Lehrstuhl A für Mathematik, RWTH Aachen

Analysis und Zahlentheorie

Prof. Dr. A. Krieg


Number Report
503 T. Dern, A. Krieg
Graded Rings of Hermitian Modular Forms of Degree 2
502 F. Fehér, G. Grässler
On an extremal scale of approximation spaces
501 T. Dern
Paramodular Forms of Degree 2 and Level 3
500 T. Dern, A. Marschner
Characters of Paramodular Groups of Degree 2 and some Extensions
499 A. Krieg
Triple Systems of Hecke Type and Hypergroups
498 A. Krieg
Zahlentheorie und Kryptographie
497 E. Görlich, A. Krieg, R. J. Nessel, R. L. Stens:
Paul L. Butzer – Five years as Professor Emeritus
496 P. L. Butzer, F. Jongmans:
P. L. Chebyshev (1821–1894), a guide to his life and work.
495 W. C. Connett, C. Markett, A. L. Schwartz:
Product formulas and convolutions for the radial oblate spheroidal wave functions.
494 M. H. Annaby, G. Freiling:
Sampling expansions associated with Kamke problems.
493 A. Krieg:
Hecke algebras and hypergroups.
492 A. Krieg:
The Hecke algebra for the Fricke groups.
491 M. H. Annaby:
Interpolation expansions associated with nonselfadjoint boundary value problems.
490 M. H. Annaby, A. G. Garcia, M. A. Hernández-Medina:
On sampling and second order difference equations.
489 P. L. Butzer, J. Lei:
Errors in truncated sampling series with measured sampled values for not-necessarily bandlimited functions.
488 P. L. Butzer, J. Lei:
Approximation of signals using measured sampled values and error analysis.
487 P. L. Butzer, J. Lei:
Errors in sampling series with measured sampled values.
486 P.L. Butzer, M. Hauss:
Applications of sampling theory to combinatorial analysis, Stirling numbers, special functions and the Riemann zeta function.
485 P. L. Butzer, J. R. Higgins, R. L. Stens:
Sampling theory of signal analysis.
484 M. H. Annaby, G. Freiling:
Sampling for integrodifferential transforms arising from second order differential operators.
483 M. H. Annaby, A. I. Zayed:
On the use of Green's function in sampling theory.
482 U. Hettich, R. L. Stens:
Approximating a bandlimited function in terms of its samples.
481 P. L. Butzer, S. Jansche:
Mellin-Fourier series and the classical Mellin transform.
480 P. L. Butzer, S. Jansche:
The exponential sampling theorem of signal analysis.
479 M. H. Annaby:
Finite Lagrange and Cauchy sampling expansions associated with regular difference operators.
478 M. H. Annaby:
Sampling expansions for discrete transforms and their relationship with interpolation series.
477 M. H. Annaby:
One and multidimensional sampling theorems associated with Dirichlet problems.
476 M. H. Annaby, H. A. Hassan:
A sampling theorem associated with boundary-value problems with not necessarily simple eigenvalues.
475 R. J. Nessel, C. Röpsch:
On the comparison between trigonometric convolution operators and their discrete analogues for Riemann integrable functions.
474 A. Fischer:
Sampling theory and wavelets.
473 M. Nacken, R. J. Nessel, C. Röpsch:
On the approximation of Riemann integrable functions by Fejér means.
472 P. L. Butzer, S. Jansche:
The finite Mellin transform, Mellin-Fourier series, and the Mellin-Poisson summation formula.
471 St. J. Goebbels:
The sharpness of a pointwise error bound in connection with linear finite elements.
470 St. J. Goebbels:
On the sharpness of a superconvergence estimate in connection with one-dimensional Galerkin methods.
469 A. Krieg:
The Maaß space for the non-trivial multiplier system over the Hurwitz quaternions.
468 P. L. Butzer, S. Jansche:
Mellin transform theory and the role of its differential and integral operators.
467 P. L. Butzer, S. Jansche:
A direct approach to the Mellin transform.
466 F. Fehér, M. J. Strauss:
Interpolation functors in weak-type interpolation.
465 A. Gessinger:
Connections between the approximation and ergodic behaviour of cosine operators and semigroups.
464 A. Krieg, S. Walcher:
Multiplier systems for the modular group on the 27-dimensional exceptional domain.
463 J. Dulinski:
L-Functions for Jacobi forms on H $\times\, \C$.
462 T. Dern:
Multiplikatorsysteme und Charaktere Hermitescher Modulgruppen.
461 P. L. Butzer:
Mathematics and astronomy at the court school of Charlemagne and its Mediterranean roots.
460 A. Krieg:
The singular modular forms on the 27-dimensional exeptional domain.
459 S. Jansche:
$\Oh$-regularly varying functions in approximation theory.
458 P. L. Butzer, A. Gessinger:
The approximate sampling theorem, Poisson's sum formula, a decomposition theorem for Parseval's equation and their interconnections.
457 A. Krieg:
Geometrie und Zahlentheorie.
456 M. Hauss:
An Euler-Maclaurin-type formula involving conjugate Bernoulli polynomials and an application to $\zeta(2m+1)$.
455 P. L. Butzer, A. Gessinger:
A decomposition theorem for Parseval's equation; connections with uniform and nonuniform sampling.
Lehrstuhl A für Mathematik
Valid XHTML 1.1!