(1/17) can be read from its Weyl vector. Especially we have
1(Tx) = e((S(pwA)).

Proof. Let ¥ be a Borcherds product with multiplier system p. W has the Fourier expansion

U(1,72) = e(pyT1 + pw2) H (1 — e(vry 4 Try)) @)

veo/\/p
(v,W)>0

N J/

~~
H

Lety:aJrﬁ% co/ypand X =a+b/p € owitha,b,a,3 € Z/2andb —a,a + 3 € Z.
Then we have for all 7 € H?:

e(v(m +A) +7(r2 + N) = e(vr +7m) - e(S(vA))
=e(vm +71m) - e(2(aa + bj))
=e(vm +7m) - e(2(aa + af + b3 — af))
=e(vn +7m)-e(2a, - (a+ )+ 26 -(b—a)))

N ——
€z €z €z €z
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5 Calculation of Borcherds Products

Hence H is invariant under the operation of 7" and 7, and we have (7)) = e(S(pw)) and
w(T,) = e(S(pww)). So by Corollary 5.2.1 the multiplier system p is uniquely determined by
the Weyl vector in the cases p = 5, p = 13 and p = 17. 0

Remark 5.2.4.

e For p = 13 we calculate

and

0]
/N
w
VRS
/N
=
_|_
5|5
o w
~_—
7N
DO | =
_|_

DN | —
5
w
N~
N~
~_—
I

(11, 11
Pl 2722
2 .
—e (g) _ €4m/3.

Thus we can determine the multiplier systems (here: characters) of some Borcherds prod-
ucts (p = 13), for their Weyl vectors are often a power of % + 2£63 Note that the characters
are symmetric by Remark 4.2.4.

e For p = 17 we calculate

() )
—e(3)--va

where we write v/i := e™/* Hence we can calculate the multiplier systems of some
Borcherds products (p = 17), for their Weyl vectors are often a power of é + \g—? Addi-
tionally we have e (S (£)) = iand e (S (3 +1V17)) = e (%) = V4, s0 U7 has the
multiplier system p5 3 (compare Table A.6 and Table 5.2).

5.3 Fourier Expansion of Borcherds Products

This section describes a method to calculate Fourier coefficients of Borcherds products and
introduces our concept of the realization of Fourier coefficients of Hilbert modular forms on a
computer.
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5.3 Fourier Expansion of Borcherds Products

The Fourier expansion of a Hilbert modular form is a sum of ¢(\)e?™*S*7) where 7 € H? and
A € K (cf. Remark 1.2.17) and c(\) is some complex constant. We rewrite for A = A\, + Xy /p €
K:

e27ri S(AT) — e27ri()\71+)\’72) — 627ri()\1(7'1+72)+>\2(7'1—T2)\/]_7) — eﬂ'i(2)\1)(Tl+72)67ri(2p)\2)(T17T2)/\/p7).

We write \; := 2\, and )y := 2p), and
g = e (T1472) and B = emi(ri—72)/\/P)

to simplify

627ri S(Ar) g5\1h5\2

and get an easy criterion whether A = X;/2 + \o,/p/(2p) is contained in o#: If and only if

A, Ao € Zand A + )y € 2Z, then A € o = o /,/p. We can read three properties of such a
Fourier expansion:

Remark 5.3.1. Let f be a Hilbert modular form with multiplier system p and with Fourier
expansion f(7) = >, , c(a, b)g*h’, then
a) ifc(a,b) = 0forall (a,b) ¢ Z*> and all a + b & 27Z, then p(Ty) = 1 forall X € o,

b) if p € {5,13,17} and c(a,b) = 0 for all (a,b) ¢ Z* and all a + b & 27Z, then p is the trivial
multiplier system,

c) if c(a,—b) = ¢(a,b) for all a, b, then f is symmetric, if c¢(a, —b) = —c(a, ) for all a, b, then
f is skew symmetric and

d) c(a,b) #0onlyfora > 0and |b| < a/p.

Proof. a) In this case, the Fourier expansion is invariant under all transformations 7 — 7 + A
with A € o.

b) a) and Corollary 5.2.1
c¢) Trivial.
d) Remark 1.2.17.
L

Now we can easily calculate the product of two Fourier expansions up to a given accuracy: Given
two Hilbert modular forms

Jo() = Y clabgh and  fo(r)= > d(a,b)g'h’

a,beZ a,beZ
a>0 a>0
b|<y/Pa b|<\/Pa
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5 Calculation of Borcherds Products

we get

fofo@ =313 3 capda—ab-p5)|gn

a,beZ 0<a<a peZ
a>0 acZ |5\§\/§a
bl<v/pa [b—B|<a—a

where Z = Z and a + b € 27Z in the case of trivial multiplier system and Z is a rational ideal in
Q otherwise. This motivates the definition

Definition 5.3.2. If f is a Hilbert modular form with Fourier expansion

f(r)= > cla,b)g"n’
a{,leEOZ

[b]<v/Pa

and there is V € N such that c(a, b) is known for all « < N, |b] < |/pa, then f respectively

Z c(a,b)g*h

a,beZ
0<a<N

[b|<v/Pa

are said to be given with precision g%,

Hence we get

Lemma 5.3.3. If f) and f() are Hilbert modular forms given with precision ¢*¥, then their
product f(1) f(2 is given with precision g*.

and

Lemma 5.3.4 (Calculation of Borcherds products with given precision). Let p =1 (mod 4)
be a prime, m € N with x,,(m) > 0, denote by f,, the unique basis element of AJ (p, x,) with
Fourier expansion s(—m)~t¢™™ + >, ., a(k)q", let W be a Weyl chamber attached to f,, and
7 € Wwithy; = Im (r;) and y, = Im (7). Define a(—m) = s(—m)~! and a(—k) = 0 for all
k € Nyg \ {m}. Then forevery N € N, ¥,,, given by

U (r1, 1) = elpym +pown) [] (1—eln +om)" 7@ forallr e W,

ve€o/\/p
(v,W)>0

can be calculated with precision ¢” by the following algorithm:
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5.3 Fourier Expansion of Borcherds Products

Step 1: Calculate the leading coefficient a(h, —k)g~* (with respectto g = e((r; + 72)/2)) of

H (1—e(vm + 372))8(1)”7)&(1)”?) )
v=v1+v2,/P€0/\/P

=/ (y1=y2)2m/(4pyry2) <1 <0
v3<vi/p+m/p?

and in the case that S(pw ) is negative, rewrite k£ := k — S(pw ).
Step 2: Expand

R = gS(Pw)h(PW —PW)/P H (1 — g thuz)s(PW)a(pW)

v=v1+v2,/p€o/\/D
—/ (y1—y2)2m/ (dpyr1y2)<v1 <(N+k) /2
v <vi/p+m/p?

)

where we expand each factor (1 — g2 p2v2)* @) \ith precision g*+~ and neglect

higher order terms. For negative exponents use the geometric series
(1—2)' =) a" for|z| <L
n=0

Then ¥, is given by R with precision of ¢'.

