On Hilbert modular forms for $\mathbb{Q}(\sqrt{5}), \mathbb{Q}(\sqrt{13})$ and $\mathbb{Q}(\sqrt{17})$

Errata

Sebastian Mayer
5th November 2008

I do know of the following mistakes:

- page $44, \mathfrak{u}=\mathfrak{d}=\mathfrak{o}$ is wrong. Better is $\mathfrak{u}=\mathfrak{o}$ (and $\mathfrak{d}=(\sqrt{p})$).
- page 58, proof of Remark 2.5.11: Replace β by $f^{(p)}$ and α by f, so

The transformation property comes from

$$
\begin{aligned}
f^{(p)}\left(\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\langle\tau\rangle\right) & =f\left(p \frac{a \tau+b}{c \tau+d}\right) \\
& =f\left(\frac{a p \tau+p b}{(c / p)(p \tau)+d}\right) \\
& =f\left(\left(\begin{array}{cc}
a & p b \\
c / p & d
\end{array}\right)\langle p \tau\rangle\right) \\
& =\nu\left(\left(\begin{array}{cc}
a & p b \\
c / p & d
\end{array}\right)\right)(c \tau+d)^{k} f^{(p)}(\tau)
\end{aligned}
$$

- page 69, Definition 2.5.37: The n in $\chi_{p}(n) \neq-1$ has to be an m. So the sentence is: In case $p \in\{5,13,17\}$, for all $m \in \mathbb{N}$ with $\chi_{p}(m) \neq-1$ we write \ldots
- page 76, proof of Lemma 3.2.2, first two lines: Define $\lambda=\lambda_{1}+\lambda_{2} \frac{\sqrt{p}}{p}$ and not $\lambda=$ $\lambda_{1}+\lambda_{2} \sqrt{p}$. In line six one should then write "'It is $\mathrm{N}(\lambda)=-m / p$ " ' instead of "'Let $\mathrm{N}\left(\lambda_{1}+\lambda_{2} \sqrt{p} / p\right)=-m / p "$.
- page 77, proof of Lemma 3.2.2, $m<0$: Replace a by λ_{1}.
- page 80, proof of Lemma 3.3.2: Here we use that W is open, but give no proof.

Remark 3.2.2. Each Weyl chamber W is an open set
Proof. Consider $m \in \mathbb{N}(m>0)$. Since there is a finite set \mathcal{J} as in Lemma 3.2.2 on page 75 with

$$
\mathcal{I}=\left\{\left.\lambda \in \frac{\mathfrak{o}}{\sqrt{p}} \right\rvert\, \mathrm{N}(\lambda)=-\frac{m}{p}\right\}=\left\{ \pm \lambda \varepsilon_{0}^{2 k} \mid k \in \mathbb{Z}, \lambda \in \mathcal{J}\right\}
$$

the set \mathcal{I} is closed in \mathbb{R}^{*}, so also $\bigcup_{\lambda \in \mathcal{I}}\left\{\tau \in \mathbb{H}^{2} \left\lvert\, \operatorname{Im}\left(y_{1}\right)=\frac{\lambda}{\lambda} \operatorname{Im}\left(y_{2}\right)\right.\right\}$ is closed in \mathbb{H}^{2}.
As a consequence, each component of the complement ist open.

- page 81, Lemma 3.3.4 should be stated more clearly:

Lemma 3.3.4 (Calculation of $R(W, n)$). Let p be an odd prime, let $m=-n$ be a natural number and $\tau \in W$ for some Weyl chamber W. Then $R(W, n)$ can be calculated by For every element λ in a set of representatives of $R(-m)$ modulo multiplication with ε_{0}^{2} do

- Multiply λ with ε_{0}^{2} (and denote the result again by λ) until $\lambda y_{1}+\bar{\lambda} y_{2}>0$ for the imaginary part y of τ.
- Multiply λ with ε_{0}^{-2}, until $\lambda y_{1}+\bar{\lambda} y_{2}<0$.

The resulting $M(\lambda)$ is an element of $R(W, n)$ and this procedure gives all of its elements when applied to all λ in $R(-m) / \varepsilon_{0}^{2}$.

