On Hilbert modular forms for $\mathbb{Q}(\sqrt{5}),$ $\mathbb{Q}(\sqrt{13})$ and $\mathbb{Q}(\sqrt{17})$

Errata

Sebastian Mayer

5th November 2008

I do know of the following mistakes:

- page 44, $\mathfrak{u} = \mathfrak{d} = \mathfrak{o}$ is wrong. Better is $\mathfrak{u} = \mathfrak{o}$ (and $\mathfrak{d} = (\sqrt{p})$).
- page 58, proof of Remark 2.5.11: Replace β by $f^{(p)}$ and α by f, so The transformation property comes from

$$f^{(p)}\left(\begin{pmatrix}a&b\\c&d\end{pmatrix}\langle\tau\rangle\right) = f\left(p\frac{a\tau+b}{c\tau+d}\right)$$
$$= f\left(\frac{ap\tau+pb}{(c/p)(p\tau)+d}\right)$$
$$= f\left(\begin{pmatrix}a&pb\\c/p&d\end{pmatrix}\langle p\tau\rangle\right)$$
$$= \nu\left(\begin{pmatrix}a&pb\\c/p&d\end{pmatrix}\right)(c\tau+d)^k f^{(p)}(\tau)$$

- page 69, Definition 2.5.37: The n in χ_p(n) ≠ −1 has to be an m. So the sentence is: In case p ∈ {5, 13, 17}, for all m ∈ N with χ_p(m) ≠ −1 we write ...
- page 76, proof of Lemma 3.2.2, first two lines: Define $\lambda = \lambda_1 + \lambda_2 \frac{\sqrt{p}}{p}$ and not $\lambda = \lambda_1 + \lambda_2 \sqrt{p}$. In line six one should then write "It is $N(\lambda) = -m/p$ " instead of "Let $N(\lambda_1 + \lambda_2 \sqrt{p}/p) = -m/p$ ".
- page 77, proof of Lemma 3.2.2, m < 0: Replace a by λ_1 .
- page 80, proof of Lemma 3.3.2: Here we use that W is open, but give no proof.

Remark 3.2.2. Each Weyl chamber W is an open set

Proof. Consider $m \in \mathbb{N}$ (m > 0). Since there is a finite set \mathcal{J} as in Lemma 3.2.2 on page 75 with

$$\mathcal{I} = \left\{ \lambda \in \frac{\mathfrak{o}}{\sqrt{p}} \mid \mathcal{N}(\lambda) = -\frac{m}{p} \right\} = \left\{ \pm \lambda \varepsilon_0^{2k} \mid k \in \mathbb{Z}, \lambda \in \mathcal{J} \right\},\$$

1

the set \mathcal{I} is closed in \mathbb{R}^* , so also $\bigcup_{\lambda \in \mathcal{I}} \left\{ \tau \in \mathbb{H}^2 \mid \operatorname{Im}(y_1) = \frac{\lambda}{\lambda} \operatorname{Im}(y_2) \right\}$ is closed in \mathbb{H}^2 . As a consequence, each component of the complement ist open.

• page 81, Lemma 3.3.4 should be stated more clearly:

Lemma 3.3.4 (Calculation of R(W, n)). Let p be an odd prime, let m = -n be a natural number and $\tau \in W$ for some Weyl chamber W. Then R(W, n) can be calculated by

- For every element λ in a set of representatives of R(-m) modulo multiplication with ε_0^2 do
 - Multiply λ with ε_0^2 (and denote the result again by λ) until $\lambda y_1 + \overline{\lambda} y_2 > 0$ for the imaginary part y of τ .
 - Multiply λ with ε_0^{-2} , until $\lambda y_1 + \overline{\lambda} y_2 < 0$.

The resulting $M(\lambda)$ is an element of R(W, n) and this procedure gives all of its elements when applied to all λ in $R(-m)/\varepsilon_0^2$.

- page 112, 5.1:
 - equation (5.1): In case n is even and n < p we define

$$\tilde{f}_n = f_{n - \frac{p-1}{\gcd(p-1,24)}} \cdot \tilde{H}, \qquad \text{if } \frac{p-1}{\gcd(p-1,24)} < n < p \text{ and } n \text{ is even}.$$

– Alternatively we can write $\tilde{f}_n = f_1^{n-2} f_2$ for even n < p.

• page 113, 5.1, Remark 5.1.2: A sign is false.

The correct definition of $f_{(2)}$ is $f_{(2)} = q^{+l} \left(\sum_{n=0}^{N} \dots \right)$.

• page 113, 5.1.1: The equation for \tilde{H} misses the factor q^{-2} in the Fourier expansion. The correct equation is

$$\tilde{H} = \eta^6 / (\eta^{(5)})^6 = H^{(1)} / H^{(q)} = q^{-1} - 6 + 9q + 10q^2 - 30q^3 + 6q^4 - 25q^5 + O\left(q^6\right),$$

• page 114, 5.1.2: The equation for \tilde{H} misses the factor q^{-2} in the Fourier expansion. The correct equation is

$$\tilde{H} = \eta^2 / (\eta^{(13)})^2 = q^{-1} - 2 - q + 2q^2 + q^3 + 2q^4 - 2q^5 - 2q^7 + O\left(q^8\right)$$

• page 116, 5.1.3: The equation for \tilde{H} misses the factor q^{-4} in the Fourier expansion. The correct equation is

$$\tilde{H} = \eta^3 / (\eta^{(17)})^3 = q^{-2} - 3q^{-1} + 5q - 7q^4 + 9q^8 - 11q^{13} + 3q^{15} - 9q^{16} + O(q^{18}),$$

• page 117, 5.1.3: Here obviously $f_{13} \neq f_1^{13} - \frac{13}{2}f_{12} + \dots$ but

$$\begin{aligned} f_{13} = & f_1^{13} - \frac{13}{2} f_{12} - \frac{13}{2} f_{11} + \frac{117}{4} f_{10} + \frac{221}{16} f_9 - \frac{6279}{32} f_8 - \frac{1157}{8} f_7 + \frac{14989}{32} f_6 + \frac{40105}{256} f_5 \\ & - \frac{653003}{512} f_4 - \frac{661193}{512} f_3 + \frac{927173}{1024} f_2 + \frac{12277915}{4096} f_1 \end{aligned}$$

- page 125, Step 1: the last part of the sentence is misleading formulated and wrong. It schould read: [...] and in the case that S(ρ_W) is negative, rewrite k := k S(ρ_W).
- page 126, 5.3: Since $\nu \operatorname{Im}(\tau_1) + \overline{\nu} \operatorname{Im}(\tau_2) > 0$ by $(W, \nu) > 0$ and

i

$$|\mathbf{e}(\nu\tau_1 + \overline{\nu}\tau_2)| = e^{-2\pi(\nu\operatorname{Im}(\tau_1) + \overline{\nu}\operatorname{Im}(\tau_2))} < 1,$$

the geometric series converges.

page 141, Lemma 7.10: The given values of the field automorphisms are wrong, for example π₂(√p) = −√p ≠ −1. We better write

[...] we fix the fields automorphisms π_1 , π_2 , π_3 and π_4 in the following way:

	$\operatorname{sign}(\pi_1)$	$\operatorname{sign}(\pi_2)$	$\operatorname{sign}(\pi_3)$	$\operatorname{sign}(\pi_4)$
\sqrt{p}	+	_	+	_
\sqrt{q}	+	+	—	—
\sqrt{pq}	+	_	_	+

then the functions $[\dots]$