Proof. Let = 1 + pay/p € 0 /,/p. Thene(S(v7)) = g**h**2 and the factor (1 — g**h*"*2)
has a negative power of g if and only if ; < 0. In this case we get from (W, v) > 0:

(1 + y2) + va(yr — y2)/p > 0
< — > —v +
2(91 192)\/1_7 ! (y1 ?/2)
>0 >0
= ||y — w2lvp > —11(y1 + 12)
— || > |U1|M

|?/1—y2|\/l_9

Furtheron for N(v) < —m/p we have a(p N(v)) = 0, so we can skip
(1 — e(117 + 17y )sPNMIaPNE) —

in the product expansion of ¥,, whenever N(v) < —m/p. So negative exponents only may
derive from the factor e(pw 7 + pwe) and v € o //p with (W, v) > 0 and

N(v) =vi —pv3 > —m/p
u_12 m

2
— vy < .
p P
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5 Calculation of Borcherds Products

The combination of both conditions gives

+ 2 1/2 m
|V1|2|§Jy11— @ﬁip <n s ?1 * P?
(1 +y2)? m
— — 5 1) < —
p \y — 2l p
— ‘V1|2(y1 + y2>2 - (yl - y2>2 < T
(y1 — y2)? p
— ‘V |2 < _(?/1 _yQ)
4y1y2

Since s(—m)a(—m) = 1 every factor (1 — ¢ h?*2) with negative g-exponent occurs once, S0
by Lemma 5.3.3 we need every factor in the product expansion of ¥,, with precision ¢V **,
It remains to show that the geometric series can be applied for negative exponents. Since
vIm(m)+7Im () > 0by (W,v) > 0and

=27 (v Im(71)+7 Im(72)) <1

le(vr +7m)| =€
the geometric series converges. O

Remark 5.3.5. Some results of these calculations can be found in the Tables A.7, A.9 and A.11
in the appendix. The full data and the corresponding Maple ™-worksheets can be found at
http://ww. mat ha. rwt h- aachen. de.
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6 Rings of Hilbert Modular Forms

We determine the rings of extended Hilbert modular forms for Q(v/5), Q(v/13) and Q(v/17)
and compare them to other results by various authors.

6.1 Reduction process

We describe a method to calculate the Ring of extended Hilbert modular forms.

At least in the cases p € {5, 13,17} we have calculated a sufficient number of Hilbert modular
forms to get the Ring of Hilbert modular forms for Q(,/p) with symmetric multiplier systems.
In detail, Chapter 5 is about calculating Hilbert modular forms as Borcherds products (cf. Table
6.1) with given divisors (Section 3.5), Section 2.1 explains how to calculate Hilbert Eisenstein
series, the computation of theta series is described in Section 2.2. In all the cases p = 1 (mod 4)
prime, there is a Hilbert modular form W, vanishing of first order on the diagonal Diag and —
modulo I — only on the diagonal. Consider some Hilbert modular form f of weight £ > 0 with
multiplier system p. Its restriction to the diagonal is an elliptic modular form F' = f o § of
weight 2k with character 1|gp,2,z) (cf. Lemma and Definition 4.2.7). Assume that we know a
Hilbert modular form ¢ with multiplier system ., such that the restriction of g to the diagonal
is F'. Then f has weight k£ and f — ¢ is a Hilbert modular form of weight £ with multiplier
system p vanishing on the diagonal. Hence it is a multiple of ¥, and (f — ¢)/W; is a Hilbert
modular form of weight less than k. Supposed there can always be constructed a Hilbert modular
form with same restriction to the diagonal, it is possible to reduce the weight iteratively until one
reaches weight O (constant modular forms). But some elliptic modular forms £ of weight £ /2
with character ji|sr,(2,z) do not have a Hilbert modular form f of weight £ with multiplier system

feAf(p) r—0 divisor Hilbert modular form g
hi=¢'+0(1) —,y I - Diag 9|piag = 0= Y1y
fr=307+0() —7, I'- Diag,, 9|iag,, = 0= W,lg

fi= S(ln)q_j + O(l)»—>‘lfj

Table 6.1: Borcherds products in the reduction process
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6 Rings of Hilbert Modular Forms

w such that £ is the restriction of f to the diagonal. In the cases p € {5, 13, 17} we will see that
these exceptions can be determined by Remark 4.1.9, Lemma 4.1.11 and Lemma 4.3.1. For this
the following definition will be useful:

Definition 6.1.1. Let f : H? — C be a Hilbert modular form. We define the symmetric part
f*:H? — C and the skew-symmetric part f~ : H? — C of f by

(f(71,72) - f(T2,71))-

DO | =

(f(r,72) + f(2,m)) and [~ (11, 72) =

DO | —

f+(7—177_2) =

It will be possible to show that f* vanishes on Diag, in a number of cases and clearly f~
vanishes on the diagonal Diag.

The graded ring of elliptic modular forms is generated by F,, Eg and, in case of nontrivial
character, the Dedekind-n-function. For the first weights and trivial character we have

k 0] 2 4 6 8 10 12 odd

[SL(2,Z),k] || C | {0} | CEy | CEs |C E} |CE,Es | CE} +CE? | {0}
v Y
Eg 10

For all = € H we get
By (2,2) = Ea(2)

with the Hilbert Eisenstein series E1! of weight 2, since the Fourier expansion of both modular
forms starts with 1 and the weight of the restriction of £’ to the diagonal is 4. Analogously

(Ey')*(2,2) = E{'(2,2) = Es(2).

This does not imply (E1)? = E¥ which is true for p = 5 and false for p = 17. Since all Hilbert
Eisenstein series have even weight, none of them is a lift of £s. What is more, by Lemma 4.1.11
odd weight Hilbert modular forms are cusp forms, so there can be no such Hilbert modular form
at all.

In the cases p € {5, 13, 17} these methods suffice to determine the ring of Hilbert modular forms

for Q(v/5), Q(+/13) and Q(v/17) and symmetric characters.

6.2 State of Art

Some rings of Hilbert modular forms are already known. We will give some examples and sketch
the methods used to obtain each result. The completely determined ring of Hilbert modular
forms for Q(+/5) will be handled in the next subsection.

The first one to publish on Hilbert modular forms was Blumenthal. He proves in his Habilita-
tionsschrift [Bl04a] that the field of meromorphic Hilbert modular forms of weight 0 with trivial

128



6.2 State of Art

multiplier system for a totally real number field of degree » and the group GL(2, o) is generated
by n algebraically independent modular forms (cf. [BIO3], [BIO4a] and the introduction of this
work).

Every element of GL(2, 0) can be written as (§9) M with ¢ € o* and M € SL(2,0) and since
(¢ 9) and (5% ) induce the same map on H", the group SL(2, o) has finite index | o /(0*)?|
in GL(2, 0), where (0*)? is the subgroup of squares in o*.

Assume that there are n + 1 algebraically independent meromorphic Hilbert modular forms
fis-- -, fanr1 Of weight O with trivial multiplier system for a totally real number field of de-
gree n and the group SL(2,0). Then append the set { fi,..., fn4+1} with all translates f;(e7),
e €0"/(0")?, 1 < j < n+1and get aset of at most (n + 1)|o* /(0*)?| elements of which
at least n + 1 are algebraically independent. The elementary symmetric polynomials form an
isomorphism from the polynomial ring generated freely by this set to the subset of symmetric
polynomials, so the image of our set gives us at least n + 1 algebraically independent symmetric
polynomials. The symmetry forces their invariance under the transformations in GL(2, 0), S0
this is a contradiction to [Bl04a] and there are n algebraically independent meromorphic Hilbert
modular forms of weight 0 with trivial multiplier system for SL(2, o).