- page 112, 5.1:
- equation (5.1): In case n is even and $n<p$ we define

$$
\tilde{f}_{n}=f_{n-\frac{p-1}{\operatorname{gcd}(p-1,24)}} \cdot \tilde{H}, \quad \text { if } \frac{p-1}{\operatorname{gcd}(p-1,24)}<n<p \text { and } n \text { is even. }
$$

- Alternatively we can write $\tilde{f}_{n}=f_{1}^{n-2} f_{2}$ for even $n<p$.
- page 113, 5.1, Remark 5.1.2: A sign is false.

The correct definition of $f_{(2)}$ is $f_{(2)}=q^{+l}\left(\sum_{n=0}^{N} \ldots\right)$.

- page 113, 5.1.1: The equation for \tilde{H} misses the factor q^{-2} in the Fourier expansion. The correct equation is

$$
\tilde{H}=\eta^{6} /\left(\eta^{(5)}\right)^{6}=H^{(1)} / H^{(q)}=q^{-1}-6+9 q+10 q^{2}-30 q^{3}+6 q^{4}-25 q^{5}+O\left(q^{6}\right),
$$

- page 114, 5.1.2: The equation for \tilde{H} misses the factor q^{-2} in the Fourier expansion. The correct equation is

$$
\tilde{H}=\eta^{2} /\left(\eta^{(13)}\right)^{2}=q^{-1}-2-q+2 q^{2}+q^{3}+2 q^{4}-2 q^{5}-2 q^{7}+O\left(q^{8}\right)
$$

- page 116, 5.1.3: The equation for \tilde{H} misses the factor q^{-4} in the Fourier expansion. The correct equation is

$$
\tilde{H}=\eta^{3} /\left(\eta^{(17)}\right)^{3}=q^{-2}-3 q^{-1}+5 q-7 q^{4}+9 q^{8}-11 q^{13}+3 q^{15}-9 q^{16}+O\left(q^{18}\right)
$$

- page 117, 5.1.3: Here obviously $f_{13} \neq f_{1}^{1} 3-\frac{13}{2} f_{12}+\ldots$ but

$$
\begin{aligned}
f_{13}= & f_{1}^{13}-\frac{13}{2} f_{12}-\frac{13}{2} f_{11}+\frac{117}{4} f_{10}+\frac{221}{16} f_{9}-\frac{6279}{32} f_{8}-\frac{1157}{8} f_{7}+\frac{14989}{32} f_{6}+\frac{40105}{256} f_{5} \\
& -\frac{653003}{512} f_{4}-\frac{661193}{512} f_{3}+\frac{927173}{1024} f_{2}+\frac{12277915}{4096} f_{1}
\end{aligned}
$$

- page 125, Step 1: the last part of the sentence is misleading formulated and wrong. It schould read: [...] and in the case that $\mathrm{S}\left(\rho_{W}\right)$ is negative, rewrite $k:=k-\mathrm{S}\left(\rho_{W}\right)$.
- page 126, 5.3: Since $\nu \operatorname{Im}\left(\tau_{1}\right)+\bar{\nu} \operatorname{Im}\left(\tau_{2}\right)>0$ by $(W, \nu)>0$ and

$$
\left|\mathbf{e}\left(\nu \tau_{1}+\bar{\nu} \tau_{2}\right)\right|=e^{-2 \pi\left(\nu \operatorname{Im}\left(\tau_{1}\right)+\bar{\nu} \operatorname{Im}\left(\tau_{2}\right)\right)}<1,
$$

the geometric series converges.

- page 141, Lemma 7.10: The given values of the field automorphisms are wrong, for example $\pi_{2}(\sqrt{p})=-\sqrt{p} \neq-1$. We better write
[...] we fix the fields automorphisms $\pi_{1}, \pi_{2}, \pi_{3}$ and π_{4} in the following way:

	$\operatorname{sign}\left(\pi_{1}\right)$	$\operatorname{sign}\left(\pi_{2}\right)$	$\operatorname{sign}\left(\pi_{3}\right)$	$\operatorname{sign}\left(\pi_{4}\right)$
\sqrt{p}	+	-	+	-
\sqrt{q}	+	+	-	-
$\sqrt{p q}$	+	-	-	+

then the functions [...]

