Analysis und Zahlentheorie
Prof. Dr. A. Krieg
Number | Report |
---|---|
503 |
T. Dern, A. Krieg Graded Rings of Hermitian Modular Forms of Degree 2 |
502 |
F. Fehér, G. Grässler On an extremal scale of approximation spaces |
501 |
T. Dern Paramodular Forms of Degree 2 and Level 3 |
500 |
T. Dern, A. Marschner Characters of Paramodular Groups of Degree 2 and some Extensions |
499 |
A. Krieg Triple Systems of Hecke Type and Hypergroups |
498 |
A. Krieg Zahlentheorie und Kryptographie |
497 |
E. Görlich, A. Krieg, R. J. Nessel, R. L. Stens: Paul L. Butzer – Five years as Professor Emeritus |
496 |
P. L. Butzer, F. Jongmans: P. L. Chebyshev (1821–1894), a guide to his life and work. |
495 |
W. C. Connett, C. Markett, A. L. Schwartz: Product formulas and convolutions for the radial oblate spheroidal wave functions. |
494 |
M. H. Annaby, G. Freiling: Sampling expansions associated with Kamke problems. |
493 |
A. Krieg: Hecke algebras and hypergroups. |
492 |
A. Krieg: The Hecke algebra for the Fricke groups. |
491 |
M. H. Annaby: Interpolation expansions associated with nonselfadjoint boundary value problems. |
490 |
M. H. Annaby, A. G. Garcia, M. A. Hernández-Medina: On sampling and second order difference equations. |
489 |
P. L. Butzer, J. Lei: Errors in truncated sampling series with measured sampled values for not-necessarily bandlimited functions. |
488 |
P. L. Butzer, J. Lei: Approximation of signals using measured sampled values and error analysis. |
487 |
P. L. Butzer, J. Lei: Errors in sampling series with measured sampled values. |
486 |
P.L. Butzer, M. Hauss: Applications of sampling theory to combinatorial analysis, Stirling numbers, special functions and the Riemann zeta function. |
485 |
P. L. Butzer, J. R. Higgins, R. L. Stens: Sampling theory of signal analysis. |
484 |
M. H. Annaby, G. Freiling: Sampling for integrodifferential transforms arising from second order differential operators. |
483 |
M. H. Annaby, A. I. Zayed: On the use of Green's function in sampling theory. |
482 |
U. Hettich, R. L. Stens: Approximating a bandlimited function in terms of its samples. |
481 |
P. L. Butzer, S. Jansche: Mellin-Fourier series and the classical Mellin transform. |
480 |
P. L. Butzer, S. Jansche: The exponential sampling theorem of signal analysis. |
479 |
M. H. Annaby: Finite Lagrange and Cauchy sampling expansions associated with regular difference operators. |
478 |
M. H. Annaby: Sampling expansions for discrete transforms and their relationship with interpolation series. |
477 |
M. H. Annaby: One and multidimensional sampling theorems associated with Dirichlet problems. |
476 |
M. H. Annaby, H. A. Hassan: A sampling theorem associated with boundary-value problems with not necessarily simple eigenvalues. |
475 |
R. J. Nessel, C. Röpsch: On the comparison between trigonometric convolution operators and their discrete analogues for Riemann integrable functions. |
474 |
A. Fischer: Sampling theory and wavelets. |
473 |
M. Nacken, R. J. Nessel, C. Röpsch: On the approximation of Riemann integrable functions by Fejér means. |
472 |
P. L. Butzer, S. Jansche: The finite Mellin transform, Mellin-Fourier series, and the Mellin-Poisson summation formula. |
471 |
St. J. Goebbels: The sharpness of a pointwise error bound in connection with linear finite elements. |
470 |
St. J. Goebbels: On the sharpness of a superconvergence estimate in connection with one-dimensional Galerkin methods. |
469 |
A. Krieg: The Maaß space for the non-trivial multiplier system over the Hurwitz quaternions. |
468 |
P. L. Butzer, S. Jansche: Mellin transform theory and the role of its differential and integral operators. |
467 |
P. L. Butzer, S. Jansche: A direct approach to the Mellin transform. |
466 |
F. Fehér, M. J. Strauss: Interpolation functors in weak-type interpolation. |
465 |
A. Gessinger: Connections between the approximation and ergodic behaviour of cosine operators and semigroups. |
464 |
A. Krieg, S. Walcher: Multiplier systems for the modular group on the 27-dimensional exceptional domain. |
463 |
J. Dulinski: L-Functions for Jacobi forms on H $\times\, \C$. |
462 |
T. Dern: Multiplikatorsysteme und Charaktere Hermitescher Modulgruppen. |
461 |
P. L. Butzer: Mathematics and astronomy at the court school of Charlemagne and its Mediterranean roots. |
460 |
A. Krieg: The singular modular forms on the 27-dimensional exeptional domain. |
459 |
S. Jansche: $\Oh$-regularly varying functions in approximation theory. |
458 |
P. L. Butzer, A. Gessinger: The approximate sampling theorem, Poisson's sum formula, a decomposition theorem for Parseval's equation and their interconnections. |
457 |
A. Krieg: Geometrie und Zahlentheorie. |
456 |
M. Hauss: An Euler-Maclaurin-type formula involving conjugate Bernoulli polynomials and an application to $\zeta(2m+1)$. |
455 |
P. L. Butzer, A. Gessinger: A decomposition theorem for Parseval's equation; connections with uniform and nonuniform sampling. |