Hence the maximal number of algebraically independent (holomorphic) Hilbert modular forms
iIsn + 1 (compare also [Re56, p. 277, 278] and [Th54, Hauptsatz 11, p. 457]) and Freitag gave
an existence theorem of n + 1 algebraically independent Poincaré series in his book [Fro90] (also
see [BIO3, Part 11]).

Another general result on Hilbert modular forms is the formula of Shimizu (e.g. cf. [TV83,
Theorem 2.16]). It gives the dimension of the space of Hilbert cuspforms. For even weights, by
adding the number of cusps, we obtain the dimension of the space of Hilbert modular forms of
fixed weight for trivial multiplier system (cf. [Fr90, Corollary 1.5.10,]).

There have been a number of works on rings of Hilbert modular forms for small discriminant,
where generators and relations in between the generators have been determined. By Mg, (1)
we denote the subring of Hilbert modular forms of even weight with trivial multiplier system for
Q(\/E). A good overview is given in [TV83], where we find

Mgven(l) = (C[le X37 X57X10]/(R20)
Me?venu) = C{le X27 X37X7]/(R14>
Mgk (1) = C[X1, X», X3, Y3, X4]/(Rs, Rs)

with generators X;, Y; (depending on p) and relations R; of weight 25 next to a reference to van
der Geer ([Ge78]) who investigated M, (1). Also some results on Hilbert modular forms for
congruence subgroups of I" are given.

The spaces of Hilbert modular forms for Q(1/2) and Q(+/5) have been investigated by Nagaoka
(cf. [Na82] and [Na83a]) in 1982 and 1983 and Nagaoka determined the Z-module of Hilbert
modular forms for Q(1/2) and Q(+/5) with integral Fourier coefficients shortly after (cf. [Nag83b]
and [Na86]). Miiller constructed the rings of Hilbert modular forms for Q(v/2) and Q(+/5)
(cf. [MU83] and [MU85]) in 1983 and 1985 in terms of theta series and Hammond’s modular
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6 Rings of Hilbert Modular Forms

embedding. Muiller also repeats the results of Resnikoff [Re74], Hirzebruch [Hi76] and Gundlach
[Gu63] for Hilbert modular forms for Q(+/5) and compares them to his own.

Resnikoff (cf. [Re74]) writes that after [Ha66a], Hammond’s modular embedding cannot give
complete results for the space of Hilbert modular forms for quadratic number fields, if the dis-
criminant is larger than 8. In case p = 2 (then the discriminant equals 8) one solely gets the
symmetric modular forms of even weight.

Hermann calculated the rings of symmetric Hilbert modular forms with trivial multiplier system
for Q(v/17) and Q(+/65) in 1981 (cf. [He81] and [He83]). His main result is

Theorem 6.2.1 (Satz 5 in [He81]). The ring of symmetric Hilbert modular forms of even weight
for Q(v/17) is generated by Gs, Gi, Hy, Gg and Hg, where Gy = (n? — 473)/O©n.1.1.1),
Gy = mmOu1y, Hi = Oy, Go = 170}, ;) and He = nin,. The definition of the
function ©(, 1 1,1y can be found in Definition 2.2.8; It it a Hilbert modular form of weight 1 with
multiplier system p2.. The Hilbert modular form 7, was defined in Definition 2.2.11 and ), is an
homogeneous polynomial in ©,, like 7, with multiplier system 1.5-..

This result was refined in 1985 by [Ch85], who determined the ring of symmetric Hilbert modular
forms with trivial multiplier system for Q(1/17) (not necessarily even weight) as

M;Thm(l) = <A27 B47 BG? 047 Cﬁa D97 F77 F9>

and the ring of Hilbert modular forms with trivial multiplier system as
Ml?(l) = <A27 B37 B47 B57 047 057 067 D67 D87 F77 F9> .

6.3 The Ring of Hilbert Modular Forms for Q(+/5)

This is a benchmark of the reduction process, since the ring is already known. We will compare
the known results described in the last subsection to our results. Both coincide and we give
some Borcherds product expansions for two of the generators. There is only one multiplier
system.

As done by Gundlach, Resnikoff and others before, we calculate the ring of Hilbert modular
forms for Q(1/5) and get:

Theorem 6.3.1. M? is generated by the Eisenstein series £ and EX and the Borcherds prod-
ucts W, and W5 (cf. table 6.2) and all relations in between the given generators are induced by
the relation Rsq:

67 42 3 67 3 '
wio (%Eé{ -5 (E2) ) (m ((EZH) - Eé{))
— W (3125} 4 v (335 (B2 B - 227 (BY))

1728
4486 10 . s .
sramyooog (43 (B8 =153 (BY)) B + 177 (B])" (E]1)” - 7B (E{")") )
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6.3 The Ring of Hilbert Modular Forms for Q(+/5)

f Bl 0, e = STEH — 2 (B[’ 0,
f 00 E4 0 Eg A2E6
weightof f | 2 5 6 15

Table 6.2: Minimal generating set for Mj

In other words if we write X, = I, X5 = U, Xg = eg and X5 = U5 we get

M? = C[X2, X5, X4, X15)/ (Rso) -

Proof by induction. By Corollary 4.1.12 every non-constant Hilbert modular form has positive
weight. So we can start induction by MO(5)(1) =C.

Let £ € N. Assume that every Hilbert modular form of weight at most £ — 1 was contained in
the subring R of A/® generated by { E5', E, Wy, U5},

Let f € M7 (1). Consider the two cases

e kisodd: Since 7 = D, (mp, ;) forall 7 € Diag, , we get

IHE) = 1 (Dey(72, 7))
= N S)

It symm. —f+(7')

for all 7 € Diag, . So f* vanishes on Diag, and f~ vanishes on Diag by construction.
Since W5 vanishes on Diag,  of first order and only vanishes on I" Diag, and ¥, vanishes
on I' Diag of first order and only there, we have 5| f* and W, |f~. Then f* /U5 has weight
k — 15 and is contained in R by the induction hypothesis, as is the modular form f~ /¥,
of weight k — 5. So f = U5 (f/¥5) + Uy (f~/¥,) is contained in R, too.

e kiseven: foisan elliptic modular form of weight 2k for SL(2,7Z), so there is a polyno-
mial ¢ with f o6 — q(ga, g3) = 0. Hence f — q(E%, e5)|piag = 0 and ¥ | (f —q(Ff, 66)).
We conclude as before that f is contained in R by the induction hypothesis.

Since U, # 0, it is clear from the restriction to the diagonal, that U, EX and e are algebraically
independent. So the left hand side of the given relation follows immediately from the elliptic
case, the right hand side can be easily calculated by a computer. O

In order to confirm this result, have a look at Miller (cf. [Mi85]). He introduces the cusp forms
55 and s, where s; = © (p. 245) and s5 = 01—, ((Ef )’ — EH ) (p. 242).

25,33,52
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6 Rings of Hilbert Modular Forms

Theorem 6.3.2 (Satz 1 in [Mii85]). The ring of Hilbert modular forms for Q(+/5) is generated
by the modular forms El, s5, s¢ and s;5 of weights 2, 5, 6 and 15. They form a minimal
generating set and can be represented by the 10 Thetanullwerte ©;,7 = 0,1,...,9. The skew-
symmetric cusp form s; and the symmetric cusp form sy satisfy the relations

Sg = S10
—273 (E2H)4 sesi0—2-3%5 +s57° (E2H)3 sé

in the ring of symmetric Hilbert modular forms of even weight for Q(1/5). So every modular
form f of weight & is given uniquely in the form

_ pl(gg, S6, 510) + S5+ S15 - pQ(E2I{, S6, 810) fork=0 (mod 2)
s15 - p1(EH sg, 810) + 85 - po(EL s6,510) fork=1 (mod 2),

where p; and p, are appropriate isobaric polynomials in £, ss and s4,.

Miuller gives some Fourier exponents, so we can easily compare the generators and get s5 = W,
S = 864 ((EH) — 66) and s;5 = ¥s.

6.4 The Ring of Hilbert Modular Forms for Q(+/13)

We give the ring of Hilbert modular forms for Q(+/13) with symmetric characters and the ring
of Hilbert modular forms for Q(+/13) with trivial character.

Theorem 6.4.1. M3 is generated by ¥, - sg» B3’ and Wy (cf. table 6.3) and the relations in
between the given generators are induced by

U\ 0, 27 .
Ry s Uiy— <2—\Ijl) <(E2) —2°3° (2% _—108\1112\1/2—1—6@0 (EM?

495 1459 41 v\t 1

+ ?\D?\I@Ef " —ySul §W§WQEH 51208 <2£1> + 16\114 (EL)®
97 s 1 T\’ 189

— Z\If;*xpg (B3")” - gq@\pg (B — 14402 (2@ ) Ef + ?xp%xpgﬂf.

In other words if we write X; = ¥, Xy = Y, = E¥ and X; = ¥, we get

2\11'

M13 - C[X17X27 }/27X7]/ <R14> :
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6.4 The Ring of Hilbert Modular Forms for Q(+/13)

f ‘1’1 Q\I/TALI EQH \1113
fod 0 n® Ey n'°Eg
weight of f 1 2 2 7
multiplier system || j13 13 1 113

Table 6.3: Minimal generating set for ;3. The multiplier system 3 is given by u43(J) = 1,
ps(T) = —% + %\/g, ps(Tw) = —% - % 3.

Proof. We can prove Theorem 6.4.1 quite similar to Theorem 6.3.1. Now there is more than
one multiplier system, but every symmetric multiplier system of a Hilbert modular form f is
already determined by f o ¢ (cf. table 5.1). To start induction, note that by Corollary 4.1.12 all

non-constant Hilbert modular forms have positive weight. We write R = <\111, 2‘1’741, EH \1113>.

Let £ € N. Assume that all Hilbert modular forms of weight at most £ — 1 are contained in R.
Let f € M;'3(u) with some symmetric multiplier system ... Consider the two cases:

e If kisodd, we get (itis 7 = D, (m, ) forall 7 € Diag, ):

FHE) = FH (D)
= u(D2) N(eg ' (7)
T (D) fH(7)

forall 7 € Diag,, . Since u(D.,) € e*™%/3 itis —u(D.,) # 1 and we obtain [ Ipiag,, = 0.
Analogously to the case of M° we get 3| f* and U,|f~. Then f*/¥,3 has weight k — 7
and is contained in R by the induction hypothesis, as is the modular form f~ /¥, of weight
k—1.S0 f =WUy3(f*t/Uy3) + Uy (f~/¥,) is contained in R, too.

e If & is even, then f o § is an elliptic modular form of weight 2% for SL(2,7Z) and there

is a polynomial ¢ with f o § — q(n%, E4) = 0. Hence f — ¢ (%,EQH) Ipiag = 0 and

Uy | (f —q ( L2 EZH)) Then f is contained in R by the induction hypothesis.

A

So we have shown R = M3,

Since W, # 0, it is clear from the restriction to the diagonal, that ¥, 2‘1’741 and EZ are alge-
braically independent. So the left hand side of the given relation follows immediately from the
elliptic case:

("°Eo)* — (n°)'Eg = 0,

so simple computations yield the given relation between the Hilbert modular forms. O
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6 Rings of Hilbert Modular Forms

Xy | Xis X2 X0 Xi6 Xs | Xo

3 2
f B | dawy | () | w ()| v | wie | 0
fob E.| AEs | A 0 0 0 |0
weightof f | 4 18 12 10 16 8 6

Table 6.4: Minimal generating set for M/13(1)

Corollary 6.4.2. We write X; = Ej, X¢ = U3, Xg = Wiz,

(N ) Xig =V, V3 and X5 = 4111113 and define the relations

Rig - X10Xg = X12Xg, Ry - X3, = X9 X,
Ry - X16Xg = X X3,

2
Xy = U, (L) L Xip =

Rys:  Xig=X}HX3 — 1728X3) — 108X5X¢ + = X2XJ + T Xp XZX5 — 19X2 X2

+%X120X§X4 — %XgXZX%O — f—gXlng’XZ — %XfoXj‘ + %X4X122X8.

Then
Mlg(l) = C[X47X67X87X107 X127X167X18] / <R187 R207 R247 R36)'

6.5 The Ring of Hilbert Modular Forms for Q(/17)

We give the ring of Hilbert modular forms with symmetric multiplier systems and the ring of

Hilbert modular forms for Q(+/17) with trivial character.

Theorem 6.5.1. M7 is generated by X1 =0y, Xy =y, Vs =1, Xp = Elland X
Together with the two relations of Welght 3and?9,

Rs :n2 — 64032 = 16V2EY
and

Ry : UT, — U3 (E) ) + 216W5n, = —2560]°

2671 103
12 6,,4 4 H
—176\11 \1127]2 4096 172 3 \I[ (E ) \1[2?72
87 1o > 99, s 4 1387 o

we have M'T = C[X1, Xs,Ys, Xy, Xo]/(Rs, Ry).
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6.5 The Ring of Hilbert Modular Forms for Q(+/17)

f 0, El -, n2/8 V7

fop 0 E, 1’ 1’ 1°Es
weight of f : 2 5 5 2

multiplier system || j17 1 s 17 Wi

Table 6.5: Minimal generating set for M7

Proof. The proof is similar to the ones for A/® and M*'3, with two differences. First, the re-
striction of a symmetric multiplier system to the diagonal loses information about the multiplier
system, second, there are half integral weights and the symmetric Hilbert modular forms of odd
weight are not in general divisible by ¥ ;.

Again every non-constant Hilbert modular form has positive weight by Corollary 4.1.12. Let
k € Z/2. We write R = <\I/1, EH Wy n,, \1117> and assume that every modular form of weight
at most k& — 5 is contained in R.

Let f € M}7(u) be a Hilbert modular form with symmetric multiplier system. Its restriction to
the diagonal F' = f|pi.g is then contained in (n°, E,, Fg). If we compare weights and multiplier
systems of 5, E; and E, we find that (1f, Ey, Es) = (0%, E4) + Es (n°, E4). So we distinguish
the cases:

o ['c Eg <’I76,E4>:
The symmetric part f* of f holds

fH(r) = f1(DaT) = w(D2y)N(eg )" fF(7)
= (D) fT(7), (Fi= (7))

for all 7 in the twisted diagonal Diag, . We get from table 5.2 that 1.(D.,) only depends
on 1fsr,(2,z), SO it only depends on F'. For the three special cases F' € {n®, E,, Eg} we get

F || 2k = weight of F plsLez) w(D.,) e kT = (—4)%k
n° 3 I i i

B, 4 1 1 1

F 6 1 1 1

Hence itis f*(7) = —f*(r) forall 7 € Diag, and therefore f is divisible by ¥,7. Since
f~ vanishes on Diag, it is divisible by ¥, so we can reduce the weight and use induction.

e e (n® E,)isnota cusp form.
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6 Rings of Hilbert Modular Forms

In this case f has trivial multiplier system by Lemma 4.1.8 and there is a complex polyno-
mial ¢ in two variables such that ' = f o o = q(E4, n**), 50 f — q(EX, (=Wy)3 - 15/8)
vanishes on the diagonal and is a Hilbert modular form of weight £ with trivial multiplier
system. Hence we can divide it by W, reducing its weight, showing that f is contained in
R.

o Fen®(ns E,) (isacusp form)
Then there is a complex polynomial q in two variables such that F'/n® = ¢(n°, E4). We
write ¢(X,Y) = > a,, XY™ and define gn = a (=W )em+1 2™ if ts mul-
tiplier system equals p, and g,, = @,y (—¥,)*™ 4 /8 otherwise. Then )" g, and
f—>_,. gm are Hilbert modular forms of weight & With multiplier system ;. and the latter

vanishes on the diagonal. Hence f — " g, is divisible by ¥, and we get f € R by
induction.

So we have shown M7 = R.

Since four of the five generators do not vanish on the diagonal, every non-constant complex
polynomial ¢ in 5 variables with ¢(¥'1, EJ’, =Wy, ne, U;7) = 0 defines a non-constant polynomial
r = q(0,-,-,-,-) with r(E;,n% 1% n°Es) = 0. The simple solution r(xy, xo, 23, 74) = o —
x3 has no correspondence as relation between the generators, since —W, and 7, have different
multiplier systems, but r(zy, zo, 3, 24) = 23 — x2 comes from the identity R3. All relations in
between E, n® and n°E are induced by n'?(E? — E3) = 1728n'2A, so the stated result follows
from the elliptic case. U

Corollary 6.5.2. We write
Xo=E Xg=-Udn/8, Xo=UVU;;n/8 Xs=—-UU3
Xg \I] \I[ \1[177 X4 = —\I’%\IIQ ?72/8 X7 \112\1117 ?72/8 X3 = —\Ilzls\I]Q,
Vo= W0, Yo =U(ny/8, Yi=VY

and define the relations

Ry : X4 X5 = X3XG, Ry : YiXe = X§X47
Ry : Y5 X6 = X3X7, Ry : Xy Xg = X5X7,
R’12 : XeYs = X5X7, Rys: XeX7 = XoXy,

Ryy X5X9 = X6 X5,
Ris:  X§=X3(Xs+ X5) — 256X,V Xe — 1408X5 X5 — L X, X}
—2671X7X2 + B X5 X3 X7 X5 — 103X5 X5 X6 — S XTX,YiXg
128X2X4X2 512X2X2X6 + 1387X X4
Then
MY (1) = C[Xa, X3, X4, Y2, X5, Y5, Xe, Y5, X7, Xs, Xo|/(Ris, Ria, Riz, Ri2, Ro, R}y, Ri1, Rig).
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6.5 The Ring of Hilbert Modular Forms for Q(+/17)

X, Xs Xy Xs Xs
f EI | —W3 0y /8 | W2W 71y /8 || — 103 | U, W20,
j = zero order of f on diagonal | 0 0 0 1 1
JIAZEY) E, A AF; n's n'® B
weight of f 2 6 9 5 8
X4 X7 X3 Ys Y; Yy
f —U2Wy 1y /8 | WU 71y /8 || — U3 Wy | W3Wy, || UTny /8 || U
j 2 2 3 3 7 8
RN n' " Es o B || 0t || 1
weight of f 4 7 3 6 5 4

Table 6.6: Minimal generating set for M/17(1)

Proof. This is a corollary of Theorem 6.5.1. Note that W, is only generator given in the theorem
vanishing on the diagonal and that the restriction of a Hilbert modular form with some multiplier
system to the diagonal is contained in 7% (Ey, A, Eg), where 0 < m < 4 depends on the
multiplier system. In case m = 0, it is even contained in the subset (E4, A, AEg). We can
give the generators of the ring for trivial multiplier system some structure by the order of which
they vanish on the diagonal. The rest, including the relations, is a simple bookkeeping argument
(we can sort the generators by the multiplicity of the divisor F7i, i.e. by the zero order on the
diagonal). O
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6 Rings of Hilbert Modular Forms
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/7 Perspectives

This work presents a method to calculate rings of Hilbert modular forms and applies it to
the case of extended Hilbert modular forms of homogeneous weights for Q(v/5), Q(+/13) and
Q(+/17). Some of the results and parts of the method can be used for further investigation. We
will discuss some further questions and give partial answers to how to solve them.

The easiest question deals with Hilbert modular forms for slightly different groups.

Question 7.1: How can we get rings of Hilbert modular forms for groups different from the
(extended) modular group?

If the group I" contains SL(2, o) or SL/(Q,\o), then the corresponding ring of Hilbert modular forms

clearly is a subring of the ring SL(2, 0) resp. of SL(2,0) and a construction as in section 6.2,
where we symmetrized modular forms by application of the elementary symmetric polynomials
to a Hilbert modular form and all of its translates with respect to the representation of I'/ SL(2, o).

Therefore we have to restrict our investigation to the action of the group, not the group itself and
it will suffice to consider finite extensions, since the Hilbert modular group acts discrete on .

Subgroups are a different task, since less restrictions lead to more modular forms. In this case
we can apply the construction principle for Eisenstein series for the smaller group and might
get along with these Eisenstein series and the subring of modular forms invariant under the full
modular group.

Question 7.2:  Are there Hilbert modular forms for non-symmetric multiplier systems?

Eisenstein series, theta series and Borcherds products are extended Hilbert modular forms (cf.
Proposition 2.1.2, Lemma 2.2.9 and Corollary 4.2.6), so by Lemma 1.2.12 all Hilbert modu-
lar forms constructed in this work have symmetric multiplier systems. On the other hand, note
that by Proposition 2.3.3 about Poincaré-series, there are non-trivial Hilbert modular forms for
non-symmetric multiplier systems, but the proof thereof is not constructive. The only construc-
tive information we have so far, is that the ring M? of Hilbert modular forms with symmetric
multiplier systems operates on the set of Hilbert modular forms with non-symmetric multiplier
systems. Next we pose two structural questions.

Question 7.3:  What is the subring generated by Theta series?

Question 7.4: How does differentiation operate on the generators?
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7 Perspectives

Both are an easy task, since a sufficient number of Fourier coefficients is known and merely
calculations remain.

Question 7.5:  Which problems occur in the case p = 3 (mod 4)?

In case p = 3 (mod 4), there is no modular embedding by Theorem 2.2.5, hence there are no
theta series. Borcherds products can be constructed as in the case p = 1 (mod 4), only some
details of the lift, some constants, change compared to the case p =1 (mod 4).

Question 7.6:  What obstacles are to be expected in the calculation of rings of Hilbert modular
forms for Q(,/p) if p is a “large” prime number?

We have calculated the rings of Hilbert modular forms with symmetric multiplier systems for
Q(v/5), Q(v/13) and Q(+/17). For larger p we get some additional problems:

e p > 17: The obstruction space gets nontrivial and it becomes more and more complicated
to construct a sufficient number of Borcherds products. But in our case, we only needed
few products, so there is hope that in many cases many Borcherds products of small weight
can be found nevertheless.

e Resnikoff [Re74] writes, that the modular embedding cannot give complete results for
large discriminant, so with growing p the tool of theta series gets less and less useful for
the calculation of Hilbert modular forms.

e The calculations get more and more involved, for example for increasing p it gets more
difficult to calculate in Q(,/p), but still should be not to complicated. An example are
Fourier expansions, where we have quite moderate growth: we need to know all elements
of o with fixed norm m. Since N(g) = %1 for the fundamental unit ¢y = x¢ + /pyo 0f 0
we have 1 + 2§ = pyg and for large p we get (zo, yo > 0 by Lemma 3.2.1) \/p/2 — 1 <

o = /PYo. Hence we have o, = 2xgyo/ (25 +pyg) ~ 5 — m as p — oo and by Lemma

3.2.2 we have, for large values of p, to calculate approximately 4\/]_)y§m elements of o
to get those of fixed norm m. We can reduce this effort down to approximately 2i¢/m
by going through all =, in the range described in Lemma 3.2.2 and checking whether

Yo == £24/(«f F 1)/pis an integer and x + /pyo is in o.

e For larger class numbers we have more than one cusp and we should suspect to find more
multiplier systems, so we will most likely get a more complicated ring of Hilbert modular
forms. Of course this will make calculations harder.

The given reasons show that increasing values of p complicate further calculations, but at least
some subring of Hilbert modular forms should be possible to calculate for some primes p > 17.

Question 7.7:  Can we calculate the rings of Hilbert modular forms for inhomogeneous weight?

In [Gu85], Gundlach describes an algorithm to calculate all possible (inhomogeneous) weights
with corresponding multiplier systems. We can at least try to calculate the rings of Hilbert
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modular forms of weight in (k, k + 27Z), k£ € Q. This can be done by differentiation (compare
4.4.2), since we can start with Hilbert modular forms of homogeneous weight & and map into
but probably not onto the subspace of Hilbert modular forms of weight (k + 2, k) respectively
(k,k + 2). Then we can differentiate again to obtain Hilbert modular forms of homogeneous
weight & + 2, where we already know all modular forms. We can try to integrate the last step
(at least find some restraints on the Fourier coefficients) while fixing one of the functions of
inhomogeneous weight and hence might be able to calculate the ring of Hilbert modular forms
of weight (k,k + 2) and (k + 2, k). But we have to be cautious: the functions obtained by
integration might not be Hilbert modular forms, which is for example the case for most of them
if the differentiation procedure is not surjective. If we iterate this and additionally multiply
Hilbert modular forms of various weights, homogeneous and inhomogeneous, we might be able
to calculate some rings of Hilbert modular forms of inhomogeneous weights.

Question 7.8: How can we calculate Hilbert modular forms for non-quadratic totally real num-
ber fields?

Consider two different prime numbers p, g and the associated rings of Hilbert modular forms for

Q(v/p), Q(v/2), Q(/pq) and Q(/p, /q) (maybe the case p = 5, p = 13 is a good choice, since
then the rings of Hilbert modular forms for Q(+/5), Q(+/13) and the ring of symmetric Hilbert
modular forms for trivial multiplier system for Q(/65) (cf. [He83]) are known. We reformulate
Question 7.8 into

Question 7.9: Is there a relation between Hilbert modular forms for Q(,/p, \/q) and Hilbert
modular forms for Q(,/p), Q(,/q) and Q(+/pq)?

We have the following diagram for the fields Q(,/p), Q(\/q), Q(1/pq) and Q(/p, /4):

Q(vp: va)

Q(v/p) Q(v/a) Q(v/Pa
\ (L /

)

This gives us the following

Lemma 7.10. If f : H* — C is a Hilbert modular form of weight & = (ko, k1, ko, k3) with mul-
tiplier system y for the group I' = SL(2, o), where o is the ring of integers for X = Q(,/p, \/q),
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7 Perspectives

and we fix the field automorphisms 7; = id, 75, 73, m4 of IC with

sign(mi) sign(ms) sign(ms) sign(ry)

§8 %S

then the functions

integers of Q(y/m)).

Ji: H* — C, fi(r) = f(m1, 72,71, 72)
f2 : H2 - Cv fQ(T) = f(T177—177—277—2)
fs :H? — C, f3(1) = f(m1, 72, 72, 71)
are Hilbert modular forms, more precisely f; is a Hilbert modular form for Q(,/p) of weight
(k1 + ks, k2 + k4) with multiplier system yi[sr,2,0 ), f2 is @ Hilbert modular form for Q(,/q) of

weight (kq + ko, k3 + k) with multiplier system NlSL(Q,aﬁ) and f3 is a Hilbert modular form for
Q(/pq) of weight (k; + k4, ks + k3) with multiplier system MlSL(Q’U\/P_q) (where o is the ring of

And in terms of Fourier expansions we get

Lemma 7.11. If f is a Hilbert modular form for Q(,/p, \/q) with Fourier expansion

then the Fourier expansions of f;, f; and f5 are given by

Additionally we immediately get f; (00, 00) = f2(00, 00) = f3(00, 00) = f(00, 00, 00, 00).
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A@ =D D ca) |,
p a1+33=ﬁ1
az+ag=0F2

L@ =X Y. da) |,
p a1+32=ﬁ1
as+as=02

B =3 X ela) |
p 041+g4:ﬁl
az+az=0F2



The other direction is more complicated. At least we have some conditions on Fourier coeffi-
cients from Lemma 7.11, since we can get constraints for (and calculate some of) the coefficients
of the Fourier expansion of f (having determined the rings for Q(,/p), Q(,/q) and Q(,/pq)). Ad-
ditionally it should be possible to give some dimensions of the space of Hilbert modular forms
for Q(,/p, \/q) of fixed weight. Last but not least a somewnhat different question:

Question 7.12: What kind of applications are there for Hilbert modular forms?

For one thing Hilbert modular forms play a central role in solving the generalized Fermat equa-
tion P 4+ y? = 2" for p, ¢, r primes (cf. [Da00]). For another, they can be used for Ramanujan
graphs and the construction of communication networks (cf. [Li0O1]) and a variant of the Serre
conjecture claims that certain Galois representations connected to algebraic number fields can be
constructed with Hilbert modular forms (cf. [De06] for all three applications and cf. [Ta89] and
[BDJ] for the construction of Galois representations from Hilbert modular forms)

We may add, that another kind of application of Hilbert Blumenthal modular forms is given
by what Blumenthal wrote in his Habilschrift, that Hilbert Blumenthal modular forms are “eine
neue Funktionsklasse [...], deren Untersuchung sich in ausgedehntem MaRe durchfiihren I&0t,
und die daher bei dem Ausbau der allgemeinen Theorie [der komplexen Funktionen in mehreren
Variablen] gute Dienste wird leisten kénnen.” (a new class of functions [...], whose Investigation
can be achieved to a large extend and which hence will be quite useful in the extension of the
general theory [of complex functions in several variables]). This problem still remains, more
than a hundred years after Hilbert gave his sketches on a new type of modular functions to his
doctoral student Ludwig Otto Blumenthal.
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A Tables

The following pages contain informations about weights and divisors of Borcherds products and
some Fourier coefficients of Borcherds products and Hilbert Eisenstein series. Further data and
the corresponding algorithms are accessible at ht t p: / / www. mat ha. r wt h- aachen. de.

p | BQ) | BQ) | BG3) | B@A) | B() | B6) | B(7) | B(8) | B(9) | B(10) | B(11) | B(12) | B(13)

5 || —10 —-30 | =30 | =20 -70 | =20 | —120
13| -2 -8 —6 —26 -8 —24 —14
17 -1 -3 -7 —-15 | -7 —14

Table A.1: Fourier coefficients of £} =1+ > B(n)q"

m 112131145 |6 |78 |9|10]11 12 13|14 |15 |16
xs(m) |[1]—=1]—-1|1 1 |-1|-1]1 1 |—-1(-1}|1 1
xis(m) 1] -1 1 |1]|-1|—-1|—=1]—=1]1} 1 |—-1] 1 1 |-1|1
xizm) 1] 1 |—-1|1|-1|—-1|—-1] 1 |1]|—-1|—-1|—=1| 1 |—=1| 1 |1

Table A.2: x,(m) form < 16 and p = 5,13, 17.
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A Tables

Weights of the Borcherds products ¥ ; which are lifts of f; € Ao(p, x;)

pl| Wy | Yo | W | Wy | Uy | W | Uy | Wg | Vg | Uy | Uy | Uip | Ugs

51 5 15| 15 | 10 35 | 10 | 60
13 1 4 | 3 13| 4 12 | 7
17 1/2 | 3/2 7/2 15/2 | 7/2 7

p lI114 \1115 \1116 \1117 \1118 \1119 \1120 \1121 \1122 \1123 \1124 \1125 \1126

513020 55 100 | 45 | 60 50 | 65 | 60
13| 6 11 | 18 10 | 24 21 | 6
17 4 |31/2]9/2(21/2] 10 6 21/2 | 21

p lI127 \1128 \1129 \1130 \1131 \1132 \1133 \1134 \1135 \1136 \1137 \1138 \1139

b} 150 | 30 | 160 80 | 60 | 105 120
13| 40 30 | 16 24 1 39 18 | 28
17 12 63/2| 10 |27/2| 12 |49/2 30

5 | 10 30 50 | 40 30 | 40 | 60 70
13 2 12 8 10 8 20 | 36 26
171 3 6 3 15 12 9 21 24 | 21

Table A.3: The weights of Borcherds products and of some of their holomorphic quotients
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P 5 13 17
F I'M(0,0, :v/5) I'M(0,0,15v13) I'M(0,0, 1=v/17)
F, 0 0 I'M(0,0, 5 + =V17)
Fy 0 I'M(0,0, 5 + =/13) 0

Fy I'M(0, -1, 2V/5) M0, -1, 5V13) I'M(0,0, 52 + £2V17)
Fs | T'M(0,0,%+1v/5) 0 0

Fs || TM(1, -1, 5t + L/5) 0 0

F; 0 0 0

Fy 0 0 I'M(0,0, 5 + 5V/17)
Fy I'M(0,1,2+/5) IM(0,0, 5 + £V/13) I'M(0,1, £v/17)
Fo| I'M1,1,i+46)  TM-1,-1,3+2V13) 0

Fy | TM(0,0, 5 + LV/5) 0 0

Fiy 0 M0, -1, -1+ V13) 0

Fis 0 I'M(0,0,2 + 1v/13) I'M(0,0, -2 + 2/17)
Fu | TM(1,-1,4 + 2+/5) TM(1,-1,5 + 4v13) 0

Fis || TM(1,-1,1+1V5) 0 TM(1,—1,1+ LV/17)
Fig I'M(0, -1, 2V/5) M0, —1, £+/13) I'M(0,0, 5 + 2V17)
Fiy 0 I'M(0,0, 5 + 24/13) ' M(0,0,4 + /17)
Fig 0 0 IM(0,1, 52 + 2V17)
Fig | TM(0,0, 3 + 3+/5) 0 I'M(0,0,—1 + £/17)
Fy | TM(0,—1,1+ 1+/5) 0 0

Fy I'M(1,1,2/5) 0 M1, -1, 5 + $V17)
Fyy 0 IM(1,1, 5 + %=+/13) 0

Fys 0 I'M(0,0, -1+ £/13) 0

Fou | TM(1, -1, 3 + 1V/5) 0 0

Table A4: Fy forp =5,13,17and N < 24.
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A Tables

p 5 13 17
T M(0,0, £/5) I'M(0,0, £5v/13) I'M(0,0, 7-v/17)

Ty 0 0 I'M(0,0,1 + 2V17)
T3 0 r'M(0,0, 3 + 2+/13) 0

T, Fy +TM(0, -1, 2/5) Fy +TM0,-1, 3V13) Fy +TM(0,0, 52 + $17)
Ts I'M(0,0, 3 + 3/5) 0 0

Ts M1, -1, 5 + 5/5) 0 0

Ty 0 0 0

T 0 0 Fy +TM(0,0, 5 + LV17)
Ty Fi +TM(0,1, 2V/5) Fy +TM(0,0, 5 + £+/13) Fy +TM(0,1, 2/17)
Tio I'M(1,1, 3 + 3V5) IM(-1,-1,3 + £V/13) 0

T I'M(0,0, 3 + L+/5) 0 0

Tio 0 F3+TM(0,—1,-1 + 2/13) 0

Tis 0 r'M(0,0, 3 + 1v/13) I'M(0,0, -2 + £V17)
Ti4 I'M(1,-1,3 + /5) M1, -1, 5 + 1v13) 0

Tis IM(1,-1,1+15) 0 IM(1,-1,1+ £V/17)
Tis || Fi + Fy +TM0, -1, 2/5) F1+F4+PM(0 —1,% 13) Fy+ Fy+TM0,0, 3 + 2V17)
Ti7 0 T'M(0,0, 5 + 2+/13) T M(0,0,4 + /17)

Tis 0 0 Fr +TM(0,1, 52 + £2V/17)
Tig I'M(0,0, 1 + 2 V/5) 0 I'M(0,0,-1+ 2+/17)
Ty || Fs +TMO0,—1,1+1v5) 0 0

T I'M(1,1, 2/5) 0 M1, -1, 5 + £2V17)
Tho 0 I'M(1,1, 1 + LV13) 0

Tos 0 'M(0,0, -1 + /13) 0

Toy || Fo +TM(1, -1, 5 + 15V/5) 0 0
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n p=>5 p=13 p=17
1 {5v5} {113} {17}
2 {1 {1 {—5+ V17,5 + V1T}
3 {3 {=2+5%V13,3+5VI13} '’
4 {3v5} {#V13} {=3+5VIT.5 + 5V17, £V1T}
5| {3v5-3} { {}
3+ V1T, 1+ V17,
i Y Y {—1+157 17,—§+31\/1_7}
o 2va) {*mm} (Vi)
—3+%V13
10 {} {} {}
14+ £/,
11 {—§+170\/5} {} {}
12 { {1+ 2V13,-1+ 213} {}
13 { {-3+3v13} {—2+ %V17,2+ ZV1T7}
NGRS
6] {1v3) {4v13) L+ BT —d + BV
-3+ V17
17 { {14+ 213, -1+ 213} {J_ 4}
18 {} {} {24+ 1By17,-2 4+ BYIT}
3+ 15v5, 6
19 {%Jrfo\/g} {} {-1+ ZV17,1+ £V17}
20| {-1+v5} {} {}
23 { {1+ £V13, -1+ £V13} {}
24 {} {} {}
25 {v5} {$V13} {#V17}

Table A.6: R(W,—n): Forp € {5,13,17} and n € {6,7,14,15,21,22} the set R(W, —n) is

empty.
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A Tables

Uy weight Fourier expansion divisor
1 other Fourier expansion on the diagonal (if not 0) diagonal
0, 5 g(h —3) = 10g*(h* — 35) — ¢*(h* — 3z) + O(¢?) I
1 U, = -0,
o 10 g(h+3)+g* (454 +228 (2 + %) + (b + &) Fy
1 (g_) = Wl 294 912¢2 + 101304¢° — 632704¢" + O(g) 282 . A
W, 15 g?(h?* — 75) + 216¢3(h + h* — = — 75) + O(g*) Fi+ F,
1 U, =0,
U 15 9? —275¢3(h+ 1) — *(° + %) + O(g*) F;
1 Uy = Uy g% — 552¢3 + 8640g* + 116000¢° + O(g°) Eg - A?
W 10 1—264g(h+ 3) + O(g?%) Fs
1| U= 1 — 5289 — 201168¢> + 61114944¢° + O(g*) E3E?
Wy 35 g3(h® — J5) + 3555 (h* + h* — 5 — %) + O(¢°) F + Fy
1 Uy = —U,
Wy 10 1 —3400g(h + ) + O(g?) Fio
1 || Wi =y | 1—6800g —30612009% — 256574400¢° + O(g*) | % EIE2 — 2T}
Ty 60 —g% +32569"(h + ) + g7 (A" + -=) + O(g®) Fi
1| Uy =9y, —g% +6514¢" + O(g®)
Wy 30 14 25704g(h + ) + O(g?) Fu
1 || Uy =Ty 1+ 51408¢ + 146187664¢> + O(g?)
W5 20 1—22425f(h + 1)+ O(g?) Fis
1 || Uy =Ty5 1 — 448509 — 42874177592 + O(g3)
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weight | i diagonal

Fourier expansion

Fourier expansion on the diagonal

EQH 2 1 Ef(T, T) = Ey(T)

1+120g (R + 1) + ¢* (720 4+ 600 (h? + ;%) + 120 (h* + %)) + O (¢%)

1+ 240q + 2160¢> + 6720¢% + 17520¢* + 30240¢° + O (¢°)

EF| 4 |1 EI(r,7) = (E4(1))* = Es(7)

1+ 240g (h + 1) + ¢ (30240 + 15600 (A2 + %) + 240 (h* + %)) + O (¢°)

1 + 480q + 619202 + 105024043 + 7926240¢* + 37500480¢° + O (¢°)

Eé{ 6 1 EH(T T) = Q (E4(T))3 + % (E6(7)2

1+M (h+ 1) +g (7877520 +2583000 (h2 ) 2520 (h4 )) +O( 3)

5040 13048560 1125069120 26660859120 310192878240
1+ 2%2q + ¢+ ¢+ q*+ ¢+ 0 (¢°)

Table A.8: Eisenstein seriesincase p = 5
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A Tables
U, | weight | divisor PW 1 other diagonal
Fourier expansion
Fourier expansion on the diagonal (if not 0)
0y 1 F % + 2£63 11,2 U, = -0, Uyi(r,7) =0
g% (h—3) =g (W — ) + (0 = 75)) + O (67")
vy | 4 B | 24+5Y8 |y, U(r,7) = (n(r))"°
B+ B (=2(h+ 1) +9 (P + %) + (B + %)) + %2 (16 + O(h + 7)) + O (¢"/?)
_q2/3 + 16q5/3 _ 104(]8/3 + O(q11/3)
Wy 3 Fy+ Fy %—i—lig?’ po1 | Uy=—"y Uy(r,7) =0
g% (W — ) +¢° (=24 (h— 1) =16 (h* — 35) +8 (h° — 7)) + O (¢°°)
2‘1’741 2 Fy 4 2£63 p12 | Symmetric 5o (1, 7) = n°(7)
13 (h+4) +g*3 (26 —4 (R + %) +9 (1 + ) + O (¢73)
—q"/3 (~1 + 8¢ — 20 + 70¢*) + O (¢'%/3)
V| 4 Fyo 0 1 | W=y U1o(1,7) = (Ey(1))?
1+g(200 (h+ ) +40 (R + 7)) + O (¢?)
1+ 480q + 61920¢° + 1050240¢> + 7926240¢* + O (¢°)
Ui | 7 Fi3 3 po1 | Symmetric Uis(1,7) = ' (1) - Eg(7)
g3 + 73 (=221 (h+ 1) = 39 (B + 7))
q2/3 _ 520q5/3 _ 8464q8/3 +0 (q11/3)
Uy | 6 Fuy 0 1 [ Uy =Wy Uy(7,7) = E3(7)
1—504g (h+ %) + O (¢?)
1 —1008g + 220752¢% + 16519104¢> + 399517776¢* + O (¢°)
Therestriction of ¥4 to the diagona hastrivia character.
Vo | 6 Fog 0 1 | Was = Uog | Uag(7,7) = 22 (Eg(7))” — L (Eu(r))°
1—g (3432 (h+ ) +208 (B* + ;%)) + O (¢?)
1 — 7280q + 371280¢* + 14938560¢> + 408750160¢* + O (¢°)
Table A.9: Borcherds products in case p = 13 for the Weyl chamber W (—i&y, ig)




weight | i diagonal
Fourier expansion
Fourier expansion on the diagonal
EH 2 1 El(r,7) = E4(7)

149 (96 (h+ 1) +24 (B3 + %)) + O (42

1+ 240q + 2160¢* + 6720¢> + 17520¢* + 30240¢° + 60480¢° + 82560¢" + O (¢®)

APt . B = 02 4 4027,

EH| 4

Efl(1,7) = (Eu(7))*

g (5 (e 1) + 3 (P + ) <O

1 + 480q + 61920¢2 + 105024043 + 7926240¢* + 37500480¢° + 135480960¢° + O (¢7)

H Jit _ 21378 13 12085 12
E6 6 1 E6 (T> T) T 33463 E4 (T) + 33463E6 (T>
1598688 1 6552 3, 1
1+9( 33463 (h+ h) + 331639 (h + h3))
3210480 6500435760 2 | 562087955520 .3 , 13314685915440 4 | 154928487036960 5 6
1+ 55065 4+ 33063 ¢ T " 33163 ¢ T 33163 4 T 33463 ¢ +0(q°)

Table A.10: Eisenstein series in case p = 13
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W, | weight | divisor oW I other diagona
Fourier expansion
Fourier expansion on the diagonal (if not 0)
vy % Fy % + \é—}? 43,4 Uy =0, 0
g () g () + () " (00— ) + 0 (6)
v, | 3 B | 3+ | ms=pfy| ¥a=0, Uo(r,7) = — (5(r))°
g/ (= () 4308+ k) + (04 ) + 0 (¢"))
—qMt 66574 — 9¢9/4 — 10¢13/4 1 30417/ + O (q21/4)

Uy z Fy + Fy 185 + 15\ﬁ M35 = M§,4 Uy =-Uy 0
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Table A.11: Borcherds products in case p = 17 for the Weyl chamber W (—izg, ie)
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Fourier expansion on the diagonal
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Table A.12: Eisenstein series in case p = 17
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